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Abstract: Winter wheat is a widely-grown cereal crop worldwide. Using growth-stage informa-
tion to estimate winter wheat yields in a timely manner is essential for accurate crop management
and rapid decision-making in sustainable agriculture, and to increase productivity while reducing
environmental impact. UAV remote sensing is widely used in precision agriculture due to its flex-
ibility and increased spatial and spectral resolution. Hyperspectral data are used to model crop
traits because of their ability to provide continuous rich spectral information and higher spectral
fidelity. In this study, hyperspectral image data of the winter wheat crop canopy at the flowering
and grain-filling stages was acquired by a low-altitude unmanned aerial vehicle (UAV), and machine
learning was used to predict winter wheat yields. Specifically, a large number of spectral indices were
extracted from the spectral data, and three feature selection methods, recursive feature elimination
(RFE), Boruta feature selection, and the Pearson correlation coefficient (PCC), were used to filter high
spectral indices in order to reduce the dimensionality of the data. Four major basic learner models,
(1) support vector machine (SVM), (2) Gaussian process (GP), (3) linear ridge regression (LRR), and
(4) random forest (RF), were also constructed, and an ensemble machine learning model was devel-
oped by combining the four base learner models. The results showed that the SVM yield prediction
model, constructed on the basis of the preferred features, performed the best among the base learner
models, with an R2 between 0.62 and 0.73. The accuracy of the proposed ensemble learner model was
higher than that of each base learner model; moreover, the R2 (0.78) for the yield prediction model
based on Boruta’s preferred characteristics was the highest at the grain-filling stage.

Keywords: yield; feature selection; flowering; grain filling; prediction model

1. Introduction

Winter wheat is one of the three major cultivated cereals and is the most widely-grown
cereal crop in the world [1]. Wheat plays a crucial role in global food production, trade, and
food security [2]. Estimating wheat yield prior to harvest on a large scale not only offers a
scientific foundation for local governments to establish production goals, but also ensures
food security [3]. Therefore, the timely and accurate estimation of winter wheat yield is
crucial for intelligent agricultural management and people’s livelihoods.

The traditional yield assessment of winter wheat involves destructive sampling in
the field in order to determine yield, which is not only time consuming, less objective,
and lacking in robustness and sustainability, but also fails to monitor the crop growth
throughout its reproductive life [4]. The development of remote sensing technology in
recent years has provided a non-destructive, rapid, and efficient way to monitor crop
growth [5]. Remote sensing techniques include ground-based platforms, satellite-based
platforms, and UAV-based platforms [6]. The data collection from the ground-based
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platforms requires a large amount of manpower and resources, the collection process can
cause damage to the crop, and orthophotos of the crop cannot be obtained [7]. Satellite
remote sensing, on the other hand, makes up for the shortcomings of the ground-based
platforms and can monitor crops non-destructively and efficiently [8]. However, the
satellite-based platform is more suitable for large-scale crop monitoring and may have
some issues, such as low spatial and temporal resolution, long cycle time, and pixel mixing,
which severely limit the quantitative assessment on a regional scale [9]. Unlike the satellite-
based remote sensing, the low-altitude UAV remote sensing has the advantages of low
cost, ease of operation, high efficiency, high spatial and temporal resolution, and flexibility.
UAV-based remote sensing platforms that are equipped with various sensors can be used
for water and fertilizer management in precision agriculture. [7,8]. UAV remote sensing
has been widely used in agriculture for information acquisition and crop monitoring [9],
although the flight of drones may sometimes require administrative authorization.

In recent years, many different types of sensors have been installed on UAV platforms
for use in precision agriculture. Traditional RGB (red–green–blue) sensors with three bands
are low-cost, relatively simple to process, and give high spatial resolution, and there has
been a lot of research using these three bands or derived color indices, such as the green
leaf algorithm index (GLA), to predict yields [10]. As a result of ongoing research, it has
been found that plants often have strong reflectance properties in the near-infrared (NIR)
band; therefore, multispectral cameras with NIR bands have received a lot of attention
lately [11]. Vegetation indices, such as the ratio vegetation index (RVI), the normalized
difference vegetation index (NDVI), and the canopy chlorophyll content index (CCCI),
have been developed using NIR bands and have been successfully used for crop yield
prediction, identification of soil salinity distribution, crop pest and disease monitoring, and
the assessment of crop water and fertility status [12–15].

Hyperspectral cameras are known for their multiple wavelength bands, rich spectral
information, high spectral resolution, and high recognition capability. Consequently, these
cameras can acquire near-continuous spectral information of features for fast, nondestruc-
tive, and high-throughput detection of crops with large data volumes [16]. Therefore,
hyperspectral images are widely used in precision agriculture, such as in the monitoring
for pests and diseases, estimating crop biomass, and the monitoring of crop growth [17–19].
RGB images have red, green, and blue bands only, which are less informative and generally
less accurate, and the accuracy of yield estimation models for winter wheat constructed
using spectral parameters obtained from hyperspectral images is significantly higher than
the accuracy of estimation models using RGB images [20]. For example, narrowband
NDVI extracted from hyperspectral data explained more yield variability compared to
multispectral data in sorghum yield prediction [21].

Typically, feature selection methods begin with a process of selecting a relevant subset
of attributes in a dataset when developing a machine learning model, which can effectively
avoid dimensional disasters, reduce the impact of noisy data with unknown irrelevant
and redundant features on the prediction model, reduce computation time, improve the
performance of the prediction model, and contribute to a better understanding of the
dataset [22]. The Pearson correlation coefficient (PCC), a measure of linear correlation
between variables, evaluates a subset of features through a proxy measure and is a filtering
method for indirectly evaluating regression problems [23]. Wrapper methods are direct
predictive models used to evaluate selected feature subsets and to find the best performing
model by training the model for each subset. Boruta and RFE are popular wrapper methods
in use today [24,25].

Machine learning algorithms are able to establish empirical relationships between
independent and dependent variables and have the advantage of predicting yields with-
out relying on individual crop-specific parameters [26]. Current machine learning algo-
rithms that have been developed for crop yield prediction rely on a single predictive
model [6,7,27]. Applying machine learning algorithms to training data with small sample
sizes can have potential problems, such as bias, weak generalization, overfitting, and



Agronomy 2022, 12, 202 3 of 26

poor repeatability [26,28,29]. Most of the previous studies have focused on the mining
of spectral information and the exploration of regression techniques based on machine
learning algorithms [30,31], and there has been little discussion and research on model
fusion. Therefore, the potential problems of small sample size and single machine learning
algorithms can limit the application to winter wheat yield estimation in practical produc-
tion. In order to address this issue, we introduced decision-level fusion (DLF) models in
ensemble machine learning. The DLF models fuse multichannel/multiscale information
and typically produce more consistent and better prediction performance than individual
models, have good noise immunity, can handle high-dimensional data, provide complete
and detailed object information, and are simple to implement and fast to train [32,33]. These
models are extensively used in the fields of injury detection, artificial intelligence, and
image processing [34–36]. Based on previous studies, machine learning and hyperspectral
imagery have been used successfully in many applications, but the strategy based on DLF
model fusion has not yet been applied to crop yield prediction [37,38].

