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Abstract: Nutrient concentrations in livestock manures and biogas digestates show a huge variability
due to disparities in animal husbandry systems concerning animal species, feed composition, etc.
Therefore, a nutrient estimation based on recommendation tables is not reliable when the exact
chemical composition is needed. The alternative, to analyse representative fertilizer samples in a
standard laboratory, is too time- and cost-intensive to be an accepted routine method for farmers.
However, precise knowledge about the actual nutrient concentrations in liquid organic fertilizers is a
prerequisite to ensure optimal nutrient supply for growing crops and on the other hand to avoid envi-
ronmental problems caused by overfertilization. Therefore, spectrometric methods receive increasing
attention as fast and low-cost alternatives. This review summarizes the present state of research based
on optical spectrometry used at laboratory and field scale for predicting several parameters of liquid
organic manures. It emphasizes three categories: (1) physicochemical parameters, e.g., dry matter,
pH, and electrical conductivity; (2) main plant nutrients, i.e., total nitrogen, ammonium nitrogen,
phosphorus, potassium, magnesium, calcium, and sulfur; and (3) micronutrients, i.e., manganese,
iron, copper, and zinc. Furthermore, the commonly used sample preparation techniques, spectrom-
eter types, measuring modes, and chemometric methods are presented. The primarily promising
scientific results of the last 30 years contributed to the fact that near-infrared spectrometry (NIRS) was
established in commercial laboratories as an alternative method to wet chemical standard methods.
Furthermore, companies developed technical setups using NIRS for on-line applications of liquid
organic manures. Thus, NIRS seems to have evolved to a competitive measurement procedure,
although parts of this technique still need to be improved to ensure sufficient accuracy, especially in
quality management.

Keywords: chemometrics; farmyard manures; digestates; regression models; VIS-NIR spectra; MIR

1. Introduction

Animal manures and digestates from biogas production contain all essential plant
nutrients crucial for growing crops to produce food, feed, and fibres [1], i.e., macronutrients
such as nitrogen (usually given as total nitrogen (TN) and ammonium nitrogen (NH4-N)
representing the directly plant-available fraction), phosphorus (P), potassium (K), mag-
nesium (Mg), calcium (Ca), and sulfur (S) as well as micronutrients such as manganese
(Mn), iron (Fe), copper (Cu), and zinc (Zn). In contrast to mineral fertilizers, farm-based
liquid organic manures have several advantages. As residues from animal husbandry or
biogas plants, they are virtually available for free on many farms or at least much cheaper
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compared to commercial fertilizers. Furthermore, the application of liquid organic manures
increases the content of organic matter in the soil, thus leading to a better water storage
capacity and overall improved soil fertility [2]. However, it is challenging to exactly quan-
tify nutrient concentrations of these farm-based fertilizers due to inherent heterogeneity
showing a solid and a liquid phase. Moreover, their composition depends on a wide vari-
ety of factors, e.g., animal species and age, feedstuff compositions, storage management,
homogenization techniques, and stage of pumping. Presently, most farmers worldwide
use simple recommendation tables for nutrient estimation, which have been compiled
for several types of manures and digestates based on laboratory analyses during the last
few decades. However, these tables do not cover the real variability of nutrient concen-
trations due to the diverse processes in animal husbandry. For this reason, the remaining
uncertainty of real nutrient concentrations can tempt farmers to rather overdose organic
fertilizers to ensure sufficient nutrient supply to the crop instead of risking productivity
losses. In general, a nutrient surplus (especially of nitrate and phosphate) may lead to
emissions of nutrients to non-agricultural ecosystems such as ground and surface waters,
resulting in environmental problems such as eutrophication [3] as well as health problems,
especially for infants, if nitrate reaches high amounts in drinking water.

As an alternative to following a general nutrient estimation, farmers can sample each
livestock building or storage facility for liquid organic manures and send a more or less
representative sample to a certified laboratory for accurate nutrient analysis. However,
this procedure is rather time- and cost-intensive and needs a thorough homogenization
before sampling and subsampling. Otherwise, measured nutrient concentrations from the
laboratory may differ distinctly from true values [4].

Obviously, there is a high demand for reliable, rapid, and low-cost methods for quantify-
ing nutrients in liquid organic manures. In contrast to recommendation tables and traditional
wet chemistry-based analyses in certified laboratories, spectrometric methods might be a
feasible alternative, if they attain a sufficient accuracy. Due to their practicability, farmers
or service providers would be able to directly sample and analyse manures and digestates
even on-farm or on-line during field application. Furthermore, in the case of on-farm analysis,
farmers could analyse more samples from different parts and depths of the more or less
homogenized storage tank, instead of sending only one sample for the total storage facility to
a certified laboratory, resulting in a more representative nutrient quantification [5].

Due to the principal success of spectroscopic methods to predict nutrients in liquid
organic fertilizers during the past three decades, these methods are established in some
laboratories as alternative measurement techniques for liquid organic manures. Further-
more, during the last five years, on-line measurements of liquid manures at farm and
field scale were successfully proven for dry matter and the main nutrients N (total N and
ammonium N), P, and K [6]. These recent developments necessitate reviewing the benefit
of optical spectrometry for characterizing liquid manures, based on an extensive literature
survey. Therefore, the reader is introduced to the methodical know-how of spectrometric
measurements of liquid organic manures. Afterward, spectrometric studies on liquid
manures of over 40 publications are comparatively evaluated; the corresponding sample
preparation techniques, spectrometer types, measuring modes, and chemometric methods
are summarized; and the best performing methodical approaches are discussed.

2. Spectrometric Methods
2.1. Physical Background

Predicting physicochemical parameters and nutrient concentrations of liquid manures and
digestates by ultraviolet (UV), visual (VIS), near-infrared (NIR), or mid-infrared (MIR) spectrom-
etry requires element-specific interactions of their chemical components with electromagnetic
radiation. Valence electrons are able to absorb and re-emit light in the UV (200–380 nm) and
VIS (380–780 nm) regions. Radiation of the NIR region (780–2500 nm) interacts with overtone
and combination vibrations of molecule bindings (e.g., O-H, N-H, and C-H) belonging to
fundamental vibrations of molecular bindings in the MIR region (2500–25,000 nm) such as
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stretching (symmetric or antisymmetric), bending, wagging, rocking, or twisting [7,8]. Further-
more, when metal ions (e.g., Fe, Cu, Zn) form coordinative bonds with organic compounds
(so-called ligands), the conjugated π-electron system of the formed complex is able to absorb
photons from the UV to the NIR region [9]. Another, though less investigated, possibility is that
the characteristic of cations (e.g., Mg2+, Ca2+) to form hydrate envelopes can also cause band
shifts by influencing the hydrogen bonding structure of the sample, which can be identified by
comprehensive chemometric analysis [10].

