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Abstract: With the rise of new technologies, such as the Internet of Things, raising the productivity of
agricultural and farming activities is critical to improving yields and cost-effectiveness. IoT, in particular,
can improve the efficiency of agriculture and farming processes by eliminating human intervention
through automation. The fast rise of Internet of Things (IoT)-based tools has changed nearly all life
sectors, including business, agriculture, surveillance, etc. These radical developments are upending
traditional agricultural practices and presenting new options in the face of various obstacles. IoT aids in
collecting data that is useful in the farming sector, such as changes in climatic conditions, soil fertility,
amount of water required for crops, irrigation, insect and pest detection, bug location disruption of
creatures to the sphere, and horticulture. IoT enables farmers to effectively use technology to monitor
their forms remotely round the clock. Several sensors, including distributed WSNs (wireless sensor
networks), are utilized for agricultural inspection and control, which is very important due to their exact
output and utilization. In addition, cameras are utilized to keep an eye on the field from afar. The goal
of this research is to evaluate smart agriculture using IoT approaches in depth. The paper demonstrates
IoT applications, benefits, current obstacles, and potential solutions in smart agriculture. This smart
agricultural system aims to find existing techniques that may be used to boost crop yield and save time,
such as water, pesticides, irrigation, crop, and fertilizer management.

Keywords: agriculture; land monitoring; control strategies; IoT; sensors; economic growth; water
management and water resources

1. Introduction

The Internet of Things (IoT) is an interconnected network of computing devices,
people with unique IDs, and the capacity to communicate via a network without human
interaction. The Internet of Things (IoT) intends to connect the physical and virtual worlds
by interacting and exchanging data via the internet. Linked industries, smart cities, smart
homes, smart energy, connected vehicles, smart agriculture, connected buildings and
campuses, health care, and logistics are all examples of IoT applications [1]. The increasing
need for food, both in terms of quantity and quality, has required the development and
modernization of the agricultural sector. The “Internet of Things” (IoT) is a promising set of
technologies that may be used to provide a variety of agricultural modernization solutions.
Scientific institutions, research institutes, and the agricultural sector are racing to provide
more and more IoT solutions to agricultural business stakeholders, laying the foundation
for a clear role when IoT becomes a mainstream technology [2]. The world’s biodiversity
is anticipated to support between 9.4 and 10.1 billion people by 2050, increasing the need
for specialized food production zones, especially for harvesting and livestock. This means
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that by 2050, global food production will have to grow by 70% [3]. Crop production is
increasingly crucial in agriculture, with commodities, such as cotton, wheat, gum, and
others, playing significant roles in many nations’ economies.

In 2019, the IoT market was 690 billion dollars and was projected to be 1256.1 billion
dollars by 2025 with a 10.53% CAGR globally from 2020 to 2025. Solutions are needed to
assure timely and regular agricultural growth and yield due to the combined effects of a
growing population, natural weather unpredictability, soil degradation, and climate change.
Farm management, animal monitoring, irrigation control, greenhouse environmental con-
trol, autonomous agricultural machinery, and drones are examples of IoT applications in
agriculture, all of which contribute to agrarian automation. It also demands contributing to
agricultural food production’s long-term viability. Land appraisal, crop protection, and
crop yield projection, according to these needs, are essential to world food production [4].
Farmers, for example, can manage field environments in real-time and more effortlessly
regulate fields using wireless sensors and mobile networks. Farmers may also utilize IoT
technology to capture essential data, subsequently creating yield maps that enable precision
agriculture to produce low-cost high-quality crops [5]. Figure 1 depicts the smart precision
agriculture cycle.

Figure 1. Smart precision agriculture cycle.

Smart agriculture is becoming increasingly important to farmers in the modern day,
and it will become even more critical in the future to ensure proper field expansion and
crop output. Unfortunately, traditional farming methods are not up to the task of meeting
rising demand. As a result, the ground stays barren and devoid of fertility due to poor
utilization of nutrients, water management, light, fertilizers, and pesticides. Crop diseases,
water shortage, irrigation, and pesticide control monitoring are only some of the challenges
that different IoT automation and control systems can efficiently address [6]. This is why
contemporary agriculture employs smart equipment and tools from sowing through crop
harvesting, storage, and transportation. The operation is smart and cost-effective due to its
accurate monitoring capabilities and fast reporting using a range of sensors. Autonomous
drones, harvesters, tractors, satellites, and robots are now complementing agricultural
equipment. Sensors may be instantly placed and begin collecting data, which is then
immediately available for further analysis over the internet. By enabling reliable data
gathering at each place, sensor technology allows crop and site-specific agriculture [7].
Using advanced control methods to automate agricultural activities has increased crop
production while also improving soil fertility.

The following are the significant contributions made by this study:
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• The world’s expectations of the agriculture industry, based on existing IoT approaches
for providing solutions and new applications and technology.

• Identification of numerous application fields, as well as a summary of the most recent
state-of-the-art literature on IoT technology.

• The Internet of Things’ task is to address these constraints and other challenges, such
as resource scarcity and precise usage, climate change, etc.

The rest of the paper is laid out in the following manner. Section 2 delves into the
details of smart agricultural applications based on IoT technologies. Section 3 discusses the
many types of equipment and technology available. Section 4 identifies unsolved problems
and potential remedies. Finally, Section 5 concludes the research.

2. Major Applications of Smart Agriculture

Precision farming, animal monitoring, and greenhouse monitoring are a few agri-
cultural businesses utilizing the Internet of Things. Every element of traditional farming
operation may be substantially improved by combining cutting-edge sensors and Internet
of Things technology. At the moment, the Internet of Things’ (IoT’s) and wireless sensors’
harmonious incorporation into smart agriculture can catapult agriculture to formerly in-
conceivable heights. Appropriateness of land, pest monitoring and control, irrigation, and
yield optimization are just a few of the conventional agricultural issues that IoT may assist
in resolving through the implementation of smart agriculture approaches [7]. Figure 2
illustrates the comprehensive paradigm of smart agricultural monitoring system applica-
tions, facilities, and sensors. Agriculture applications are classified as IoT agricultural apps,
smartphone-based agricultural apps, and sensor-based agricultural apps. Wireless sensor
networks (WSNs) have recently been used to enable IoT applications for smart agriculture,
including irrigation sensor networks, frost event prediction, precision agriculture and soil
farming, smart farming, and unsighted object recognition, among others [8]. Significant
instances of how new technology assists in the general improvement of efficiency at various
stages are included here.