The aim of this study was to estimate winter wheat yield using hyperspectral imagery
from a UAV. The specific objectives included the following: (1) investigating the potential
of hyperspectral imagery for winter wheat yield prediction, (2) evaluating the performance
of winter wheat yield prediction models under different feature selection methods, and
(3) building a DLF model based on individual machine learning algorithms in order to
improve prediction performance.

2. Materials and Methods
2.1. Experimental Design and Data Collection

This research trial was conducted in the 2019–2020 growing season at the experimen-
tal base of the Chinese Academy of Agricultural Sciences in Xinxiang, Henan Province
(113◦45′38′′ N, 35◦8′10′′ E). During the winter wheat reproductive period (November
2019–June 2020), the total monthly rainfall, average monthly temperature, and average
monthly sunshine hours all reached their maximums in May, while the monthly relative
humidity reached its maximum in January (Figure 1). Rainfall was mainly concentrated
in January, February, April, and May; temperature and sunshine hours both increased
gradually from January onwards as the crop developed; and relative humidity was fairly
constant throughout the season.

The trial area shown in Figure 2 consisted of 180 plots with three irrigation treatments
set at high irrigation (irrigation treatment 1, IT1), moderate irrigation (irrigation treatment 2,
IT2), and low irrigation (irrigation treatment 3, IT3) during the full growth period, using
large sprinklers corresponding to a total irrigation water depth of 240 mm, 190 mm, and
145 mm, respectively. The irrigation schedule for each stage is shown in Table 1. Each
irrigation treatment had 60 plots, 8 m long and 1.4 m wide, with an area of 11.2 m2.
Thirty varieties of winter wheat were selected for this experiment, and each irrigation
treatment was replicated twice in a group of 30 wheat varieties to ensure the objectivity of
the experiment. For production fields, pesticide and fertilizer management was performed
according to local management practices. At maturity (3 June 2020), winter wheat yields
were collected using a plot combine.

Table 1. Summary of irrigation volumes for the three treatments at six stages of growth for winter wheat.

Growth Itage
High

Irrigation
(mm)

Moderate
Irrigation

(mm)

Low
Irrigation

(mm)

Tillering 35 35 35
Overwintering 35 35 35

Greening 35 25 20
Jointing 50 35 20
Heading 50 35 20

Grain filling 35 25 15
Total 240 190 145
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Figure 1. Meteorological conditions during the wheat growth period from November to May: (a) total
monthly rainfall, (b) average monthly temperature, (c) average monthly humidity, and (d) average
monthly sunshine hours.

2.2. Acquisition and Processing of Hyperspectral Data

The M600 Pro (SZ DJI Technology Co, Shenzhen, China) was used as the flight plat-
form with an onboard Resonon Pika L nano-hyperspectral propulsion scanner to acquire
hyperspectral data. The Resonon Pika L Nano-Hyperspec with meter-level accuracy is a
lightweight (0.6 kg) hyperspectral sensor specifically designed for use on UAV platforms.
This sensor has 300 spectral bands in the 400–1000 nm wavelength range with a band
width of 2.1 nm, including the visible and near infrared regions. It is externally pushed
and scanned with a choice of scanning angles (vertically downwards, horizontally, or at
any angle). The Resonon Pika L Nano-Hyperspec features a focal length of 12 mm and
offers a 22◦ field of view. Each scan line contains 640 pixels with a pixel pitch of 6 µm.
The spectral resolution and resampling intervals are 6 nm and 2 nm, respectively. The
sensor also includes a GPS/inertial measurement unit (GPS/IMU) navigation system,
which enables the gathering of real-time altitude data from the UAV platform, allowing for
better reflection calibration and geographic alignment. Depending on the environmental
circumstances, certain criteria were established to fit the site size survey in this study. To en-
sure the quality of the data, hyperspectral data corresponding to the flowering (Zadok 65)
and grain-filling (Zadok 85) stages of the wheat were acquired on 30 April 2020 and
13 May 2020, respectively. Both UAV flights were carried out between 10 a.m. and 2 p.m. in
clear and cloudless weather conditions to minimize the effect of shadows. The UAV flew
at a speed of 5 m/s at a height of 40 m, with a ground sampling distance of 2.5 cm. Three
0.25 m2 reference panels that differed in brightness (95% white, 40% grey, and 5% black)
were placed within the study area for postprocessing and measured with the spectrometer.
In this study, 12 ground control points (GCPs) were evenly distributed across the field
as precise georeferenced positions, and their centimeter-level positioning accuracy was
obtained through the differential global positioning systems.

The acquired hyperspectral data was subjected to radiometric correction, atmospheric
correction, and geometric correction. Hyperspectral images were acquired at an altitude of
50 m and under stable light conditions, so atmospheric correction was not required. Spec-
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trononPro software (version 3.4.0, Resonon) was used for hyperspectral image correction.
For hyperspectral radiometric corrections, empirical linear corrections were made using the
measured images and field spectra of the wheat and reference panels. The hyperspectral
image radiance data was converted to reflectance by the known reflectance of the white
reference panel.

Figure 2. Distribution of test sites and test plots. IT1: high irrigation; IT2: moderate irrigation; IT3:
low irrigation.

Three standard panels with different reflectance properties were placed in the flight
area to derive the three parameters for atmospheric correction. Geographical correction
used position and attitude parameters from the GPS/IMU and the relationship between
the GPS/IMU and the imager. The parameters were converted between their respective
coordinate systems. Noise in the image data can cause large differences at the beginning
and end of the spectral range shown by the image and field spectra, so it is necessary
to eliminate certain bands from the image data. The background (shadows and dirt)
was eliminated from each plot by thresholding the NIR band at a wavelength of 800 nm.
According to previous studies, vegetation usually has higher reflection values than the
background in the NIR region, which is the reason behind our filtering method, setting the
threshold at 30%, and removing noise bands below 440 nm and above 960 nm.

2.3. Acquisition of Spectral Indices

Hyperspectral data acquired using UAVs consists of hundreds of bands that contain
a wealth of spectral information, and many of the adjacent bands are highly correlated
with each other [39]. Sixty published spectral indices calculated using spectral reflectance
were selected for predicting yield (Table 2), with each spectral index derived from two or
more spectral bands. These spectral indices included the curvative index (CI), chlorophyll
absorption index (CAI), normalized difference vegetation index (NDVI), simple ratio index
(SR), pigment-specific normalized difference (Psnd), renormalized difference vegetation
index (RDVI), triangular vegetation index (TVI), modified versions of these indices, such
as the modified normalized difference (MND), modified simple ratio (MSR), normalized
difference (ND), and their combinations MCARI/ MTVI2, among others. The majority of
the bands utilized are in the red, NIR, and red-edge spectral regions.
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Table 2. Summary of the 60 spectral indices explored in this study.