A second reason why it is possible to predict chemical contents of liquid organic fertilizers
with optical spectrometry is a sometimes strong correlation of spectrally inactive components
(e.g., metals such as Ca, Mg, Cu, Zn) with at least one spectrally active compound [11].

In comparison to MIR spectrometry, NIR has the advantage that light of these wave-
lengths is able to penetrate deeper into the sample [12]. This might result in more represen-
tative measurements for liquid organic manures because of their naturally heterogeneous
character. On the other hand, absorption bands resulting from overtone and combination
vibrations in the NIR region are less intensive (by a factor of 10–100) than those of funda-
mental vibrations in the MIR region, leading to higher variations in detector signals which
might result in a less precise quantification [10].

2.2. Spectrometer Types

Up to now, at least four main types of NIR spectrometers are utilized in published
papers to analyse liquid organic manures using spectra of the near-infrared region:

• Dispersive grating scanning monochromator (SM) benchtop spectrometers, which
are characterized by a high resolution but slow scan speed and sensitive moving
parts, limiting the on-site use at the farm or in the field (e.g., NIR-Systems 6500, FOSS,
Hilleroed, Denmark, used in [13–20]);

• Dispersive diode array (DA) spectrometers with a high scan speed and a robust
apparatus either as benchtop or as portable version for lab and on-site applications
(e.g., Corona 45, Carl Zeiss Spectroscopy GmbH, Jena, Germany, used in [11,21–24]);

• Fourier transform (FT) spectrometers, which have the advantage of being faster and
higher in resolution compared to dispersive spectrometers. Originally they were used
only for the mid-infrared region, but today they are also well established in the near-
infrared region (e.g., NIRFlex N-500, BÜCHI Labortechnik AG, Flawil, Switzerland,
used in [21,25,26]);

• Bandpass spectrometers using bandpass filters for selected wavelengths, characterized
by low-cost detectors with small wavelength ranges (e.g., MM55 instrument, NDC
Infrared Engineering Ltd., Maldon, England, used in [12]).

Up to now, only two different MIR spectrometers were tested to analyse manure prop-
erties with spectra of the mid-infrared region. These Fourier transform MIR-instruments
were either equipped with:

• The photoacoustic (PA) technique, which records the sound of mid-infrared radiation
emitted by irradiated samples due to pressure and volume changes (Nicolet 380 FT-IR,
Thermo Fisher Scientific Inc., Waltham, MA, USA, combined with the photoacoustic
cell PAC300, MTEC Photoacoustics Inc., Ames, IA, USA, used in [27]);

• The attenuated total reflection (ATR) technique (MonitIR ATR spectrometer, Spectra-
Tech Applied Systems Inc., Shelton, CT, USA, used in [12]), which measures the
absorption of evanescent waves that penetrate only a few nanometres into the sample
behind a totally reflecting prism surface [8].

2.3. Measuring Modes and Sample Preparation Techniques

The interaction of radiation with components of liquid manures leads to different
fractions of light reflection, transmission, and absorption. The latter can only be determined
indirectly by measuring the reflection and/or transmission. One challenge that spectro-
metric methods with liquid materials such as manures or digestates have to deal with is
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the high impact of light absorption by water above 1000 nm. Thus, only a few percent of
the incoming light is reflected in the near- and mid-infrared regions. Because of liquid
manures’ strongly absorbent character with very little light transmission, the measurement
of reflection is the mode of choice. Measuring slurries in reflection mode has the advantage
that the reflected light is not influenced by varying sample thickness.

It is also possible to measure in transflection mode (a combination of transmission
and reflection), in which transmitted light is backscattered by a white standard or golden
reflector and transmitted back through the sample to the detector. An appropriate sample
thickness for this technical set-up is about 1 mm, which means an optical pathway of
2 mm [18]. Finzi et al. [25], Malley et al. [28–30], Malley et al. [14], and Saeys et al. [18]
published data for measuring animal manure in transflection mode.

The distinct heterogeneity of liquid organic manures is another challenge for spectro-
metric measurements. These fertilizers are a suspension of solid particles in a liquid matrix,
separating during storage due to different densities [31]. According to Saeys [5], the solid
particles sink downward (e.g., in pig and poultry manures) or float up to the top of the
liquid phase (e.g., in cattle manures) depending on the type of organic fertilizer. This is a
substantial disadvantage for carrying out representative measurements because both frac-
tions have different characteristics. While the solid phase contains mainly organic matter
with higher concentrations of phosphorus, calcium, magnesium, and organically bound
nitrogen, the liquid phase contains most of the ammonium nitrogen and potassium [5].
Thus, it is very important for an accurate determination of nutrients to obtain a representa-
tive sample of the liquid organic fertilizers and to obtain a homogeneous sample during
measurement. Usually, this problem is overcome by mixing the slurry sample right before
measurement, e.g., by using a spatula [32], a disperser [21,33], or a magnetic stirrer [24]
or by shaking the liquid manure several times in a plastic bag [19]. Another possibility
to eliminate segregation processes during spectrometric measurements in the lab is to
reduce the water content either by air-drying [22,27] or by using a drying cabinet [17,34].
Finzi et al. [25] separated the solid and liquid phases by filtering the sample with a 1 mm
mesh followed by analysing the eluate. A rather new alternative approach is the utilization
of so-called Nanobags, which are filled with a strongly absorbing carrier material based
on zeolite. After adding liquid organic manures into the bags, the carrier material with
the adhering organic fertilizers is dried and ground to obtain a homogenized material for
spectroscopic analysis ([35,36]; see also Section 4).