Figure 2. General paradigm of smart agriculture.
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2.1. Monitoring of Soil Moisture and Water Levels

Soil monitoring has developed into one of the most challenging agricultural areas,
both for manufacturers and farmers. Numerous environmental issues associated with soil
monitoring affect agricultural yield. When these sorts of obstacles are correctly identified,
farming patterns and methods become readily understandable. The soil’s moisture content,
wetness, fertilizer application, and temperature trends are all being monitored. Soil’s
moisture environment management system uses soil humidity and moisture sensors. By
proposing an appropriate fertilizer approach, the results of a soil monitoring test report
assist farmers in increasing crop yield [9]. The sensor can read both analog and digital
outputs. The judgment is made based on data collected from sensors and compared to
predefined threshold levels. The soil moisture sensor is used to regulate the irrigation
system’s automatic operation. When the moisture level goes below the threshold value, the
water pump is triggered [10].

Soil mapping enables you to sow many crop types in the same field, allowing you
to match better soil characteristics, such as seed compatibility, sowing timing, and even
planting depth, as certain crops are deeply rooted while others are not. Additionally,
growing many crops concurrently may result in more prudent agricultural practices, such
as resource conservation. The system is composed of a distributed network of soil moisture
and temperature sensors located in the root zone of the plant, as well as rain sensors
located in various zones. The microcontroller collects and transmits all sensor data and
information. In addition, a temperature and soil moisture threshold algorithm will be
devised and implemented in a microcontroller-based gateway to regulate the amount of
water given to the fields. Finally, the user is provided with control via an IoT module based
on rain sensor data to interrupt or restart water flow as needed [11].

If the field contains an adequate amount of water, no water will be pumped into
it. However, when the soil’s water moisture content falls below a predetermined level,
water is pumped into the field until the desired moisture content is attained. The DHT11
sensor monitors the field’s temperature and humidity. In addition, a PIR motion sensor
detects when an intruder (human or animal) enters the area. Consequently, sensor values
are continually monitored and displayed on the farmer’s mobile device through a GSM
sim900A module, which includes a sim card with a 3G data pack and adds IoT capabilities
to the system [12].

2.2. System of Irrigation Monitoring

Numerous studies have been conducted on a smart irrigation system. Food production
technology must significantly improve to keep up with the growing demand for food.
Numerous experts have worked diligently to create an alternative to irrigated farming.
These efforts, however, have not yet resulted in a feasible solution to the irrigation system’s
present problems. At the moment, crop irrigation is carried out manually and by established
customary practices. When crops are given less water, they grow slower and absorb less
calcium. Frequent irrigation kills roots and wastes water. As a result, accurate irrigation
of crops becomes a considerable difficulty [13]. A smart irrigation management and
monitoring approach is developed to enable autonomous delivery of sufficient water from
a tank to field crops. Automatic sensor systems are cost-effective, offered for determining
whether plants require watering based on information gathered from monitoring and
regulating the soil water levels to minimize dryness or overflow [14].

Kamaruddin et al., 2019 [15] developed an Internet of Things (IoT)-based wireless sen-
sor network (WSN) architecture that manually or automatically administers and monitors
the irrigation system. The proposed method used NRF24L01 and Arduino tools as the
communication network transceiver and CPU. The soil moisture sensor data will be sent to
the base station via NRF24L01. Then, the sensor node’s data will be sent to the cloud server
through the base station. This project utilized Thingspeak as a cloud server to store all data
in a database and connect it to an Android application.
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2.3. Fertilizer Administration

Akshaya et al., 2020 [16] proposed an IOT-based technique and upgraded the previous
system, which predicted agricultural yields using backpropagation and a random forest
algorithm. It recommends fertilizer application rates and exclusively monitors atmospheric
data via a mobile network and pump on/off action. The suggested technique utilizes
a segmented tank to collect NPK fertilizer and water. The user can select one of three
modes (manual, auto, or smart). In manual mode, the user is provided with the fertil-
izer and water ratios for well-known plants and fertilizers. In auto mode, all required
is to know the plant’s name to select the appropriate fertilizer and water ratio. Finally,
in smart mode, if the user cannot recognize the plant’s name, fertilizer ratio, or water,
the plant’s name, fertilizer ratio, and water will be recommended automatically. The IoT
module will continuously collect information on the temperature and soil moisture. The in-
formation collected will be stored in the IoT cloud. The mobile phone will inform you
whenever the given data changes and the needed fertilizer ratio will be shown on the liquid
crystal display.

2.4. Crop Diseases and Pest Control

Human operators frequently monitor insect pests via time-consuming and costly on-
site inspections, which results in low spatial and temporal resolution. Remote monitoring
has been possible due to advancements in remote sensing, electronics, and informatics.
Monitoring costs and effectiveness can be optimized through the deployment of camera-
equipped traps. With minimum human intervention, image analysis algorithms can locate
and count insect pests captured in traps automatically.

Reddy et al., 2019 [17] created an IoT-based system for disease and insect pest man-
agement in agriculture and the prediction of plant climatic factors. The integrated sensors
help in the measurement of soil and atmospheric moisture and humidity. These features
help determine the environmental conditions in which the plant flourishes and the plants’
illnesses. It detects disease on the field and sprays prescribed insecticides. Web cameras
take images that are then preprocessed to include RGB to grayscale conversion, defect
detection, image scaling, image enhancement, and edge detection. SVM is utilized to
categorize characteristics generated from Citrus Canker diseases, such as energy, kurtosis,
skewness, and entropy (damaged Lemon crop). The Arm7 microcontroller is used for
hardware, power, sensors, and motor driver control. Once the illness is identified, the
program will propose fertilizers and transmit the results to an LCD and the recommended
fertilizers. By pump, the fertilizers will be sprayed on the diseased leaves. This study was
confined to the lemon plant to demonstrate that the same method may be used for various
crops with favorable outcomes in the future.