Full Form Spectral Index
or Ratio Formula Application Reference

Curvative index CI R675× R690/R6832. Chlorophyll [40]
Chlorophyll index red-edge CIre R750/R710− 1 Vegetation, chlorophyll [41]

Datt1 (R850− R710)/(R850− R680)
Vegetation, chlorophyll [42]Datt4 R672/(R550× R708)

Datt6 R860/(R550× R708)
Double difference index DDI (R749− R720)− (R701− R672) Vegetation [43]

Double peak index DPI (R688 + R710)/R6972 Vegetation, chlorophyll
[44]Gitelson2 (R750− R800)/(R695− R740)− 1 Chlorophyll

Green normalized difference
vegetation index GNDVI (R750− R550)/(R750 + R550) Vegetation, chlorophyll [45]

Leaf chlorophyll index LCI (|R850| − |R710|)/(|R850| + |R680|) Vegetation, chlorophyll [46]
Modified chlorophyll absorption

ratio index MCARI [(R700− R670)− 0.2(R700− R550)](R700/R670) Vegetation, chlorophyll [47]
MCARI3 [(R750− R710)− 0.2(R750−R550)](R750/R715)

Modified normalized difference MND[680,800] (R800− R680)/(R800 + R680− 2× R445) Pigments [48]Modified normalized difference MND[705,750] (R750− R705)/(R750 + R705− 2× R445)
Modified simple ratio mSR (R800− R445)/(R680− R445) Vegetation [43]

Modified simple ratio 2 mSR2 (R750/R705− 1)/
(√

R750/R705 + 1
)

[44]
MERIS terrestrial chlorophyll index MTCI (R754− R709)/(R709− R681) Vegetation, chlorophyll [49]

Modified triangular vegetation index 1 MTVI1 1.2[1.2(R800− R550)− 2.5(R670− R550)]

Vegetation [50]Modified triangular vegetation index 2 MTVI2
(

1.5 1.2(R800−R550 )−2.5(R670−R550)√
(2×R800+12)−(6×R800−5

√
R670 )−0.5

)
Normalized difference 550/531 ND[531,550] (R550− R531)/(R550 + R531)

Vegetation, chlorophyll [44]Normalized difference 682/553 ND[553,682] (R682 − R553)/(R682 + R553)
Normalized difference chlorophyll NDchl (R925 − R710)/(R925 + R710)

[51]New double difference index DDn 2× (R710− R760− R760) Chlorophyll
Normalized difference red-edge NDRE (R790− R720)/(R790 + R720) Vegetation [52]

Normalized difference vegetation
index

NDVI[650,750] (R750− R650)/(R750 + R650)
Vegetation, vitality [53]NDVI[550,750] (R750− R550)/(R750 + R550)

NDVI[710,750] (R750− R710)/(R750 + R710)
Normalized pigment chlorophyll index NPCI (R680− R430)/(R680 + R430) Vegetation, chlorophyll [54]
Normalized difference pigment index NPQI (R415 − R435)/(R415 + R435) Vegetation, chlorophyll [55]

Optimized soil-adjusted vegetation index OSAVI (1 + 0.16)(R800− R670)(R800 + R670 + 0.16) Vegetation [56]
Plant biochemical index PBI R810/R560 Vegetation [57]

Plant pigment ratio PPR (R550− R450)/(R550 + R450) Vegetation [58]
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Table 2. Cont.

Full Form Spectral Index
or Ratio Formula Application Reference

Physiological reflectance index PRI (R550− R530)/(R550 + R530) Vegetation [59]

Pigment-specific normalized difference
PSNDb1 (R800− R650)/(R800 + R650)

Vegetation, chlorophyll [60]PSNDc1 (R800− R500)/(R800 + R500)
PSNDc2 (R800− R470)/(R800 + R470)

Plant senescence reflectance index PSRI (R678− R500)/R750 Vegetation [61]

Pigment-specific simple ratio PSSRc1 R800/R500 Vegetation, chlorophyll [62]PSSRc2 R800/R470
Photosynthetic vigor ratio PVR (R550− R650)/(R550 + R650) Vegetation [53]

Plant water index PWI R970/R900 Vegetation, water stress [63]

Renormalized difference vegetation index RDVI (R800− R670)/(
√

R800 + R670) Vegetation [64]
RDVI2 (R833− R658)/

(√
R833 + R658

)
Reflectance at the inflexion point Rre (|R670| + |R780|)/2 Vegetation [51]
Red-edge stress vegetation index RVSI ((R718 + R748)/2)− R733. Vegetation [65]

Soil-adjusted vegetation index SAVI 1.16((R800− R670)/(R800 + R670 + 0.16)) Vegetation [66]
Structure intensive pigment index SIPI (R800− R445)/(R800− R680). Pigments [46]
Spectral polygon vegetation index SPVI 0.4(3.7(R800− R670)− 1.2|R530− R670|) Vegetation [44]

Simple ratio

SR[430,680] R430/R680

Vegetation

[67]
SR[440,740] R440/R740

[44]SR[550,672] R550/R672
SR[550,750] R550/R750

Disease-water stress index 4 DSWI-4 R550/R680 Vegetation, water stress [68]
Simple ratio pigment index SRPI R430/R680 Vegetation, chlorophyll [69]

Transformed chlorophyll absorption ratio TCARI 3((R700− R670)− 0.2(R700− R550)(R700/R670)) Vegetation, chlorophyll [45]
Triangular chlorophyll index TCI 1.2(R700− R550)− 1.5(R670− R550)×

√
R700/R670 Vegetation, chlorophyll [45]

Triangular vegetation index TVI 0.5(120(R750− R550)− 200(R670− R550)) Vegetation [69]
Water band index WBI R970/R902 Vegetation, water stress [70]

Combined MCARI/MTVI2 MCARI/MTVI2 MCARI/MTVI2 Vegetation, chlorophyll [45]
Combined TCARI/OSAVI TCARI/OSAVI TCARI/OSAVI Vegetation, chlorophyll [56]
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2.4. Feature Selection Methods

The choice of input features is as important as the choice of the algorithm to be used
when building the model. In supervised learning, feature selection is often used prior to
model development to minimize the feature set dimensionality and thus gain performance
improvements in the learning algorithm. In this study, 60 spectral indices were chosen, so
it was ideal to select the most sensitive spectral indices to reduce the number of features.
The following three common feature selection methods were used in this study to rank
the importance of features: recursive feature elimination (RFE), Boruta, and the Pearson
correlation coefficient (PCC).

Recursive feature elimination (RFE) [71] is a wrapper-based feature selection method
that selects features with the help of a classification method. RFE requires training multiple
classifiers to reduce the feature dimension, training time increases with the number of
classifiers trained, and each part of the analysis can continue to be iterated, saving compu-
tational time. Low-weighted features are eliminated in each iteration, while equal weights
are assigned to relevant attributes. RCE is performed in three steps, as follows: (1) an
estimator is used to estimate the initial features’ importance scores, (2) the feature with the
lowest significance score is eliminated, and (3) a rank in given to each deleted variable in
the order in which it was removed.

The Boruta [72] algorithm is a wrapper method built around the random forest algo-
rithm. It provides criteria for a number of important factors and captures the outcome
variables for all relevant features in the dataset by scoring all candidate features as well
as shaded features. The importance value of the shaded features depends on whether
the candidate features are significantly correlated or not. The Boruta algorithm steps are
as follows: (1) randomly disrupt the feature order to obtain the shadow feature matrix,
(2) train the model with the shadow feature matrix as input, (3) take the maximum value in
the shadow features and record the cumulative hits of the real features to mark the features
as important or unimportant, and (4) remove the unimportant features and repeat the first
three steps until all the features are marked.