2.4. Spectra of Liquid Organic Manures

The reflected light of a sample has to be set into relation to a reference reflection stan-
dard with known reflection properties. This ratio is called reflectance (R) and is displayed
in % (Figure 1). However, about one-quarter of the studied literature prefers a conversion
of reflectance into a pseudo absorbance (pA; Equation (1)) analogue to the absorbance (A;
Equation (2); also called extinction or optical density) of the Lambert–Beer law from 1852,
where absorbance is directly proportional to the concentration of dissolved components
with absorbing properties. The difference between absorbance and pseudo absorbance is
that pA is calculated by the measured diffuse reflectance instead of transmittance (T). Up to
now, the term “pseudo absorbance” is rarely used in literature (e.g., in [37]). Unfortunately,
it is often mistaken with the term “absorbance”. Furthermore, there is no mathematical
evidence that the transformation of reflectance spectra into pseudo absorbance spectra
has any advantages. The assumption that diffuse reflectance is also directly proportional
to the concentration of dissolved components, as is the case for absorbance, is wrong
because diffuse reflectance is not directly correlated to transmittance but also depends on
the absorptance (α; Equation (3)) and scattering properties of the surface.

pA = log(1/R) (1)

A = log(1/T) (2)
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R = 1− T − α (3)

Figure 1. Typical VIS-NIR reflectance spectra for liquid organic manures (pig, cattle, digestate) from
a study conducted in north Germany (detected with UV-VIS-NIR fibered ArcOptix spectrometer,
ArcOptix, Neuchatel, Switzerland).

Because of their dark brown colour, liquid animal manures and biogas digestates
absorb light in the whole region of visible wavelengths (380–780 nm), decreasing to
longer wavelengths in the red region up to 780 nm and resulting in increasing reflectances
(Figure 1). The strong valleys around 675 nm in many samples probably correspond to
chlorophyll, which is typical for dairy or cattle manure and rather unusual for hog manure,
because forages are rarely used in pig nutrition [24]. The highly pronounced valleys around
1440 and 1920 nm are the result of a strong absorption of radiation by water molecules,
which belong to both the first overtone vibration of the fundamental stretching vibration
and the combination vibration of the fundamental stretching and bending vibration of the
two O-H molecule bonds [38].

2.5. Statistical Analysis Using Chemometric Methods
2.5.1. Preprocessing Methods

Several different preprocessing methods were tested on the whole spectra or selected
wavelengths of the spectra of liquid organic fertilizers to correct signals for noise, to remove
baseline shifts, or to reduce data size before conducting a statistical analysis, including
the following:

• Mean centering (MC; Equation (4));
• Smoothing, e.g., rectangular smooth (Sr; unweighted sliding average smooth with n

points; Equation (5)) or Savitzky–Golay smoothing (SG0; [39]);
• Standard normal variate transformation/scaling (SNV; Equation (6); [40]);
• Standard normal variate transformation combined with detrend (SNVD; used in [19]);
• First or second derivate, e.g., with Savitzky–Golay algorithm (SG1 or SG2; [39]);
• Multiplicative signal/scatter correction (MSC; [41]; Equation (7));
• Extended multiplicative scattering correction (EMSC; developed by [42]; used in [21]);
• A variant of orthogonal signal correction (OSC; [43]), called direct orthogonal signal

correction (DOSC; developed by [44]; used in [45]);
• Area normalization (used in [12]), where each sample is normalized to the area under

the spectra (calculated as integral of the spectral curve).
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MC = (yw − y) (4)

Sr with n−points =
yw− n

2 +1 + . . . + yw−1 + yw + yw+1 + . . . + yw+ n
2−1

n
(5)

SNVw =
MC

σ
= (yw − y)/

√
∑ (yw − y)2

N − 1
(6)

MSC =
yw − ai

bi
(7)

where:
yw = absorbance at a specific wavelength;
y = mean value of all measured values of a spectrum;
ai = additive effect calculated by ordinary least square regression (OLS) for each

spectrum on the mean spectrum of all spectra;
bi = multiplicative effect calculated by ordinary least square regression (OLS) for each

spectrum on the mean spectrum of all spectra.
The preprocessing methods are used to eliminate spectral noise or other disturbing

effects such as baseline shift; however, it has to be kept in mind that the effectiveness of a
preprocessing method depends on manure type and sample set.

2.5.2. Regression Models and Machine Learning Methods

After the preprocessing of the spectral data, a regression model is built. The aim is to
find a mathematical correlation between the spectra (predictor or independent variables)
and the corresponding reference values (response or dependent variables) to subsequently
predict the values of all relevant components in liquid organic manures solely based on
a corresponding spectrum. For that, the method of partial least square regression (PLSR)
introduced by Wold in 1975 [46] is frequently utilized to predict nutrients in liquid organic
manures with optical spectrometry. In PLSR, the predictor variables (i.e., the wavelengths
of VIS-NIR spectra) are reduced to a few uncorrelated components, similar to a principal
component analysis (PCA). Afterward, least square errors are determined for calculating
the best regression equation with each response variable. This method is often applied
when having many highly collinear predictor variables in conjunction with a small number
of samples, as is usually the case in VIS-NIR spectrometry [47].

Another applied prediction model is called multiple linear regression (MLR), which is
in principle the extension of ordinary least square regression (OLSR) by including more than
one predictor variable. This concept was first introduced by Sternberg et al. in 1960 [48].
Dagnew et al. [49] and Malley et al. [14,28–30,50] applied this method to predict nutrient
concentrations in liquid manures, but it is rarely used by any other author in this context.
Chen et al. [51] compared a machine learning method called artificial neuronal networks
(ANNs) with PLSR on spectra of poultry manures and found an overall improvement for
TN, NH4-N, P, and K using ANNs.

Further regression techniques utilized for processing spectral data are least absolute
shrinkage and selection operator (LASSO; [52]) regression, ridge regression (RR; [53]), least
angle regression (LAR; [54]), random forest (RF; [55]), and forward stagewise or stepwise
regression. However, none of these algorithms were as yet used in published data for
livestock manures and digestates.

2.5.3. Model Evaluation Parameters

To evaluate the quality of prediction models of NIR data for specific dependent
variables, several different quality factors are used, such as:

• Coefficient of correlation (R);
• Coefficient of determination (R2; Equation (8));
• Standard error of prediction, calibration, or cross-validation (SEP, SEC, SECV; Equation (9));
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• Root mean square error of prediction or cross-validation (RMSEP/RMSECV; also
called root mean squared deviation (RMSD); [56,57]). RMSEP is almost the same as
SEP, which is additionally bias-corrected (Equation (10));

• Ratio of the standard deviation of the reference values (SDref; Equation (11)) and the
SEP (SDref/SEP; so-called ratio of performance (RPD) introduced by [58]);

• Ratio of the sample range and RMSEP (so-called range error ratio (RER), e.g., used in [24]);
• Ratio of relative mean squared difference (RMSD) and mean (so-called relative stan-

dard deviation (RSD), e.g., used in [16]);
• Ratio of sample range and SEP (e.g., [15]);
• The slope (so-called residual variance or random error) and the bias (so-called error of

means or systematic error) of the regression line.