A solution is presented for forecasting and detecting grape disease using the CNN
approach and real-time gathered data on environmental factors. First, the CNN technique
is utilized to analyze the leaf images. Then, different layers of the CNN method are used
to create the image. Finally, it is scaled to a specific resolution before data is sent into
the CNN layers for training and testing. The suggested algorithm was evaluated on four
diseases known to have a higher effect on grape production. The diseases include esca
black measles, anthracnose, leaf blight, and black rot. This gadget not only detects but also
forecasts illnesses based on historical weather data. On the other side, the readings from
the humidity, temperature, and soil moisture sensors are transferred through Raspberry
Pi to Microsoft’s Azure Cloud. Following this, the sensor readings are used to anticipate
the illness using a trained linear regression model. Based on the findings of the preceding
detection and prediction stages, suggestions for appropriate fertilizers in the right quantities
will be provided to minimize fertilizer misuse and cost savings [18].

To detect pests in rice during field production and avoid rice loss, the Internet of Things
supported a model-based UAV with the Imagga cloud offered. The Internet of Things-based
UAV was developed on AI mechanisms and the Python programming prototype to transmit
rice disease images to the Imagga cloud and supply insect data. The Approach identifies the
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disease and insects by integrating the confidence ratings of the labels. The label identifies
the objects in the images. To determine the pest, the tag with the greatest confidence
results and more than or equal to the threshold is chosen equal to the target label. If pests
are discovered in the rice, statistics will be transferred to the field owner directly to take
preventative actions. The suggested method is capable of detecting all pests that influence
rice production. On the other hand, this research attempted to minimize rice waste during
production by conducting insect monitoring at regular intervals [19]. Table 1 summarizes
many current smart agricultural applications.

Table 1. Selected applications based on smart agriculture.

Ref. App Description

[7] Soil Analysis

Land management offers long-term promise based
on climate, geography, and reasonably stable soil

characteristics (like soil texture, depth, and
mineralogy). This application aids farmers in better
understanding the potential of their land and climate

variations alteration and extenuation measures.

[9] Farm Manager

Farm Manager App helps the farmers to decide
which techniques should apply before planting
starts. This app views, organizes, and edits all

information about your field like yield, planting, and
spraying conditions without your mobile phone.

[7] Pest Management

By collecting pest occurrence information from
farms, Village Tree provides smart pest control

solutions. In addition, it employs a crowdsourcing
strategy, sending images and location data to other

farmers who may be affected.

[9] Agrippa

Farmer can generate electronics maps of field, keep a
history of growing crops in the field (e.g., planting,

fertilizing, harvesting, warehouses, gas station), and
track the location of objects in the field (e.g., soil

sampling for agrochemical laboratory) by eFarmer
Application.

Semios
Covers network coverage, orchard pests, frost,

diseases, and irrigation. Event notifications are sent
out in real-time as part of the monitoring services.

[7] Fertilizer
Management

Eco Fert assists with fertilizer management so that it
may be used to its full potential. It determines the

optimal fertilizer mixture created to cover the
needed nutrient suspension and considers the

demands of diverse yields. In addition, it considers
the cost of fertilizer based on current market pricing.

2.5. Yield Monitoring, Forecasting and Harvesting

The AWS IoT platform has been proposed for crop prediction using temperature and
rainfall monitoring. The Raspberry Pi is utilized as a gateway for remote monitoring in this
study. Raspberry Pi can connect with sensors to operate applications, such as the DHT11
Temperature Sensor and Soil Moisture Sensor, which forecasts temperature and rainfall
ranges. The gateway is integrated with Amazon Web Services’ (AWS) IoT platform. MQTT
is a messaging protocol that allows for various messages across distant connections [20].

The study reported establishing an autonomous greenhouse smart aquaponics man-
agement organized on temperature via the use of an Android-based monitoring and
automatic correction system and a Raspberry Pi-based plant growth monitoring system.
Real-time data is collected using the light intensity sensor and the ambient temperature
and humidity sensors. Additionally, the pH and temperature of the recirculating water
are monitored. Suppose the data acquired is beyond the threshold range. In this case, the
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system quickly engages the correction devices, which comprise a peristaltic buffer device,
an aerator, an evaporative cooler, inlet and exhaust fans, and grow lights. The internet
remote access function enables real-time data transmission and receipt through the android
app amongst the smartphone and computer system. This study compared plant devel-
opment in smart aquaponics to traditional agriculture based on soil systems employing
image processing in two investigational operations. Following record collection, it was
determined that the smart aquaponics system achieved greater output than conventional
agriculture monitoring. As lettuce, mustard greens, and pak choi are produced in a smart
aquaponics system vs. traditional soil-based farming, this study focused exclusively on
lettuce, mustard greens, and pak choi [21].

A tree topology was used for the WSN-enabled agricultural monitoring system to
improve performance. A cheap sensor node like a commercial sensor or a NodeMCU
module transmits data to the control unit over Wi-Fi. Fertilizer, fertigation improvement,
and agricultural operations are monitored by data processing and thresholding. The in-
corporation of cost-effective ICT technology with traditional crop management or weather
monitoring and sensor data created the agronomic model. Minimal environmental impact
from crop growing was achieved as a consequence of large fertilizer and water savings [22].

2.6. Climate Conditions Monitoring

In farming, the weather is extremely important. Incorrect climate knowledge can
have an impact on crop quality and quantity. On the other hand, farmers may use IoT
solutions to put sensors in the field, including humidity sensors, temperature sensors,
rainfall sensors, and water level sensors, to collect real-time data from the environment.
These sensors monitor the state of crops and the environment in which they grow. If a
worrying environmental situation is discovered, it is either automatically corrected or a
warning is sent to the farmer.