The Pearson correlation coefficient (PCC) [73] is a measure of the correlation between
two variables, and it varies between −1 and 1. The PCC(rxy) may be calculated using the
following equation:

rxy =
∑n

i=1(xi − x)∑n
i=1(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(1)

where x = 1
n

n
∑

i=1
xi and y = 1

y

n
∑

i=1
yi denote the means of x and y, respectively, with n repre-

senting the sample size. The PCC is invariant to both linear and non-linear changes of the
variables. The absolute value of PCC was used to compute the feature significance scores.

2.5. Decision-Level Fusion Model for Ensemble Learning

In this study, support vector machines (SVM), Gaussian process (GP), linear ridge
regression (LRR), and random forest (RF) were the four regression models based on DLF for
ensemble learning. The ‘caret’ R package in R4.0.2 was used to build the individual learner
and DLF framework. The basic principle of DLF is shown in Figure 3. The hyperspectral
index and winter wheat yield data pairs from 180 plots were randomly and uniformly
divided into five groups, one group of which (n = 36) was randomly taken as the validation
set and the remaining four groups (n = 144) as the training set. Predictions were made
for each fold by training the model and five-fold cross-validation. In the five-fold cross-
validation process, the winter wheat yield predictions were generated separately for each
regression model, and the model effects could be observed by examining the results of the
individual learners on the validation set. The m individual learners would get a prediction
matrix of m × n dimensions after completing the above process (n was the number of
samples in the training set and m was the number of individual learners), and the results of
the prediction matrix were then used to train the DLF model to make the final prediction.
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Importantly, a five-fold cross-validation method was used in all of the models to ensure the
reasonableness of the comparison between methods. To avoid uncertainty in the results,
the process of dividing the data into training and validation sets using the five-fold cross-
validation method was repeated 40 times to generate 200 models, and the mean prediction
accuracy of the validation set of these 200 models was used as the final evaluation metric.

Figure 3. Workflow of a DLF (decision-level fusion) model for grain yield prediction; the model
included SVM (support vector machine), GP (Gaussian process), LRR (linear ridge regression), and
RF (random forest). The “e” is the model prediction.

2.5.1. Regression Methods

Based on a survey of previous research, and in order to assess the effectiveness of
different machine learning algorithms and to better comprehend the non-linear connection
between the dependent and independent variables, the following four widely utilized
machine learning models were selected and used for comparison: SVM, GP, LRR, and RF.
The four machine learning algorithms are described below, as follows:

SVMs (support vector machines) [74], which benefit from statistical learning theory
and the principle of minimal structural risk, are sparse and robust classifiers, mainly used
for the classification and regression of high-dimensional samples. SVMs are increasingly
popular in existing research areas because of their characteristics, such as good general-
ization ability and robustness to noise. SVMs are trained on sufficient samples in order to
obtain a set of samples that approximate the hyperplane by fitting estimates of successive
optimal output variables. The hyperplane is approximated by two important parame-
ters, the kernel function and the loss function. The radial basis function was utilized
as the kernel function in this research to change the regularization parameters using a
cross-validation method.

GP (Gaussian process) [75] is a supervised learning process for estimating regression
model parameters through sample learning. GP belongs to the stochastic process in
probability theory and mathematical statistics, where any linear combination of random
variables conforms to a normal distribution. GP is now widely used in modelling in the
field of remote sensing, and therefore this algorithm was used in this study.



Agronomy 2022, 12, 202 10 of 26

LRR (linear ridge regression) [76] is a biased estimation regression method dedicated
to covariance data analysis. LRR obtains more objective regression coefficients by losing
some information and reducing precision. Typically, LRR has a low R2 and high regression
coefficients, and is widely used in co-linear problems and research with a large amount of
data. The LRR algorithm was used in this study to construct yield estimation models.

RF (random forest) [76] is an ensemble learning method that constructs multiple
decision trees and can perform decision making and regression. RF is able to model the
relationship between dependent and independent variables based on decision rules. It
can handle a large number of input variables, assess the importance of variables while
deciding on categories, produce higher accuracy, balance errors, and quickly mine the data.
Therefore, the RF algorithm was used for modelling in this study.

The machine learning algorithms used in this study were all implemented indepen-
dently. To improve the prediction accuracy of the models, we further processed these
results to construct a DLF model [77], which is a model that fuses the results of different
machine learning models by the training weights obtained. Based on previous research,
a weighted prior (WP) approach was introduced to construct the DLF model, taking into
account the estimated variance of each model. The DLF and WP can further improve the
model accuracy and generalization ability and minimize the result bias. The procedure for
this method is as follows [78]:

ε(i) = y(i) − y (2)

where ε(i) is the estimation variance, y(i) is the predicted value from the ith model, and y is
the observed value.

var(εi) =
1
n

n

∑
j=1

(ε
(i)
j −

1
N

N

∑
j=1

ε
(i)
J )2 (3)

where N is the total number of samples in the training set.

wi =
1/var

(
ε(i)
)

∑l
k=1 1/var

(
ε(k)
) (4)

where l denotes the total number of models and wi denotes the weight of the ith model.

w∗i = rWi + (1− r)wi (5)

where w∗i is the final DLF weighting.

y(WP) =
l

∑
i=1

w∗i y(i) (6)

where yWP is the final result based on the WP method.
The individual machine learning models were used as input to build the DLF model.

2.5.2. Cross-Validation and Parameter Optimization

A five-fold cross-validation was used to form the prediction matrix in the personal
machine learning process of the DLF, which can be used as external cross-validation.
In addition, internal random grid search cross-validation allows the fine-tuning of the
hyperparameters of the individual learner shown in Figure 4. In external cross-validation,
the original dataset is randomly divided into five equal parts (Figure 4), one of which is
then used as the validation set and the remaining four as the training set each time. Each
training set used for external cross-validation was also randomly divided into five equal
parts, of which 1/5 was used as the validation set for internal cross-validation and the
remaining 4/5 was used as the training set for internal cross-validation. The model was
trained by setting different combinations of candidate hyperparameters for internal cross-
validation, and the model was then validated on the internal cross-validation set. Each
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hyperparameter combination was validated five times, and after training model evaluation,
the hyperparameter combination with the highest average validation accuracy was applied
to the outer cross-validation to construct the ideal model.

Figure 4. Five-fold cross-validation internal and external cross-validation strategies.

2.6. Statistical Analysis

In this study, the regression model was evaluated in the four following ways: co-
efficient of determination (R2), root mean square error (RMSE), ratio of performance to
interquartile distance (RPIQ), and ratio of performance to deviation (RPD). The criteria for
evaluating models are yield estimation models with higher accuracy, and an RPD of >1.5 is
usually considered to indicate a reliable prediction. The formulae for the four evaluation
methods are as follows:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (7)

RMSE =

√
∑n

i=1(ŷi − yi)
2

N
(8)

RPD =
SD

RMSEp
(9)

RPIQ =
Q3 −Q1
RMSEp

(10)

where yi is the measured value, ŷi is the predicted value, y is the mean of the measured
values, N is the sample size, SD is the standard deviation of the measured value of the
prediction set, Q3 is the lower boundary of the third quartile, and Q1 is the upper boundary
of the first quartile.