In many publications, both R2 and RDP were chosen as quality indicators. However,
Minasny and McBratney [59] explained the redundancy of publishing both parameters
because of their mathematic relationship (Equation (12)) and hence identical significance.
Nevertheless, all of these evaluation indicators assume a normal distribution of the mea-
sured sample concentrations. However, there is a frequent occurrence of log-normal dis-
tributed sample concentrations, which was the reason Bellon-Maurel et al. [60] proposed a
new index called the ratio of performance to interquartile distance (RPIQ; Equation (13)).
This ratio is based on the first (Q1) and third (Q3) quartiles of the empirical distribution
and thus considers the increased appearance of samples with smaller concentrations in a
log-normal distributed sample set.

R2 =
∑N

i (ŷi − y)2

∑N
i (yi − y)2 (8)

SEP =

√
∑N

i=1
(ŷi − yi − Bias)2

N − 1
; Bias = y− ŷ (9)

RMSEP =

√
∑N

i=1
(ŷi − yi)

2

N
(10)

SDre f =

√
∑N

i=1
(yi − y)2

N − 1
(11)

RDP =
SDre f

SEP
=

1√
1− R2

(12)

RPIQ =
Q3 −Q1

SEP
(13)

where:
N = number of samples;
yi = ith reference value;
ŷi = ith predicted value;
y = mean of all reference values;
ŷ = mean of all predicted values.

2.5.4. Outliers

Several methods have been proposed to detect outliers in the data, although no
commonly accepted definition exists for what constitutes an outlier. In general, outliers
can be distinguished in “reference outliers” (conspicuous reference values determined by
standard laboratory methods), “spectral outliers” (conspicuous spectra), and “prediction
outliers” (conspicuously deviating values calculated by chemometric methods). In the
evaluated literature, several different methods were used to detect these outliers.



Agronomy 2022, 12, 514 8 of 21

Althaus et al. [13] defined all sample spectra with a so-called “global H” value
(GH) > 3.2 and a so-called “neighbourhood H” value (NH) > 1.2 as spectral outliers. GH
and NH are special parameters, calculated by the chemometric software WinISI (FOSS),
whereas GH is very similar to the standardized Mahalanobis distance H (distance of a
sample point to the mean) and NH is a kind of relation to neighbouring sample points.
Sørensen et al. [19] defined all sample spectra with a GH value > 3.5 as spectral outliers.
For prediction outliers, he used a T value (Student’s t-test) > 3 of predicted concentrations,
which means that the residual of the predicted sample concentration to the regression
line is more than 3 times the RMSECV or RMSEP of the sample set (Studentized residual).
Similar to the t-test, Reeves [17] calculated the absolute difference of predicted and refer-
ence values of the samples and defined all values as predicted outliers that were higher
than 3 times the standard deviation (SD) from the mean difference. Cabassi et al. [21] and
De Ferrari et al. [33] detected outliers by principal component analysis on PLS principal
components using Dixon’s Q-test and Hoteling’s T2 test with a 95% confidence limit, which
is about 2 times the SD. Another possible, but more subjective, method is plotting Cook’s
distances vs. leverage values [34] or plotting PCA scores vs. leverage values [15] and
deleting conspicuous deviations.

3. Published Data

Tables 1–5 give a detailed overview summarizing published correlation coefficients
(R2) and standard errors of predictions (RMSEP or SEP) for nutrient concentrations and
physicochemical parameters of liquid organic manures, determined via spectrometric and
standard laboratory procedures. In comparison to liquid livestock manures, the number of
published papers dealing with spectrometrically measured data for biogas digestates is
very small. In Table 6, the data set is further condensed and the published ranges of R2s
and RMSEPs for each parameter are indicated.



Agronomy 2022, 12, 514 9 of 21

Table 1. Summary of published data for predicting parameters in liquid organic manures based on optical spectroscopy. Additionally, publications about solid
organic manures such as solid poultry manure or dairy faeces are included.

Reference Althaus et al.
2013 [13]

Asai et al.
1993 [61]

Becaccia et al.
2015 [62]

Benozzo et al.
2018 [63]

Cabassi et al.
2015 [21]

Chen et al.
2009 [51]

Chen et al.
2010 [45]

Dagnew et al.
2004 [49]

De Ferrari
et al. 2007 [33]

Dolud et al.
2005 [64]

Dong et al.
2011 [34]

Liquid
organic
manure

dried dairy
faeces

dried dairy
cattle pig digestate cattle poultry poultry hog cattle hog dried poultry

No. samples
(% for
validation)

168 (14%) 75 (33%) 79 (-) 80 (-) 99 (33%) 91 (25%) 91 (25%) 88 (28%) 101 (-) 128 (40%) 74 (66%)

Scan mode
(material) R R R (PE-bags) R

(boro-silicate) R R R R R T (3 mm) R

Range (nm) 408–2493 1445–2348 1100–2400 950–1650 (a) 1000–2500
(b) 1100–1690 1000–2500 1000–2500 250–2500 1100–2498 960–1690 800–2500

R2 (RMSEP or SEP) of

DM (%) - - 0.96 (0.18) 0.66 (0.63) (a) 0.92 (1.01) - - 0.92 (0.80) 0.95 (0.95) 0.97 (0.28) -
pH - - 0.84 (0.11) 0.64 (0.09) - - - - 0.29 (0.25) - -
EC (mS/cm) - - - 0.86 (1.41) - - - - 0.11 (2.55) - -
Na (g/kg) - - - - - - - - - - -
OM/TC/TOC/
ash (g/kg) TC 0.96 (2.90) ash 0.99 (22.4)

TC 0.97 (14.5) ash 0.81 (0.10) TOC 0.73 (2.1) (a) ash 0.88
(3.3) - - - TC 0.92 (3.74) - -

TN (g/kg) 0.97 (0.67) 0.93 (1.7) 0.93 (0.77) - (b) 0.86 (0.47) 0.92 (0.91) 0.82 (1.29) 0.89 (0.98) 0.90 (0.32) 0.94 (0.32) 0.48 (8.0) *1