Greenhouses created an Internet of Things-based weather station to address the cost
and accuracy issues. The TI CC2650 Sensor Tag and IBM Cloud Platform continuously
monitor weather and abiotic factors, transfer the detected values to the cloud, and send
e-mail notifications when values deviate. As a result, this study may be expanded to
include the use of ML model-based classification training to categorize a plant’s health as
excellent, moderate, or terrible based on the average temperature, humidity, light intensity,
and air pressure. This would help to clarify abstracts about a plant’s health to a larger level
and might aid in keeping the plants’ health in good shape [23].

Ariffin et al. [24] used an autonomous temperature control system to address the
drawbacks of traditional growing methods, which are expensive, have low yields, and
need a lot of care. The suggested IoT-based architecture was evaluated in a real-world
setting at the Bandar Puteri Centre of NASOM (National Autism Society of Malaysia).
The ideal temperature for oyster mushrooms is between 20 and 30 ◦C, with a humidity
level of 70 to 80%. Two sensors were installed in the mushroom house’s center and corner
to detect temperature and moisture, then communicated to a remote monitoring station
through a microcontroller unit for further action. The results of the six-day experiment
revealed that an effective automatic monitoring system, which can regulate the farm’s
home while reducing resources and human labor, was developed. The mushroom home,
IoT control box, and Web Client interface were all designed within the system. As a result,
the mushroom house provided a regulated environment for mushroom growing as well as
protection from pests and insects. The climate control system, which automates controlling
the ideal environment for oyster mushroom production, was housed in the IoT control box.

3. Major Equipment and Technologies

Major equipment and IoT technologies are fully demonstrated in the next subsections,
such as various sensors, agricultural drones, and harvesting robots.



Agronomy 2022, 12, 127 8 of 21

3.1. Sensors

The visual sensor, multispectral sensor, thermal sensor, lidar sensor, and hyperspectral
sensor are only a few of the sensors utilized in IoT-based smart agriculture and drone
technologies. Current IoT-based sensor applications in smart agriculture are presented in
Table 2.

Table 2. IoT-based sensors in smart agriculture used to increase production.

Sensors Operations of Different Sensors

DHT11 Sensor: DHT11 sensor measures temperature and humidity
[12].

SEN0193: Soil Moisture Sensor

SEN0193 is a Soil Moisture Sensor. The dielectric
permittivity of soil is a consequence of its moisture

content. The sensor generates a voltage proportional
to the dielectric permittivity of the soil and hence to
its water content. The sensor takes an average of the

water content over its whole length. The Soil
Moisture Sensor is used to quantify moisture loss

over time due to plant absorption and evaporation,
determine optimal soil moisture information for

different plant species, monitor soil moisture
information in greenhouses to regulate irrigation,

and optimize bottle biology research. [20].

Turbidity Sensor SKU SEN0189:

The turbidity sensor determines the quality of water
by detecting its turbidity level. It detects suspended
particles in water using light by measuring the light

transmittance and scattering rate, which vary the
quantity of total suspended solids (TSS) in the water

[25].

MH-Z14A: This is used to monitor the CO2 level at high
precision.

BH1750:

This is used to monitor the light intensity level (as
photosynthesis is related to light intensity) and to

conduct experiments on the influence of light
intensity on the greenhouse environment’s

temperature [26].

Rain sensor:

A rain sensor is a simple instrument for detecting
rain pressure. It may be used as a switch to

determine the strength of rainfall when a raindrop
falls through the rainy board [27,28].

Lidar sensor:
The top camera sensor is an imaging range camera
that estimates the distance between the camera and
the subject at each point in the collected images [29].

3.2. Agricultural Drones

UAVs can monitor the health of crops, apply pesticides, and take hyperspectral images
in precision agriculture. Drones can scan a crop for issues in plants using visible and
near-infrared light, and they can determine which plants reflect what quantities of green
and NIR light. Photosynthetic activity diminishes when a plant is stressed. This data may
be used to create numerous images that track plant changes and indicate their health. As a
result, farmers can more accurately administer treatments after a disease has been identified.
Drones are also utilized for surveillance, traffic monitoring, and weather monitoring in
agriculture. Drone technology employs various sensors, including optical, multispectral,
thermal, lidar, and hyperspectral sensors, which are briefly detailed in Section 3.1.

Crop management has benefited from the Internet of Things, remote sensing, and
analytic data approaches. Pests may be identified, targeted, and managed to utilize remote
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sensing using UAVs. UAVs can fly in tough and harsh terrains to take high-resolution
images that allow pests to be identified and controlled. Many crop security concerns may
be solved using UAVs equipped with cameras, which are not possible with traditional pest
management methods. UAVs have been used to automate insect damage in agricultural
areas [30,31].

An automated rotating device based on sun illumination angle perception keeps the
solar panel perpendicular to the sun and increases solar energy harvesting rates. Based on
spectrum analysis technology, Internet of Things approaches, including several wireless
technologies, such as TVWS, ZigBee, and LoRa, are suggested to collect data and send it
to a base station/gateway to assess the degree of damage caused by pests and diseases.
In addition, a technique for maximizing wind force usage and to extend the time of flight for
drones has been established to support drones in downwind by designing the flying path
implementation. The study’s scope is limited, with the goal of developing a long-standing
insect and disease detection technique through extensive data gathering and analysis.
The suggested model will be tested in real-world scenarios. For example, crop diseases
and insects might be tracked in real-time and climatic changes could be analyzed [32].
The Internet of Things-based approach is illustrated for smart agriculture monitoring in
Figure 3.

Figure 3. IOT-based smart agriculture monitoring system.