3. Results
3.1. Descriptive Statistics

The yield of winter wheat in all of the test plots in this study was 6.55 t·ha−1, and the
mean yields differed for the three irrigation treatments. The yield statistics for the test plots
under each irrigation treatment and all of the plots are shown in Table 3. In general, the
treatments with higher irrigation levels were associated with higher yields. IT1 had the
highest average yield of 7.97 t·ha−1, followed by IT2 at 6.73 t·ha−1, and IT3 at 4.94 t·ha−1.
The data ranges, quantile statistics, standard deviations (SD), and coefficients of variation
(CV) for the yield datasets for all of the plots and the three experimental treatments showed
significant yield differences between the treatments and well separated datasets.
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Table 3. Descriptive statistics for the data sets from all test plots and the test plots from the three
different irrigation treatments (t·ha−1).

Category N Mean SD Min Q25 Q50 Q75 Max CV

All datasets 180 6.55 1.59 3.13 5.27 6.65 7.71 9.71 24.33%
IT1 dataset 60 7.97 1.01 5.58 7.43 7.97 8.65 9.71 12.68%
IT2 dataset 60 6.73 1.02 4.28 6.08 6.75 7.55 8.75 15.16%
IT3 dataset 60 4.94 0.96 3.13 4.31 4.89 5.55 7.54 19.50%

SD: standard deviation; Q25: lower quartile; Q50: median quartile; Q75: upper quartile; and CV: coefficient
of variation.

The simple linear regression coefficients of determination for each vegetation index
at the flowering and the grain-filling stages are shown in Table A1. The results show that
the R2 of each spectral index in the grain-filling stage was mostly greater than that in the
flowering stage. The RVSI index performed best at both stages, with R2 values of 0.48 at
the flowering stage, and 0.49 at the grain-filling stage. The poorest performing index was
CI in the flowering stage, with an R2 of 0.08, and the index with the poorest performance in
the grain-filling stage was TCARI/OSAVI, with an R2 of 0.1.

3.2. Feature Importance Ranking

In this study, RFE, Boruta, and PCC methods were used to rank the importance of
60 vegetation indices at the flowering and grain-filling stages. The results of the ranking of
the importance of each vegetation index are shown in Table A2 of Appendix A. Comparing
the ranking of feature importance at the flowering and grain-filling stages for the three
feature selection methods revealed that RVSI ranked highly and performed consistently
well overall. The ranking of each of the other vegetation indices for the different stages
varied with the different feature selection methods. Of the 60 vegetation indices selected,
23 were composed of three or four bands, and about 15 of them were in the top 40 in order
of importance. We also noted that two integer indices, MCARI/MTVI2 and TCARI/OSAVI,
were ranked in the top 40 by both the RFE and Boruta trait-screening methods in both of
the wheat growth stages. Both of the indices were ranked in the top 25 after RFE screening
at the grain-filling stage. After the PPC trait-screening method, both of the indices were
ranked outside of the top 40 at the flowering stage, and only MCARI/MTVI2 remained in
the top 40 at the grain-filling stage.

3.3. Comparison and Performance of Feature Selection Methods and Model Accuracy

In order to further explore the high-performance features, a total of 60 features were
iteratively added to the machine learning model, starting with the first feature in each order,
and updating the model training performance until all of the 60 features were included. The
training accuracy was calculated for four base models (SVM, GP, LRR, and RF), obtained
under three feature selection methods, for the two wheat growth stages (Figure 5). For
the SVM model, the Boruta method performed best in both the flowering and grain-filling
stages, followed by PCC and RFE, and the accuracy of the model improved as the number
of features increased (Figure 5(a1,2)). For the GP model, the flowering stage was more
accurate when using the Boruta method, followed by the PCC and RFE methods, and
the grain-filling stage was better with the Boruta method and PCC compared to RFE
(Figure 5(b1,2)). For the LRR model, the RFE method performed best at the flowering stage.
The Boruta method performed the best at the grain-filling stage and PCC performed the
worst (Figure 5(c1,2)). In the RF model, the best accuracy was achieved at the flowering
and grain-filling stages when the Boruta method was used to rank the models, with the
PCC and RFE methods performing in general agreement at the flowering stage and the
results of the RFE method were the worst at the grain-filling stage (Figure 5(d1,2)). The
combined results showed that the accuracy of all of the four models (SVM, GP, LRR, and
RF) remained stable as the number of features increased after about 25 features. Therefore,
this study used the top 25 features for the ensemble model development.
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Comparing the R2 of the four models constructed for the two growth stages showed
that the LRR model had the lowest accuracy, with R2 ranging from 0.48 to 0.54 at the
flowering stage and 0.48 to 0.63 at the grain-filling stage, and after the input features were
stable, the R2 values were 0.54 and 0.59, respectively. The R2 of the GP model ranged from
0.12 to 0.72 for the flowering stage, and 0.55–0.81 for the grain-filling stage. The RF model
had the highest accuracy, with R2 ranging from 0.76 to 0.94 at the flowering stage and
0.86–0.95 at the grain-filling stage, and when the input features were stabilized, the R2

values were 0.93 and 0.95, respectively.
The five models (four base models and the DLF model) were trained using the full

features of the training samples and selected features, and model performance was eval-
uated on the validation samples. The mean values of the validation accuracy obtained
from 200 trials are shown in Table 4. Among the base models constructed in this study, the
validation accuracy of the SVM model constructed using the RFE method with the pre-
ferred spectral indices at the flowering stage was the highest (R2 = 0.63, RMSE = 1.03 t·ha−1,
RPIQ = 2.40, RPD = 1.60), and the validation set accuracy of the SVM model constructed
using the Boruta method with the preferred features at the grain-filling stage was the high-
est (R2 = 0.73, RMSE = 0.87 t·ha−1, RPIQ = 2.74, RPD = 1.90). Among the constructed DLF
models, the best accuracy of the models constructed using the Boruta and PCC methods
with the preferred features at the flowering stage achieved an R2 of 0.66, and the highest
accuracy of the models constructed using the Boruta method with the preferred features
was at the grain-filling stage (R2 = 0.78, RMSE = 0.79 t·ha−1, RPIQ = 2.99, RPD = 2.08).
Overall, all of the methods gave an R2 of 0.56 or higher, indicating the effectiveness of
these models in estimating the winter wheat yield. The DLF models outperformed all of
the individual models. The R2 values for the DLF models constructed using the preferred
features were ≥0.65 for the flowering stage, and 0.63 for the DLF models constructed
using all features. At the grain-filling stage, the R2 values were ≥0.77 for the DLF models
constructed using the preferred features, and 0.75 for the DLF models constructed using
all of the features at the grain-filling stage. The accuracy of all of the feature selection
methods was improved in this study relative to the full feature model, and the RFE method
improved the most at the flowering stage. The R2 values of the SVM, GP, LRR, RF, and
DLF models improved by 0.04, 0.03, 0.04, 0.03, and 0.02, reaching 0.63, 0.59, 0.62, 0.60, and
0.65, respectively, at the flowering stage. The Boruta method improved the most at the
grain-filling stage. The R2 values for the five models increased by 0.05, 0.05, 0.06, 0.03,
and 0.03, reaching 0.73, 0.72, 0.66, 0.68, 0.78, respectively. In addition, the accuracy of the
models was higher at the grain-filling stage compared to the flowering stage.