NH4-N (g/kg) 0.91 (0.18) - 0.88 (0.80) 0.85 (0.23) (b) 0.78 (0.27) 0.90 (0.75) 0.88 (0.85) - 0.83 (0.18) 0.88 (0.24) -
P (g/kg) - - - 0.80 (0.12) (b) 0.74 (0.15) 0.86 (0.42) 0.74 (0.64) 0.79 (0.42) 0.78 (0.13) - 0.74 (3.4) *1

K (g/kg) - - - 0.73 (0.12) - 0.72 (0.73) 0.57 (1.08) 0.68 (0.50) 0.19 (0.67) - -
Mg (g/kg) - - - - - - - - - - -
Ca (g/kg) - - - 0.69 (4.3) - - - - - - -
S (g/kg) - - - 0.78 (0.4) - - - - - - -

Mn (g/kg) - - - - - - - - - - -
Fe (g/kg) - - - 0.81 (0.6) - - - - - - -
Cu (g/kg) - - - - - - - - - - 0.90 (0.01) *1

Zn (g/kg) - - - 0.85 (0.05) - - - - - - 0.87 (0.03) *1

Best values for each parameter are highlighted in bold letters, dried samples in red, digestate samples in green, and SEP values in underlined letters. Scan mode: R = reflectance,
T = transflectance; Parameters: DM = dry matter, EC = electrical conductivity, OM = organic matter, TC = total carbon, TOC = total organic carbon, TN= total nitrogen; R2 = coefficient of
determination, RMSEP = root mean squared error of prediction, SEP = standard error of prediction. *1 On DM basis.
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Table 2. Summary of published data for predicting parameters in liquid organic manures based on optical spectroscopy. Additionally, publications about solid
organic manures such as solid poultry manure or dairy faeces are included.

Reference Du et al.
2010 [27]

Finzi et al.
2015 [25]

Finzi et al.
2015 [25]

Finzi et al.
2015 [25]

Kemsley
et al. 2001

[12]

Kemsley
et al. 2001

[12]

Malley et al.
2001a [28]

Malley et al.
2001b [29]

Malley et al.
2001c [30]

Malley et al.
2002 [14]

Malley et al.
2005 [22]

Liquid organic
manure

dried: pig,
poultry,
cattle

pig dairy digestate pig, turkey,
cattle turkey, cattle hog hog hog hog air-dried cattle

No. samples (%
for validation) 81 (27%) 12 (-) 12 (-) 12 (-) 45 (-) 30 (-) 80 (-) 80 (-) 80 (-) 64 or 75 (50%) 179 (-)

Scan mode PA T (0.3mm) T (0.3mm) T (0.3 mm) ATR R T (2 mm) T (2 mm) T (2 mm) T (2 mm) R

Range (nm) 2500–20,000
(MIR) 1000–2500 1000–2500 1000–2500 5540–11,160

(MIR)

1935, 2050,
2100, 2180,

2220
400–2498 620–1050 938–1700 400–2498 380–1690

R2 (RMSEP or SEP) of

DM (%) - 0.96 (0.87) 0.92 (0.25) 0.92 (0.22) - - 0.97 *2 (0.49) 0.96 (0.57) - 0.94 (0.20) *3 -
pH - - - - - - 0.96 (0.07) - - 0.84 (0.09) 0.89 (0.29)
EC (mS/cm) - - - - - - 0.94 (1.17) - - 0.85 (0.77) -
Na (g/kg) - - - - - - 0.85 *2 (0.03) 0.61 (0.05) 0.80 (0.04) 0.95 (0.03) -
OM/TC/susp C
(g/kg) 0.93 (23.8) - - - - - susp C 0.98

(1.56) - - susp C 0.99 (0.7) TC 0.91 (23.4)

TN/TDN (g/kg) - 0.94 (0.50) 0.81 (0.27) 0.97 (0.16) 0.74 (6.77) 0.75 (8.94) TDN 0.95 (0.20) - - TDN 0.94 (0.12) 0.74 (1.2)
NH4-N (g/kg) - 0.95 (0.21) 0.91 (0.08) 0.98 (0.12) 0.81 (3.87) 0.92 (3.50) 0.95 (0.24) - - 0.97 (0.07) -
P/TDP (g/kg) - - - - - - 0.98 *2 (0.21) 0.85 (0.57) 0.94 (0.35) TDP 0.99 (0.06) 0.61 (0.70)
K (g/kg) - - - - - - 0.92*2 (0.16) 0.62 (0.32) 0.75 (0.24) 0.87 (0.06) 0.83 (2.9)
Mg (g/kg) - - - - - - 0.98 *2 (0.10) 0.86 (0.27) 0.96 (0.14) 0.98 (0.03) -
Ca (g/kg) - - - - - - 0.97 *2 (0.21) 0.74 (0.63) 0.90 (0.35) 0.80 (0.03) -
S (g/kg) - - - - - - 0.95 *2 (0.01) 0.84 (0.02) 0.84 (0.02) - 0.73 (0.44)

Mn (g/kg) - - - - - - 0.96 *2 (0.01) 0.78 (0.01) 0.88 (0.01) - -
Fe (g/kg) - - - - - - 0.96 *2 (0.03) 0.77 (0.06) 0.97 (0.02) - -
Cu (g/kg) - - - - - - 0.99 *2 (0.01) 0.92 (0.01) 0.95 (0.01) - -
Zn (g/kg) - - - - - - 0.98 *2 (0.02) 0.79 (0.06) 0.93 (0.001) - -

Best values for each parameter are highlighted in bold letters, dried samples in red, digestate samples in green, MIR technique in blue, and SEP values in underlined letters. Scan mode:
R = reflectance, T = transflectance, ATR = attenuated total reflection, PA = photoacoustic; Parameters: DM = dry matter, EC = electrical conductivity, OM = organic matter, TC = total carbon,
susp C = suspended carbon, TN= total nitrogen, TDN = total dissolved nitrogen, TP = total phosphorus, TDP= total dissolved phosphorus; R2 = coefficient of determination, RMSEP = root
mean squared error of prediction, SEP = standard error of prediction. *2 Not published in Malley et al. (2001a) [28], but later in Malley et al. (2001c) [30]. *3 DM calculated from parameter
moisture (m) by DM = 1 −m.



Agronomy 2022, 12, 514 11 of 21

Table 3. Summary of published data for predicting parameters in liquid organic manures based on optical spectroscopy. Additionally, publications about solid
organic manures such as solid poultry manure or dairy faeces are included.