3.3. Harvesting Robots

Under specific climatic circumstances, a harvesting robot is intended to gather fruits
autonomously. The advancement of vision-based harvesting robots’ mechanism is yet in its
early stages. Agricultural robotic systems, on the other hand, have comparable architecture.
The system is comprised of an autonomous mobile platform, a lightweight mechanical
arm with multiple degrees of freedom, an adaptable end effector for a power response
system, a multi-sensor machine vision system, a smart decision and drive management
system, and supplementary hardware and software [33]. Kang et al., 2020 [34] developed
an intense neural network to assist robotic apple harvesting, which detects and grasps
fruit in a real-time environment using a computer vision system. The proposed robotic
harvesting system was implemented using a customized soft end-effector comprised of
Intel i7-6700 CPU and NVIDIA GTX-1070 GPU and DELL-INSPIRATION main computer
unit, Intel D-435 RGBD visualization camera, and UR5 Universal Robot (modern robotic
manipulator). The proposed approach uses Mobile-DasNet, a computationally efficient
lightweight one-stage instance segmentation network to conduct fruit recognition and
instance segmentation on sensory input. An improved PointNet model was also developed
to conduct fruit modeling and grip estimates from an RGB-D camera through the point
clouds technique. The two qualities described above were utilized and integrated to
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develop and build a precise robotic system for autonomous fruit picking. The goal of the
study was to improve the vision algorithm’s performance, boost, and improvements.

Furthermore, the proposed soft end-effector robotic device may improve its grasping
recognition proportion and effectiveness under various situations. Ogorodnikova and
Ali [35] devised a technique for recognizing ripe tomatoes in a greenhouse setting using a
machine vision system of a harvesting robot. To effectively execute the suggested image
processing method for this purpose, RGB color images from a typical digital camera are
required. In the second stage, RGB color images are converted to HSV, which is easier
for extracting red tomato from the green backdrop in the image. Image segmentation,
thresholding, and morphological operations separate a red tomato from a green background
color photograph. The algorithm is built using Matlab methods and then evaluated to see
if it produces favorable results. The process can be converted into fast-acting codes for the
harvesting robot’s controller since it is basic and short. The research is limited to moving
the gripper to the proper place in tomato detection and developing efficient algorithms
using 3D gripper models to transform the existing research system into industrial robots.

Only a few robotic devices that can successfully perform watering, planting, and
weeding activities now exist. FaRo (Cultivating RObot), a new smart robot based on a CNC
machine, has been presented for automatic crop farming deprived of human involvement in
agriculture. What sets FaRo apart from other farming platforms is its capability to complete
the entire farming cycle, from sowing to harvesting. In addition, the FaRo harvesting
tool will be discussed and shown. FarmBot can only be used for a limited time, from
sowing to harvesting, after which the robot’s tool mount system will be exchanged for crop
harvest. In this example, the robot assumes the role of a tomato collector. Both the FaRo
harvesting robot and the unique kinematics of the continuum manipulator design were
thoroughly discussed. Due to implementation problems, the robot’s design is currently in
the development stage. The objective of the proposed system is to build a model with an
intelligent agricultural monitoring technique linked to the main database, and the robot
will have sufficient information to plant and cultivate crops without the need for human
intervention [36].

A depth vision-based approach for detecting and placing truck containers is proposed
for the joint harvesting system, along with three coordinate systems. This method included
data preprocessing, point cloud poses transformation using the SVD (singular value decom-
position) algorithm, upper edge segmentation and projection, RANSAC (Random Sample
Consensus) algorithm edge line extraction and corner point positioning, and fusion and
visualization of results on the depth image. Field trials show that the suggested approach
is effective in identifying and positioning vehicles. However, the study is restricted due
to its sensitivity to the appearance of truck containers and the presence of loud sites in
the agricultural area. Autonomous driving and path planning in the forage harvester’s
unloading system is still challenging [37].

Intelligent robots have become extensively employed in various sectors as the in-
telligent computer industry with automation expands. Currently, manual labor is still
used to harvest the majority of domestic crops. However, owing to constant worker pay
hikes, the manual picking technique increases the fruit farmer’s financial expenditures,
and the appliances of robots in the farming business are challenging. As a result, the
smart moveable robot picker has been introduced based on computer vision machinery by
incorporating the robot arm, selector, flexible carrier, track procedure, and the intelligence
unit, which accomplishes the robot picker’s travel channel coding, auto-judging the ripe
fruit, and in addition a vision-based binocular stereoscopic methodology employed for the
functions of recognition and placement. To begin with, precise segmentation recognition
and maturity evaluation of the target fruit is required for proper picking. Thus, the robot
picker may potentially replace human labor in manual picking. The most important part
of the recognition process is gathering fruit image samples, which is performed using a
CCD camera that shoots following the preprocessed fruit features using image content.
The color model is then built up, and it separates the fruit and surrounding surroundings
using segmentation technology before recognizing the fruit. Additionally, it precisely traces
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and goes for the fruit location in relation to the three-dimensional coordinate information
provided by the infrared source and the fruit contour and image differences taken by
the two cameras simultaneously. To finish the picking operation, it must program the
path recognition to avoid the obstacle [38]. The overall architecture of IoT-based fruit
identification for harvesting is shown in Figure 4.

Figure 4. General architecture of IoT-based fruit detection for harvesting.

4. Open Issues and Key Challenges in Smart Agriculture

The problems of deploying IoT-based agricultural systems are discussed in this section.
The sensors’ durability and cost are described. The IoT-based system requires a constant
source of electricity. Depending on the size, a lot of electricity may be required. However,
in rural and village communities, obtaining such electricity is challenging. To meet the
energy requirement, alternative energy sources, such as solar and wind, must be employed.
This will also raise the price significantly. It is necessary to have a dependable internet
connection in rural and village regions. It is the most crucial aspect of establishing an
IoT-based system. The connection must have a sufficient bandwidth to transport data in
accordance with the application’s requirements. Farmers need basic computer/tablet (HID
device) training and an understanding of how the IoT system operates. It is also necessary
to provide proper education on the unique IoT deployment in their farm [39].