Scatter plots (Figure A1) were used to better show the yield prediction performance
of the models and the feature selection methods. In general, all of the models gave good
results and performed well with all three of the feature selection methods. In addition,
the accuracy of the DLF model varied by growth stage and feature selection method. The
performance was stable across all of the feature selection methods at the different growth
stages, indicating that it was more adaptable to different feature selection methods. Most of
the observed and predicted yields obtained from the DLF model showed good agreement
with each other, and it was good at simulating the high and low yields obtained at harvest
for the different irrigation treatments.
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Figure 5. The relationships between model training accuracy and number of features. (a1,a2), SVM
model at the flowering and grain-filling stages, respectively; (b1,b2), GP model at flowering and
grain-filling stages, respectively; (c1,c2) LRR model at flowering and grain-filling stages, respectively;
(d1,d2) RF model at flowering and grain-filling stages, respectively.
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Table 4. Test accuracies of the support vector machine (SVM), Gaussian process (GP), linear ridge
regression (LRR), random forest (RF), and decision layer fusion (DLF) models in predicting winter
wheat yield.

Feature Model
Flowering Grain Filling

R2 RMSE(t/ha) RPIQ RPD R2 RMSE(t/ha) RPIQ RPD

Selected
features

(RFE)

SVM 0.63 1.03 2.40 1.60 0.71 0.90 2.64 1.83
GP 0.59 1.09 2.25 1.51 0.69 0.94 2.52 1.75

LRR 0.62 1.03 2.38 1.59 0.64 1.00 2.36 1.64
RF 0.60 1.05 2.35 1.57 0.67 0.94 2.51 1.74

DLF 0.65 0.99 2.47 1.65 0.77 0.81 2.94 2.04

Selected
features
(Boruta)

SVM 0.62 1.03 2.31 1.60 0.73 0.87 2.74 1.90
GP 0.57 1.11 2.12 1.48 0.72 0.89 2.65 1.84

LRR 0.62 1.03 2.29 1.59 0.66 0.98 2.42 1.68
RF 0.58 1.07 2.21 1.54 0.68 0.94 2.53 1.76

DLF 0.66 0.98 2.40 1.67 0.78 0.79 2.99 2.08

Selected
features
(PCC)

SVM 0.62 1.03 2.29 1.61 0.67 0.94 2.52 1.74
GP 0.58 1.11 2.12 1.49 0.68 0.96 2.49 1.71

LRR 0.62 1.03 2.28 1.60 0.63 1.03 2.32 1.60
RF 0.58 1.08 2.19 1.54 0.66 0.96 2.47 1.70

DLF 0.66 0.99 2.39 1.68 0.77 0.82 2.91 2.01

Full
features

SVM 0.59 1.05 2.25 1.56 0.68 0.95 2.51 1.73
GP 0.56 1.10 2.14 1.48 0.67 0.97 2.45 1.69

LRR 0.58 1.07 2.22 1.53 0.60 1.05 2.26 1.56
RF 0.57 1.08 2.20 1.52 0.65 0.97 2.44 1.68

DLF 0.63 1.00 2.36 1.63 0.75 0.84 2.84 1.96

3.4. Yield Distribution

A comparison of all of the models used in this study revealed that the DLF model,
constructed using the Boruta method for preferential feature selection at the grain-filling
stage, achieved the best accuracy, and it was therefore used to generate a distribution of
predicted yields (Figure 6). The results of the t-test analysis between the different irrigation
treatments are shown in Table 5 and indicate that the yield distribution differed significantly
between the three treatments, in the order IT1 > IT2 > IT3. Overall, the predicted yield
distribution in the IT1 treatment was in the range of 5 to 10 t·ha−1. Based on the observed
results, the IT1 treatment had the highest yield of 5 to 9 t·ha−1, followed by the IT2 and IT3
treatments; this is consistent with the yield distribution predicted by the DLF model and
demonstrates the feasibility of using a model to estimate yield.

Table 5. T-test results for pairwise comparisons of the three irrigation treatments.

Feature t p-Value

IT1 VS IT2 7.097 0.000
IT1 VS IT3 16.661 0.000
IT2 VS IT3 9.348 0.000
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Figure 6. Yield distribution chart for the three irrigation treatments. The color scale from blue to red
indicates the increasing grain yield from 4 to 10 t ha−1.

4. Discussion

We selected 60 hyperspectral narrow-band indices for this study, of which approxi-
mately 74% were associated with red-rimmed bands. At the flowering stage, more than six
indices associated with the red-edge band were in the top 10 after sorting by the RFE, Boruta,
and PCC methods. These red-edge spectral indices all provided better prediction perfor-
mance than other band indices, which agrees with the findings of previous studies [79–81].
For example, Xie et al. [82] analyzed the relationship between yield and canopy spectral
reflectance of winter wheat at maturity under low-temperature stress and found that the
red-edge region was associated with grain yield. However, there was a large variation in
the ranking of the different indices, which may be due to the use of different feature selec-
tion methods or the different environments to which the vegetation indices apply. Some
of the spectral indices performed consistently well among the different feature selection
methods at the two wheat growth stages, such as the three spectral indices RVSI, DSWI-4,
and ND[553,682]. The RVSI index, which consists of three bands including the red-edge band,
performed well in assessing wheat rust symptoms and constructing rice physiological trait
models [83], and was in the top five in the different methodological feature rankings in this
study. This could be because it provided more spectral information and was more sensitive
to the yield of the different feature selection methods at the different growth stages. The
DWSI-4 index, originally a variant of the plant disease-water stress index constructed using
simple and normalized ratios, also had good stability and performance in crop disease
prediction [84]. The ND[553,682] index can be used to estimate the chlorophyll content and
can minimize the effect of shading and leaf area index size [85,86]. Our study showed
that these three spectral indices can be used for yield estimation. MCARI/MTVI2 and
TCARI/OSAVI are integrated indices. In previous studies, their performance was better
than the individual MCARI, MTVI2, and OSAVI indices, because the integrated indices
had richer band information and effectively eliminate the background effects. [87,88]. The
Boruta method was second to the RFE method for winter wheat at the flowering stage and
performed best at the grain-filling stage, probably due to the difference in the performance
between the two methods in the different environments. The Boruta method is a fully
correlated feature selection method that aims to select features that are truly correlated
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with the dependent variable and can be used for prediction, rather than model-specific
selection, and can help us to understand the characteristics of the dependent variable more
comprehensively and make better and more effective feature selections [24,89]. The RFE
method takes into account the correlation between the features, continuously builds models
to find the best features, has good generalization ability, and is a suitable method for small
sample data sets [90]. The PCC method, which performed the worst in this study, is very
commonly used in sensitivity feature selection in the crop science community. It does
not require any model training, but does not objectively represent correlations when the
correlations between the variables are complex. There is also a risk of multicollinearity
between features [91,92]. In this study, the accuracy of the model construction, based on
the preferred features under feature selection, was better than that of the model under the
full feature condition, which was consistent with the findings of Hsu et al. 2011 [93] and
validated the effectiveness and generalizability of the feature selection method.