Reference Millmier et al.
2000 [15]

Millmier et al.
2000 [15]

Millmier et al.
2000 [15]

Mouazen et al.
2005 [23]

Reeves & Van
Kessel, 2000a

[56]

Reeves & Van
Kessel, 2000b

[65]

Reeves 2001a
[16]

Reeves 2001a
[16]

Reeves 2001b
[17]

Saeys et al.
2004 [24]

Saeys et al.
2005a [11]

Liquid
organic
manure

pig pig, lagoon
effluent cattle hog dairy dairy dried poultry dried poultry poultry hog pig

No. samples
(% for
validation)

174 (-) 100 (-) 100 (-) 195 (-) 107 (-) 107 (-) 124 (-) 124 (-) 207 (-) 169 (-) 584 (28%)

Scan mode
(material) R (PE-bag) R (PE-bag) R (PE-bag) R R (PE-bag) R (optic fibre

glass) R R R (PE-bag) R (quartz
glass)

R (quartz
glass)

Range (nm) 400–2498 400–2498 400–2498 300–1700 400–2498 400–2300 400–2498 2500–25,000
(MIR)

400–2498 or
1100–2498 400–1700 306–1710

R2 (RMSEP or SEP) of

DM (%) 0.85 (1.58) 0.90 (0.08) 0.91 (3.61) 0.91 (1.24) 0.95 (1.02) 0.96 (0.91) - - 0.85 (11.3) *5 0.58 (2.52) 0.91 (1.20)
pH - - - - - - - - - 0.40 (0.18) -
Na (g/kg) - - - 0.52 (0.49) - - - - - 0.40 (0.29) -
OM/TC (g/kg) - - - 0.89 (9.73) TC 0.95 (4.00) TC 0.94 (4.50) - - - 0.57 (18.25) 0.90 (9.29)

TN (g/kg) 0.81 (27.7) *4 0.69 (33.6) *4 0.67 (2.1) *4 0.89 (1.22) 0.96 (0.30) 0.94 (0.33) - - 0.89 (3.43) *4 0.75 (1.53) 0.86 (1.23)
NH4-N (g/kg) 0.63 (27.6) *4 0.62 (38.1) *4 0.95 (0.2) *4 0.78 (1.21) 0.97 (0.13) 0.93 (0.17) - - 0.78 (1.05) *4 0.69 (1.24) 0.76 (1.13)
P (g/kg) 0.47 (5.1) *4 0.61 (4.4) *4 0.58 (1.3) *4 0.85 (0.90) - - 0.69 (5.31) *4 0.82 (3.98) *4 0.62 (4.77) *4 0.59 (0.54) 0.75 (1.12)
K (g/kg) 0.79 (20.3) *4 0.71 (22.3) *4 0.82 (1.7) *4 0.84 (0.98) - - 0.66 (3.21) *4 0.59 (3.55) *4 0.63 (3.23) *4 0.73 (0.81) 0.69 (1.15)
Mg (g/kg) - - - 0.87 (0.41) - - 0.72 (1.31) *4 0.69 (1.40) *4 0.46 (1.36) *4 0.61 (0.35) 0.80 (0.50)
Ca (g/kg) - - - 0.76 (1.37) - - 0.96 (6.48) *4 0.97 (6.42) *4 0.80 (8.27) *4 0.52 (0.86) 0.59 (1.49)
S (g/kg) - - - - - - 0.36 (2.58) *4 0.54 (2.27) *4 0.59 (1.87) *4 - 0.36 (0.26)
Mn (g/kg) - - - - - - 0.59 (0.07) *4 0.63 (0.06) *4 0.57 (0.06) *4 - -
Fe (g/kg) - - - - - - - - - - -
Cu (g/kg) - - - - - 0.57 (0.21) *4 0.66 (0.13) *4 0.52 (0.12) *4 - -
Zn (g/kg) - - - - - - 0.56 (0.10) *4 0.12 (0.15) *4 0.50 (0.09) *4 - -

Best values for each parameter are highlighted in bold letters, dried samples in red, MIR technique in blue, and SEP values in underlined letters. Scan mode: R = reflectance; Parameters:
DM = dry matter, EC = electrical conductivity, OM = organic matter, TC = total carbon, TN= total nitrogen; R2 = coefficient of determination, RMSEP = root mean squared error of
prediction, SEP = standard error of prediction. *4 On DM basis. *5 DM calculated from parameter moisture (m) by DM = 1 −m.
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Table 4. Summary of published data for predicting parameters in liquid organic manures based on optical spectroscopy. Additionally, publications about solid
organic manures such as solid poultry manure or dairy faeces are included.

Reference Saeys et al.
2005b [18]

Saeys et al.
2005b [18]

Saeys et al.
2019 [37]

Sakirkin et al.
2011 [57]

Sørensen et al.
2005 [66]

Sørensen et al.
2007 [19]

Tamburini et al.
2015 [26]

Tauber et al.
2007 [35]

Wenzl et al.
2007 [36]

Williams et al.
2020 [67]

Liquid organic
manure hog hog pig solid cattle pig, cattle pig, cattle poultry digestate pig, cattle hog

No. samples (%
for validation) 194 (-) 194 (-)

(a) 264 (17%)
(b) 195 (36%)

(c) 61 (0%)
216 (-) 130 (-) 342 (25%) 139 (22%) 60 (-) 70 (-) 304 for

validation

Scan mode
(material) R (quartz glass) T (1 mm)

(quartz glass)
R (on-line,

sapphire-glass) R (PE-bag) R (PE-bag) R (PE-bag) R (petri dish) R (nanobag) R (nanobag) R (on-line)

Range (nm) 400–2498 400–2498 950–1650 350–2500 400–2498 400–2498 1000–2500 400–2498 - 900–1700

R2 (RMSEP or SEP) of

DM (%) 0.75 (2.12) 0.86 (1.55) (c) 0.76 (11.07) 0.95 (1.5) 0.97 (-) 0.97 (0.61) 0.95 (2.72) 0.88 (-) - 0.96 (0.24)
pH 0.03 (0.25) 0.12 (0.26) - - - - - - - -
EC (mS/cm) - - - - - - - - - -
Na (g/kg) 0.49 (0.50) 0.57 (0.46) - - - 0.41 (0.18) - - - -
OM/TC/ash
(g/kg) 0.73 (15.22) 0.85 (11.45) - ash 0.90 (25.0) TC 0.93 (-) TC 0.94 (3.1) - - ash 0.92 (-) -