There are six major obstacles to developing a green IoT-based agriculture system,
involving infrastructure, mobility, maintenance, hardware, data privacy, data analytics, and
data security. The selection of meters and sensors used for Internet of Things tools is one
of the hardware issues. As a result, many different sensors may be utilized in Internet of
Things applications, such as the water quality sensor, humidity sensor, chemical sensor,
pressure sensor, temperature sensor, and more. The data analytics problem is machine
learning, deep learning methods, and prediction algorithm applications in smart agricul-
ture to produce a nutritional suspension using IoT records. Routine sensor inspections
of all Internet of Things appliances are a maintenance issue while it may be certainly
harmed in the farm area. The mobility problem is related to 4G, 5G, WiFi, 6LowPan, LoRa
network connection, which link sensors spread across a broad region in the farm areas.
Some infrastructural trials are developing and implementing Internet of Things-connected
architectures that incorporate innovative technologies, such as cloud and fog computing
and network virtualization. Finally, the primary issue in advancing smart agriculture based
on IoT is not physical maintenance but rather ensuring security and privacy [8].
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The UAVs that are linked wirelessly are subject to cyber-physical or harmful assaults
to fool the control signals due to open communication lines. Such attempts represent a
significant risk to the unmanned aerial vehicle system in terms of private information
crash or theft, as well as mission failure. Moreover, the faking of control signals may harm
the UAV mission and make it harder to restore it. As a result, improving UAV wireless
communication’s safety and confidentiality element, which necessitates in-depth research
of security concerns covering the entire network protocol layers [40], is an important
open subject.

Visual harvesting of robots’ dynamic tracking of objects with great precision remains
an unresolved challenge. Further study should also aim to enhance the precision placement
and operation by merging smart behavior judgment, adequate fault tolerance, robot vision
with artificial intelligence technology for accurate placement, and function enhancement.
The recognition and location accuracy are impacted when the crop situation is varied due
to the lighting and unconstrained circumstances of the field ecosystem. A robot vision
approach would be efficient in harvesting crops correctly to increase the success rate of
robotic harvesting in such settings. The researchers used geometric features, novel image
algorithms, and intelligent decision theory to address the challenges. However, because
massive datasets are necessary to train efficient deep learning algorithms, further study
is needed [33]. Table 3 presents a comparison of the current state of the art on smart
agriculture obstacles and benefits.

Table 3. Research studies organized by goal, methodologies, and technology employed, as well as
obstacles and benefits.

Authors Research Purpose Technology
Used/Techniques Findings and Challenges Advantages

[13] Water management Bluetooth, Wi-Fi, RFID,
Zigbee, Raspberry pi

Human interaction
Labor cost

Water consumption
Crop from irregular

irrigation.

Can identify the moisture,
humidity, and temperature.
Consistent management of
all the regions containing

severe parts.

[14] Irrigation monitoring

WSN, data
Analytics, node sensors

and web
Application

-
Optimal irrigation of the

water for
farming crops.

[20]
Crop management

Irrigation
management

Mobile technology,
GPRS, Wi-Fi, Raspberry

pi, Zig Bee

Unstable weather
water shortage, irregular

water usage
Improve the yield, low cost

[38] Harvesting nodes
WSN, Solar

energy system. Image
processing technique.

-

Prevents data loss and
collusion,

increases the lifetime of
WSN.

[41] Crop growth

green-crop gCrop
based on ML model,

Wireless Sensor
Network and Internet

of Things

Obtained accuracy was
98% using polynomial of

third-degree of Regression
model while the

computation time is very
high.

-

[42] Nutrient
Management

Raspberry pi
Mobile technology

Wi-Fi

Low or high watering.
Lack of nutrition

management.

Can monitor weather
conditions.

Cost-effective
Automatically monitored

disease associated with rice
species.
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Table 3. Cont.

Authors Research Purpose Technology
Used/Techniques Findings and Challenges Advantages

[43] Crop Productivity

Big data
storage and analytics,

IoT, Data
Mining, Cloud

computing, Data
Analytics.

-

Network architecture,
platform

and design helps access to
IoT,

improves crop productivity,
Provides an overview of

IoT
applications, sensors,

protocols
And data-enabled

technologies.

One of the most challenging aspects of robotic grasping is estimation. Traditional
techniques have limitations since noise or partial loss of the point cloud might impact the
estimation’s accuracy and resilience. Estimation is more difficult in orchard situations than
it was in interior environments.

Data Handling and Processing

Traditional vision algorithms’ performance is constantly restricted in complicated
and volatile settings [34]. World food consumption is predicted to treble by 2050 due to
population expansion and societal progress, yet increasing food production is now difficult
due to declining water, climate alterations, less proper soil, and insects and illnesses. Pests
and diseases have always been significant stumbling blocks to increased grain output.
Satellite technology is climate sensitive and has a limited illumination variation, making it
challenging to satisfy the requirement for insects and infection management in farming
areas. Currently, low-altitude autonomous drones (offering excellent flexibility and image
resolution) can satisfy the needs of agricultural insect and infection management. In some
circumstances, such as when there is a high wind, drone stability might be difficult. As a
result, the drone’s flight route must be designed in conjunction with the actual conditions.
Long flights are necessary for field pest and disease data collection; thus, choosing a sunny
day with a moderate breeze might be a viable alternative [32]. Identifying malicious and
compromised nodes among soil sensors interacting with the base station is a significant
problem in the base station to cloud communications. The trust management method is
presented as one of the options for identifying these nodes in a lightweight manner.

Finally, the study highlighted the existing problems and possibilities and future re-
search in vegetable and fruit identification and placement. The majority of previous research
showed that illumination variations, grouping, and unconstrained situations have been the
main obstacles to effective recognition and localization of vegetables and fruits in the field.
Further research will be required to overcome the existing state-of-the-art challenges and
enhance the performance, accuracy, efficiency, effectiveness, recognition, and success rate
of controlling and image processing techniques. However, fruit recognition, detection, posi-
tioning, harvesting robots, and application robustness enhancement need to minimize the
inclusive computational cost and time. Future research might include algorithms and cam-
era operation advancements, sensor platforms that can enhance illumination consistently,
horticultural changes, and human–machine collaboration [29]. Furthermore, sophisticated
methodologies, algorithms, and computational approaches are necessary to address the
lack of precision in harvesting operations.