In this study, four individual machine learning algorithms were used to construct
winter wheat yield estimation models based on a subset of spectral indices obtained after
feature selection. The RF model had the highest accuracy and performed best when trained
using the training set data, but the RF model was not the best performer in the validation set
of the model, probably due to the overfitting phenomenon of the RF model in the training
set [94]. In the model training set, the LRR models all performed the worst, but in the
model validation set the GP models performed the worst at the flowering stage and the LRR
models performed the worst at the grain-filling stage. LRR models tend to have a lower R2

than the ordinary regression models but can generate a value on covariance problems [95].
The GP models use the full sample for prediction, and as the dimensionality of the data rises,
the effectiveness decreases [96]. The SVM models did not perform well in the training set
but had the highest accuracy in the validation. SVM is a machine learning method based on
the inner product kernel function. The wrong choice of kernel hyperparameters may cause
a decrease in the accuracy of the model training set estimation. However, the high accuracy
of the SVM model validation set was due to its better robustness, suitability for small
sample data regression, and the lack of sensitivity to kernel functions with the ability to
avoid dimensional catastrophe problems. [97,98]. We also found that the accuracy of yield
estimation models constructed using the four independent machine learning algorithms,
SVM, GP, LRR, and RF, at the two developmental stages of winter wheat also differed
greatly. Based on the model validation set, the accuracy of each model at the grain-filling
stage was higher than that at the flowering stage under the different feature selections.
This was due to the dry matter stored in the wheat seeds through carbon assimilation in
the winter wheat during grain filling, indicating that this stage contains more spectral
information that can be used to predict yield. In addition, the spectral information collected
from the winter wheat was increased in order to provide a more comprehensive and
accurate reflection of the yield of the winter wheat [2,99].

A DLF (decision-level fusion) model was developed based on the individual machine
learning models used in this study. The results showed that the DLF model performed
significantly better than each of the other models when all of the features or the selected
features were used. When using the selected features, the DLF model performed best at
the flowering and grain-filling stages, and the model accuracy was better than that of the
individual models. In addition, using selected features obtained under the different feature
selection methods, the DLF model produced R2 values of >0.65 at the flowering stage and
>0.77 at the grain-filling stage. Overall, the DLF model gave more satisfactory and better
results than the individual models. This was the same conclusion reached in a previous
study [33] where the DLF model was able to minimize the individual model bias and
improve the accuracy of the inverse model. Taken together, the above description suggests
that adequacy and diversity are two important principles in the selection of base models in
the decision-level fusion process [100]. This requires that the different base learners should
all have a good predictive performance and be able to minimize inter-model dependencies
and act as complementary information [101,102]. This prerequisite requirement is justified
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by the fact that the DLF methods fuse the prediction results of different independent
machine learners so that the final fusion results are all influenced by each base model [103].
Furthermore, fusion of models with similar high performance will yield limited prediction
results [104]. Based on the requirements of DLF and the limitation problem, this study used
the SVM, GP, LRR, and RF machine learning algorithms with completely different training
mechanisms to construct the yield estimation models and improved the model performance
through parameter optimization, and the experimental results provided further evidence
of the effectiveness of the underlying models.

This study used the acquired hyperspectral image time series to predict the yield
of winter wheat, and the yield prediction model constructed for the grain-filling period
had a high accuracy rate. The use of hyperspectral data to construct yield estimation
models has been widely used in previous yield estimation studies, and all have achieved
high model accuracy, consistent with the findings of this paper [105,106]. For example,
Chandel et al. (2019) [107] used hyperspectral indices to construct a yield prediction
regression model and found that the yield of irrigated wheat was estimated with an
accuracy of 96%. However, relying on hyperspectral data alone for yield estimation still has
some limitations. In future research, we intend to integrate UAV RGB and multispectral
image data into yield estimation models as well, in order to broaden the application area of
yield estimation. In addition, we will also consider examining the effects of biotic (weeds,
pests, and diseases) and abiotic (nutrients, temperature, and salinity) stresses based on UAV
imagery and ground data. Finally, additional feature selection methods and integrated
learning methods will be considered for yield estimation in order to further improve the
prediction accuracy. Therefore, in the future, we will also analyze the impact of diseases,
insects, and fertility on wheat yield.

5. Conclusions

In winter wheat production, real-time insight into yield conditions prior to harvesting
can help to optimize crop management and guide the field practices. In this study, we
developed a DLF-based machine learning model for winter wheat yield prediction using
UAV-based hyperspectral imagery. The narrow-band hyperspectral indices were extracted,
and the most important indices were selected for model development using each of the
three feature selection methods. The results showed that the RFE-based method for feature
selection at the flowering stage had a higher accuracy, the Boruta-based method for feature
selection at the grain-filling stage had a higher accuracy, and the DLF model outperformed
the base models and achieved the highest accuracy when using the preferred features. This
study demonstrates the effectiveness of using hyperspectral images to build a model for
yield estimation in winter wheat.
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Appendix A

Table A1. The coefficients of determination for the 60 spectral indices under simple linear regression.

Full Form Spectral Index or Ratio
R2

Flowering Grain Filling

Curvative index CI 0.08 0.33
Chlorophyll index red-edge CIre 0.21 0.40

Datt1 0.30 0.31
Datt4 0.14 0.41
Datt6 0.05 0.29

Double difference index DDI 0.24 0.26
Double peak index DPI 0.14 0.30

Gitelson2 0.21 0.45
Green normalized difference

vegetation index GNDVI 0.21 0.40

Leaf chlorophyll index LCI 0.20 0.42
Modified chlorophyll absorption

ratio index
MCARI 0.17 0.41

MCARI3 0.22 0.43
Modified normalized difference MND[680,800] 0.26 0.45
Modified normalized difference MND[705,750] 0.20 0.43

Modified simple ratio mSR 0.22 0.32
Modified simple ratio 2 mSR2 0.23 0.41

MERIS terrestrial chlorophyll index MTCI 0.13 0.31
Modified triangular vegetation index 1 MTVI1 0.43 0.40
Modified triangular vegetation index 2 MTVI2 0.36 0.47

Normalized difference 550/531 ND[531,550] 0.13 0.28
Normalized difference 682/553 ND[553,682] 0.41 0.48

Normalized difference chlorophyll NDchl 0.23 0.36
New double difference index DDn 0.45 0.39

Normalized difference red-edge NDRE 0.18 0.36

Normalized difference vegetation
index

NDVI[650,750] 0.32 0.47
NDVI[550,750] 0.23 0.42
NDVI[710,750] 0.22 0.43

Normalized pigment chlorophyll index NPCI 0.17 0.35
Normalized difference pigment index NPQI 0.13 0.31

Optimized soil-adjusted vegetation index OSAVI 0.31 0.48
Plant biochemical index PBI 0.20 0.37

Plant pigment ratio PPR 0.09 0.25
Physiological reflectance index PRI 0.40 0.48

Pigment-specific normalized difference
PSNDb1 0.31 0.46
PSNDc1 0.28 0.44
PSNDc2 0.26 0.43

Plant senescence reflectance index PSRI 0.24 0.31

Pigment-pecific simple ratio PSSRc1 0.26 0.39
PSSRc2 0.24 0.38

Photosynthetic vigor ratio PVR 0.40 0.48
Plant water index PWI 0.15 0.28

Renormalized difference vegetation index RDVI 0.43 0.44
RDVI2 0.42 0.44

Reflectance at the inflexion point Rre 0.35 0.14
Red-edge stress vegetation index RVSI 0.48 0.49

Soil-adjusted vegetation index SAVI 0.31 0.47
Structure intensive pigment index SIPI 0.44 0.35
Spectral polygon vegetation index SPVI 0.44 0.40

Simple ratio

SR[430,680] 0.17 0.34
SR[440,740] 0.31 0.46
SR[550,672] 0.02 0.25
SR[550,750] 0.01 0.05

Disease-water stress index 4 DSWI-4 0.43 0.47
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Table A1. Cont.