TN (g/kg) 0.89 (1.22) 0.92 (1.05) (a) 0.75 (0.71) - 0.95 (-) 0.94 (0.43) 0.82 (2.1) 0.90 (0.31) 0.99 (-) 0.95 (0.09)
NH4-N (g/kg) 0.77 (1.22) 0.76 (1.24) - - 0.92 (-) 0.92 (0.37) - 0.94 (0.17) 0.42 (-) -
P (g/kg) 0.67 (1.37) 0.81 (1.02) (a) 0.73 (0.59) - - 0.88 (0.16) - 0.69 (-) 0.68 (-) 0.90 (0.03)
K (g/kg) 0.84 (0.98) 0.83 (1.02) (b) 0.50 (0.49) - - 0.55 (0.64) - 0.89 (-) 0.50 (-) 0.94 (0.03)
Mg (g/kg) 0.74 (0.57) 0.83 (0.46) - - - 0.82 (0.14) - 0.86 (-) 0.35 (-) -
Ca (g/kg) 0.58 (1.83) 0.70 (1.55) - - - 0.73 (0.26) - 0.76 (-) 0.37 (-) -
S (g/kg) 0.542 (0.23) - - - - 0.82 (0.10) - - - -

Mn (g/kg) - - - - - - - - - -
Fe (g/kg) - - - - - - - - - -
Cu (g/kg) - - - - - 0.81 (0.005) - - - -
Zn (g/kg) - - - - - 0.50 (0.02) - - - -

Best values for each parameter are highlighted in bold letters, dried samples in red, digestate samples in green, on-line technique in orange, and SEP values in underlined letters. Scan
mode: R = reflectance, T = transflectance; Parameters: DM = dry matter, EC = electrical conductivity, OM = organic matter, TC = total carbon, TN= total nitrogen, TDN = total dissolved
nitrogen; R2 = coefficient of determination, RMSEP = root mean squared error of prediction, SEP = standard error of prediction.
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Table 5. Summary of published data for predicting parameters in liquid organic manures based on optical spectroscopy. Additionally, publications about solid
organic manures such as solid poultry manure or dairy faeces are included.

Reference Xing et al. 2008
[68]

Yang et al. 2006
[32]

Ye et al. 2005
[20]

Ye et al. 2005
[20]

Ye et al. 2005
[20]

Ye et al. 2005
[20]

Ye et al. 2005
[20]

Ye et al. 2005
[20]

Zimmermann
et al. 2008 [69]

Zimmermann
and Hartung

2009 [70]

Liquid organic
manure layer poultry fattening pig layer poultry poultry, broiler

litter beef cattle swine solid
hoop

swine liquid
lagoon swine slurry not specified DM: cattle, K:

mix, other: pig

No. samples (%
for validation) 91 (-) 108 (33%) 111 (-) 95 (-) 72 (-) 39 (-) 88 (-) 85 (-) 28 (-)

for DM: 61 (-),
for K: 149 (-), for

others: 49 (-)

Scan mode
(material) R (quartz-cup) R (PE-bag) R (PE-bag) R (PE-bag) R (PE-bag) R (PE-bag) R (PE-bag) R (PE-bag) R (on-line,

sapphire-glass)
R (on-line,

(sapphire-glass)

Range (nm) 1000–2500 833–2500 1100–2498 1100–2498 1100–2498 1100–2498 1100–2498 1100–2498 850–1650 850–1650

R2 (RMSEP or SEP) of

DM (%) 0.86 (1.95) 0.79 *6 (1.75) 0.97 (2.28) 0.91 (1.45) 0.90 (2.98) 0.91 (2.39) 0.92 (0.07) 0.92 (0.68) 0.98 (0.27) 0.95 (0.54)
pH 0.55 (0.15) 0.50 *6 (0.25) - - - - - - - -
EC (mS/cm) - - - - - - - - - -
Na (g/kg) 0.62 (0.19) - 0.71 (0.56) 0.63 (0.5) 0.90 (0.3) 0.80 (0.3) 0.80 (0.3) 0.88 (0.03) - -
OM (g/kg) 0.89 (6.17) 0.81 *6 (14.2) - - - - - - - -
TN (g/kg) 0.88 (1.13) 0.56 *6 (1.44) 0.92 (2.3) 0.80 (1.3) 0.88 (1.1) 0.87 (0.7) 0.83 (1.2) 0.91 (0.21) 0.96 (0.25) 0.96 (0.29)
NH4-N (g/kg) 0.88 (0.86) 0.84 *6 (0.40) 0.91 (0.26) 0.89 (0.31) 0.89 (0.2) 0.92 (0.4) 0.88 (1.0) 0.91 (0.14) 0.98 (0.11) 0.94 (0.22)
P (g/kg) 0.80 (0.56) 0.47 *6 (0.59) 0.76 (2.4) 0.50 (1.3) 0.91 (0.7) 0.74 (1.3) 0.91 (0.2) 0.90 (0.32) 0.98 (0.03) 0.86 (0.32)
K (g/kg) 0.58 (0.85) 0.84 *6 (0.59) 0.71 (2.4) 0.68 (1.2) 0.87 (1.4) 0.90 (0.9) 0.73 (2.5) 0.87 (0.2) 0.90 (0.04) 0.86 (0.21)
Mg (g/kg) 0.60 (0.67) 0.35 *6 (0.38) - - - - - - - -
Ca (g/kg) - - 0.75 (13.2) 0.54 (2.1) 0.72 (6.6) 0.94 (2.1) 0.90 (0.2) 0.86 (0.73) - -
S (g/kg) - - 0.70 (0.58) 0.66 (0.4) 0.78 (0.4) 0.70 (0.56) 0.83 (0.1) 0.70 (0.04) - -

Mn (g/kg) - - - - - - - - - -
Fe (g/kg) - - - - - - - - - -
Cu (g/kg) 0.48 (0.003) 0.70 *6 (0.06) 0.71 (0.01) 0.62 (0.07) 0.71 (0.01) 0.82 (0.004) - 0.87 (0.05) - -
Zn (g/kg) 0.86 (1.95) 0.69 *6 (0.03) 0.81 (0.06) 0.78 (0.03) 0.66 (0.04) 0.81 (0.03) 0.79 (0.001) 0.83 (0.01) - -

Best values for each parameter are highlighted in bold letters, dried samples in red, on-line technique in orange, and SEP values in underlined letters. Scan mode: R = reflectance;
Parameters: DM = dry matter, EC = electrical conductivity, OM = organic matter, TN= total nitrogen; R2 = coefficient of determination, RMSEP = root mean squared error of prediction,
SEP = standard error of prediction. *6 Calculated from RDP by R2 = 1 − RDP−2.
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Table 6. Summary of published data displayed in Tables 1–5 describing parameters of liquid organic
manures with optical spectroscopy.