5. Discussion and Analysis

It is estimated that plant diseases are a significant contributor to global financial
deficits. Numerous abiotic and biotic stresses and continual tension monitoring concerns
the impacts of the loss of fruit-producing plants. Consequently, the $15 billion U.S. apple
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industry loses millions of dollars every year. Fruits are one of the most significant sources
of nutrients in plants; yet, illnesses, pests, fungous, infectious, and microbial diseases all
affect the quality and quantity of fruits. Using computer vision-based methods, the issue
may now be alleviated. Diseases/infections may be detected early and effectively using
these methods.

The sickness classification of various fruit leaves was achieved using a deep convolu-
tional neural network DCNN approach. The deep features are retrieved by first utilizing
deep learning networks, such as AlexNet and VGG-s, and then tweaked using a transfer
learning approach. Before the selection step, a multi-level fusion strategy is offered, and
the chosen features analyzed to produce the entropy basis features. To categorize the
obtained feature map, we employed a multi-SVM classifier. The diseases investigated in
the experiments include apple rust, scab, black rot, peach bacterial spots, and cherry pow-
dery mildew, and they were all gathered from a plant village dataset. The recommended
method’s better performance in terms of a 97.8% accuracy, 97.6% sensitivity, 97.6% precision,
and G-measure was observed in the classification results (97.6%) [44]. Some research has
investigated whether computer vision approaches may be employed for scalable and early
plant sickness detection. There is still a critical lack of non-lab data sets that can be utilized
to allow vision-based plant disease detection. For visual plant disease identification, the
PlantDoc dataset was supplied. The collection has 2598 data points in total, encompassing
13 plant species and up to 17 disease categories, and was developed by annotating internet-
scraped photos for 300 human hours. Three models for plant disease classification were
trained to illustrate the dataset’s effectiveness. The findings demonstrate that employing
our dataset models may enhance the recognition rate by up to 31%. The recommended
dataset, we feel, will contribute to decreasing the entry barrier for computer vision algo-
rithms in plant disease detection. For photos featuring leaves from various classes in a
dataset with contextual noise, and low-resolution leaf images, the model fails to give proper
conclusions. Using image segmentation methods to extract leaves from the photos can
boost the dataset’s utility. Although the dataset has been rigorously verified, particular
photographs in the collection may be wrongly labeled owing to a lack of sufficient topic
knowledge [45].

It is necessary to construct an improved VGG16-based DCNN model to detect apple
leaf diseases (scab, frogeye spots, and cedar rust). The global average pooling layer re-
places the fully connected layer to lessen restrictions and a batch normalization layer is
attached to boost the model’s computational performance. Furthermore, to avoid a long
training time, a transfer learning approach is applied. To detect apple leaf diseases, the
suggested model makes use of 2446 apple leaves, 2141 photos in the training phase and 305
images in the testing phase. The experimental data reveal that utilizing the recommended
approach, the total accuracy of apple leaf classification may reach 99.01%. Furthermore,
the findings demonstrate that cedar rust is accurately diagnosed, but one healthy person is
misclassified as scab and the other as frogeye spots.

Furthermore, the model parameters are cut by 89% compared to the standard VGG16.
As a result, the classification performance is raised by 6.3%, and the computational com-
plexity is cut to 0.56% of the innovative model. Consequently, the DCNN model developed
in this study provides a more accurate and speedier way for recognizing apple leaf infec-
tions [46]. Table 4 compares the efficiency of several smart agricultural techniques.
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Table 4. Comparative analysis of different methods based on smart agriculture.

Ref. Technique Dataset Disease Classes Accuracy Sensitivity Precision Recall F1 Mea-
sure

G Mea-
sure

[44]
DCNN
[VGG +

AlexNet]

plant
village
dataset

5 (apple rust, scab
black rot, cherry

powdery mildew, and
peach bacterial spots)

97.8% 97.6% 97.6% - - 97.6%

[46]

DCNN
[en-

hanced
VGG16]

2446
apple
leaves

4 (apple leaf diseases
(Scab, frogeye spots,

cedar rust and healthy)
99.01% - 99.02% 99.02% 99.02% -

[47]
enhanced

CNN
[AlexNet]

Enhanced
Plant

Village
52 99.11% - 99.49% 99.11% 99.29% -

[48]

IoT
[WSNs
+ ML
algo-

rithms]

Different
data - 81.6% - - - - -

[49]

AlexNet
deep

learning
algo-
rithm

54,306
images

14 crop species and 26
diseases 97.38% - 97.42% 97.37% 97.36%

[50]

LeNet
DL tech-

nique
(X-

Fideo)

PlantVillage 3 98.60% - 98.82% 97.18% 96.89% -

For the recognition and detection of olive diseases, such as peacock spot, anthracnose,
and canker, an improved convolutional neural network (CNN) dubbed AlexNet was
suggested. Several innovations separate the proposed model from others. It uses effective
intelligent data preprocessing with a stable image in each class, a transfer learning approach,
and an extended and upgraded PlantVillage dataset to work in more complicated situations.
The total accuracy of the suggested technique is 99.11%, which is the best possible score.
Furthermore, it possesses precision, recall, and F1 measures of 99.49%, 99.11%, and 99.29%,
respectively. Despite the fact that model training takes a long time, classification during
testing takes only a few seconds on a CPU [47]. Citrus fruits, leaves, and stems are included
in the image dataset. The collection contains images of normal and diseased citrus leaves
and fruits, including greening, scab, blackspot, canker, and melanosis. There are 759 images
of normal and abnormal citrus leaves and fruits in the data collection. The images had
a resolution of 5202 × 3465 (Mpix), and when scaled at 72 dpi, the width and height
were 256 × 256 pixels, correspondingly. The contaminated images were divided into four
various citrus illnesses and left on their own. The entire process consists of four major
steps: (a) enhancing the dataset using Top-hat and then Gaussian functions; (b) weighted
segmentation and segmentation of lesion through a saliency map, which highlights the
infested area; (c) color, texture, and geometric feature extraction from the diseased area;
and (d) PCA, skewness, and entropy-based feature selection and implementation.