Full Form Spectral Index or Ratio
R2

Flowering Grain Filling

Simple ratio pigment index SRPI 0.17 0.34
Transformed chlorophyll absorption ratio TCARI 0.01 0.34

Triangular chlorophyll index TCI 0.08 0.40
Triangular vegetation index TVI 0.43 0.42

Water band index WBI 0.30 0.31
Combined MCARI/MTVI2 MCARI/MTVI2 0.13 0.39
Combined TCARI/OSAVI TCARI/OSAVI 0.03 0.10

Table A2. Ranking of all 60 features for the three feature selection methods at the flowering and
grain-filling stages of winter wheat.

Ranking
Flowering Features Grain-Filling Features

RFE Boruta PCC RFE Boruta PCC

1 RVSI Gitelson2 RVSI DSWI-4 Gitelson2 RVSI
2 RDVI RVSI DDn ND[553,682] RVSI ND[553,682]
3 WBI NDchl SPVI MTVI2 NDchl PVR
4 NDVI[650,750] ND[553,682] SIPI RVSI ND[553,682] OSAVI
5 PRI OSAVI MTVI1 Gitelson2 OSAVI PRI
6 PWI CIre RDVI PVR CIre NDVI[650,750]
7 DSWI-4 NDVI[710,750] DSWI-4 CI NDVI[710,750] MTVI2
8 SR[440,740] DPI TVI OSAVI DPI DSWI-4
9 SAVI MSR2 RDVI2 NDchl MSR2 SAVI
10 TCI MTCI ND[553,682] Datt1 MTCI SR[440,740]
11 MTVI1 DSWI-4 PRI SR[450,550] DSWI-4 PSNDb1
12 OSAVI MND[705,750] PVR PPR MND[705,750] MND[680,800]
13 Datt4 MTVI2 MTVI2 CIre MTVI2 Gitelson2
14 MSR PVR Rre PRI PVR RDVI2
15 DDn NDVI[650,750] NDVI[650,750] NPQI NDVI[650,750] RDVI
16 RDVI2 SAVI SR[440,740] SR[450,690] SAVI PSNDc1
17 MCARI PRI PSNDb1 Rre PRI MND[705,750]
18 ND[553,682] Datt6 OSAVI MSR2 Datt6 PSNDc2
19 PSNDb1 SR[440,740] SAVI TCARI/OSAVI SR[440,740] NDVI[710,750]
20 SIPI DDI WBI DDI DDI MCARI3
21 Rre PSNDb1 PSNDc1 MCARI PSNDb1 NDVI[550,750]
22 TVI LCI PSNDc2 PSRI LCI LCI
23 Gitelson2 MND[680,800] MND[680,800] LCI MND[680,800] TVI
24 Datt1 NDRE PSSRc1 Datt4 NDRE MSR2
25 NDchl PSSRc1 DDI MCARI/MTVI2 PSSRc1 Datt4
26 TCARI PSNDc1 PSSRc2 MTCI PSNDc1 MCARI
27 MCARI3 NDVI[550,750] PSRI PSNDc2 NDVI[550,750] CIre
28 MCARI/MTVI2 NPQI NDVI[550,750] WBI NPQI TCI
29 PSNDc2 MCARI3 MSR2 DPI MCARI3 GNDVI
30 Datt6 CI NDVI[710,750] PWI CI MTVI1
31 SR[450,550] ND[531,550] MSR MTVI1 ND[531,550] SPVI
32 ND[531,550] MCARI GNDVI PSNDb1 MCARI DDn
33 PSNDc1 MCARI/MTVI2 CIre MSR MCARI/MTVI2 MCARI/MTVI2
34 CI TCARI/OSAVI PBI MND[705,750] TCARI/OSAVI PSSRc1
35 SPVI PBI MND[705,750] TCI PBI PSSRc2
36 NDRE PSNDc2 LCI MCARI3 PSNDc2 PBI
37 TCARI/OSAVI PSSRc2 NDRE NDVI[650,750] PSSRc2 NDRE
38 PVR PSRI NPCI PSNDc1 PSRI NPCI
39 MTVI2 Datt1 SR[430,680] SR[440,740] Datt1 SIPI
40 PPR SRPI SRPI Datt6 SRPI TCARI
41 DDI RDVI2 MCARI TCARI RDVI2 SR[430,680]
42 NPQI GNDVI PWI SR[430,680] GNDVI SRPI
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Table A2. Cont.

Ranking
Flowering Features Grain-Filling Features

RFE Boruta PCC RFE Boruta PCC

43 MND[680,800] RDVI Datt4 NDVI[710,750] RDVI CI
44 PSSRc1 NPCI ND[531,550] NDVI[550,750] NPCI MSR
45 PSRI TVI MTCI ND[531,550] TVI WBI
46 PSSRc2 SR[450,550] MCARI/MTVI2 PSSRc2 SR[450,550] MTCI
47 MTCI SR[430,680] TCI SIPI SR[430,680] PSRI
48 SR[450,690] PPR Datt1 NDRE PPR DPI
49 MND[705,750] DDn Datt6 SAVI DDn Datt6
50 GNDVI MSR DPI NPCI MSR ND[531,550]
51 CIre TCI NPQI PSSRc1 TCI PWI
52 LCI SR[450,690] NDchl RDVI2 SR[450,690] DDI
53 NPCI PWI TCARI/OSAVI SRPI PWI PPR
54 NDVI[550,750] Datt4 PPR SPVI Datt4 SR[450,550]
55 SR[430,680] SIPI SR[450,550] DDn SIPI NDchl
56 DPI MTVI1 MCARI3 GNDVI MTVI1 Rre
57 SRPI SPVI SR[450,690] TVI SPVI TCARI/OSAVI
58 PBI WBI Gitelson2 PBI WBI SR[450,690]
59 MSR2 TCARI TCARI MND[680,800] TCARI NPQI
60 NDVI[710,750] Rre CI RDVI Rre Datt1

Figure A1. Cont.
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Figure A1. Scatter plots of observed versus predicted yields for the five models constructed from the
three different feature selection methods. In the figure labels (a1–f5), the letters (a,b,c) indicate the RFE,
Boruta, and PCC feature selection methods used at the flowering stage, respectively; (d,e,f) indicate
the RFE, Boruta, and PCC feature selection methods used at the grain-filling stage, respectively; the
numbers 1–5 indicate the SVM, GP, LRR, RF, and DLF models.
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