Agriculture management, water contamination, and air quality analysis monitoring
systems were all investigated as part of the smart environment monitoring (SEM) system.
Figure 5 demonstrates that substantial investigation of smart environment monitoring
has increased over the period in both cases, specifically research involving the wireless
sensor network and Internet of Things along with research involving machine learning and
Internet of Things [41,51].
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Figure 5. Research contribution using IoT, WSN, and machine learning.

Imperfect network access, lack of a (or no) power supply, and high framework costs
compared to an ordinary farmer’s income were presented in a low-cost, energy-proficient,
protected, dependable, and heterogeneous three-layer approach for Internet of Things-
based smart agriculture. IoT devices make up the first layer, including IoT-based smart
agriculture monitoring like insect detection, theft detection, crop monitoring, smart ir-
rigation, smart poultry, food supply chain, and food preservation monitoring systems.
The low-power LoRaWAN network connects the IoT devices to the gateways. The next
layer is made up of local processing servers and gateways that are connected with the
gateways. The cloud layer, which uses the publicly available FIWARE framework to offer a
set of open-source API standards, is the third layer. This study aimed to create diagnostic
techniques for packet combination procedures at the fog node before they were sent over
the network facility to cloud servers. This aims to decrease short IoT packet processing
overheads and optimize energy usage at the backbone, as billions of IoT devices linked to
fog nodes are projected to generate massive volumes of short IoT packets [52].

A Cuckoo Search Algorithm has been created, allowing water allocated for farming
under all situations. Temperature, turbidity, pH, and moisture were collected utilizing the
Internet of Things (IoT) infrastructure outfitted with wireless communication devices and
sensors. ThingSpeak presented the sensor data in the cloud system in this IoT platform.
The ThingSpeak data was utilized in the suggested Cuckoo Search Algorithm, which
identified suitable yields for a given soil [53]. Incorrect or late identification can result in
overuse or underuse of chemicals, resulting in higher production costs and environmental
and health consequences. With varied lighting, angles, surfaces, noise, and high resolutions,
3651 real-time indication images of various apple infections were manually collected.
A subset of this dataset was labeled by experts, such as cedar apple rust, scab, and normal
leaves, and open-sourced for the Plant Pathology Challenge to Kaggle community. We also
used this data to train a standard CNN (convolutional neural network), which obtained
97% recognition on a held-out test set and a maximum AUC value of 0.986. The project’s
goal was to keep adding additional images to the pilot dataset from various perspectives,
lighting, and distances to create a bigger more complete labeled database by experts.
The dataset will contain pests and diseases, such as apple mites and aphids and apple
leaves comprising apple marssonina and alternaria leaf blotch, leaf spot, frogeye, rot, cedar,
and powdery mildew, fire blight, and scab-labeled images.

Additionally, it will be photographed and remarked on fruit infected with apple brown
rot, bitter rot, or scab [54]. An Internet of Things-based cost-effective monitoring system
was developed to address particular crop irrigation, soil erosion, and irregular irrigation.
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The suggested method entails building a distributed WSN (wireless sensor network), with
multiple sensor modules covering each part of the farm and transferring data to a central
server. ML techniques will aid irrigation pattern forecasts based on yields and climate
environments. According to a comparison of several algorithms, random forest regression
has a decent accuracy of 81.6%. However, due to harsh weather conditions, the system
is constrained in many ways: the forecast accuracy is dependent on the setup’s correct
installation, and the threat of wild animals can harm the hardware setup [48]. Because
human abilities and agricultural gear are severely restricted compared to robot knowledge,
robotic systems in agriculture can be highly beneficial in achieving both high quality
and quantity goods. To integrate IoT systems with agricultural machinery, a new way
of managing control signals from the control system to the actuators is required. These
methods should increase economic viability while also lowering environmental impact and
enhancing food sustainability. It handles various agricultural tasks, including moisture
sensing, irrigation, crop monitoring, and insect and animal defense [55]. Accordingly, a
state-of-the-art technologies-based accuracy comparison is presented in Figure 6.

Figure 6. Accuracy-based analysis of the different state of the art techniques.

Water monitoring is the most highly measured IoT sub-vertical, followed by crop,
smart agriculture, animal, and irrigation monitoring. All of these have the same proportion
of peer-reviewed articles exploring the possible uses of the Internet of Things. According
to the findings, the most important sensor data for measurement is 15.73% soil moisture,
19.79% humidity, and 24.87% ambient temperature. However, further sensor information,
such as soil pH and moisture, are also collected for IoT applications. Wi-Fi has the highest
claimed use in farming and agriculture, with 30.27% and 21.10% use of mobile tools, as
shown in Figure 7. Other technologies like Bluetooth, WSN, RFID, Raspberry Pi, ZigBee,
LoRa, and GPRS are less popular in the agriculture and farming industries. In the agri-
cultural and farming business comparison, the farming sector uses IoT for automation
slower [42]. The Plant Server and User View were created with phpMyAdmin to manage
MySQL server management. The F-RCNN-qualified model for anomaly detection had
80% confidence, while the technique for the transfer of learning illness had 95.75% accu-
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racy. In reality, automatic image capturing software was deployed, and the RCNN model
successfully recognized 91.67% of tomato plant illnesses [56].

Figure 7. An overview of 60 published articles on sensor and technology-based data collection, as
well as a comparison of agriculture and farming utilizing IoT.

6. Conclusions and Future Directions

The implementation of sustainable communication technologies and sensors based on
IoT is necessary to increase agricultural productivity. Wireless sensors, unmanned aerial
vehicles, and cloud computing have been shown to be practical tools for guaranteeing
long-term agricultural productivity. Many processes throughout the production cycle,
including irrigation, soil sample and mapping, fertilizer or pest control, yield monitoring,
forecasting, and harvesting, may be automated using smart devices, allowing for improved
crop quality and growth capacity. The key effective features, important applications, IoT-
based smart agriculture technology and equipment, and open barriers and possibilities
were all examined in this study. This research will be expanded in the future to include
security and privacy issues in smart agriculture using IoT methods.
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