Parameter Number of
Publications Range of R2 Range of RMSEP (SEP) Reference of Best R2 (Best RMSEP or Best SEP)

DM (%) 40 0.58–0.99 0.20–11.39 (0.07–3.61) Zimmermann et al. 2008 [69] (Ye et al. 2005 [20])
pH 11 0.03–0.96 0.09–0.26 (0.07–0.29) Malley et al. 2001a [28] (Malley et al. 2001a [28])

EC (mS/cm) 4 0.11–0.94 1.41–2.55 (0.77–1.17) Malley et al. 2001a [28] (Malley et al. 2002 [14])
Na (g/kg) 16 0.40–0.95 0.04–0.50 (0.03–0.56) Malley et al. 2002 [14] (Malley et al. 2002 [14])

C
(g/kg)

OM 8 0.57–0.93 6.17–23.8 (n.a.) Du et al. 2010 [27] (Xing et al. 2008 [68])
TC 8 0.91–0.97 3.1–14.5 (2.90–23.4) Asai et al. 1993 [61] (Althaus et al. 2013 [13])

Susp. C 2 0.98–0.99 n.a. (0.7–1.56) Malley et al. 2002 [14] (Malley et al. 2002 [14])
ash 5 0.81–0.99 3.3–22.4 (0.10–25.0) Asai et al. 1993 [61] (Becaccia et al. 2015 [62])

N
(g/kg)

TN 45 0.48–0.98 0.16–8.94 (0.09–2.3) Wenzl et al. 2007 [36] (Williams et al. 2020 [67])
NH4-N 39 0.42–0.99 0.08–3.87 (0.07–1.0) Zimmermann et al. 2008 [69] (Malley et al. 2002 [14])

TDN 2 0.94–0.95 n.a. (0.14–0.20) Malley et al. 2001a [28] (Malley et al. 2002 [14])

P
(g/kg)

TP 38 0.47–0.99 0.025–1.37 (0.03–2.4) Zimmermann et al. 2008 [69] (Zimmermann et al. 2008 [69])
TDP 1 0.99 n.a. (0.055) Malley et al. 2002 [14] (Malley et al. 2002 [14])

K (g/kg) 35 0.19–0.95 0.04–1.4 (0.03–2.9) Williams et al. 2020 [67] (Williams et al. 2020 [67])
Mg (g/kg) 17 0.35–0.98 0.14–0.67 (0.03–0.27) Malley et al. 2002 [14] (Malley et al. 2002 [14])
Ca (g/kg) 22 0.37–0.97 0.26–6.6 (0.025–13.2) Malley et al. 2001a [28] (Malley et al. 2002 [14])
S (g/kg) 17 0.36–0.95 0.02–0.56 (0.01–0.58) Malley et al. 2001a [28] (Malley et al. 2001a [28])

Mn (g/kg) 6 0.57–0.96 0.009–0.07 (0.005–0.01) Malley et al. 2001a [28] (Malley et al. 2001c [30])
Fe (g/kg) 4 0.77–0.97 0.02–0.06 (0.025–0.6) Malley et al. 2001c [30] (Malley et al. 2001c [30])
Cu (g/kg) 15 0.48–0.99 0.003–0.055 (0.005–0.07) Malley et al. 2001a [28] (Xing et al. 2008 [68])
Zn (g/kg) 16 0.12–0.98 0.001–0.05 (0.001–0.06) Malley et al. 2001a [28] (Malley et al. 2001c [30])

DM = dry matter, EC = electrical conductivity, OM = organic matter, TC = total carbon, TOC = total organic
carbon, susp C = suspended carbon, TN = total nitrogen, TDN = total dissolved nitrogen, TP = total phosphorus,
TDP = total dissolved phosphorus; n.a.= not available.

Asai et al. [61] were probably the first to publish data using NIR spectrometry to estimate
nutrients in livestock manures. Their values indicating the quality of regressions for crude ash
(R2 = 0.99, SEP = 22.4 g/kg) and total carbon (TC) (R2 = 0.97, SEP = 14.5 g/kg) in dried cattle
manures are still the best results for these parameters gained to the present day. Twenty years
later, Althaus et al. [13] obtained a similarly good R2 of 0.96 for TC for dried dairy manures,
but with a reasonably better result for SEP of 2.90 g/kg. Du et al. [27] used a MIR spectrometer
with a photoacoustic measuring mode to obtain the best results for organic matter (OM) of
liquid manures (pig, poultry, and cattle; R2 = 0.93, RMSEP = 23.8 g/kg).

Malley et al. [14] obtained highest values in transflection mode for suspended C (R2 = 0.99,
SEP = 0.7 g/kg), total dissolved P (R2 = 0.99, SEP = 0.055 g/kg), Na (R2 = 0.95, SEP = 0.03 g/kg),
and Mg (R2 = 0.98, SEP = 0.03 g/kg). Malley et al. [28] best predicted EC with R2 = 0.94 and
SEP = 1.17 g/kg and pH with R2 = 0.96 and SEP = 0.07 g/kg. The reason why they obtained
such a good R2 for the pH value is not clear, since other studies could not confirm this high
correlation with pH (e.g., [18,24,32,33,68]). Malley et al. [30] published very good values for
several plant nutrients (i.e., for S R2 = 0.95, SEP = 0.01 g/kg; for Ca R2 = 0.97, SEP = 0.21 g/kg;
for Mn R2 = 0.96, SEP = 0.005 g/kg; for Fe R2 = 0.96, SEP = 0.025 g/kg; for Cu R2 = 0.99,
SEP = 0.005 g/kg; and for Zn R2 = 0.98, SEP = 0.02 g/kg). They also obtained a remarkable
high correlation for Na (R2 = 0.85), even though it was not correlated with any other con-
stituents. Thus, they concluded that the solved Na, which is supposed to have no optically
active properties, probably influenced the reflecting spectrum of water including its hydration
shells. Consequently, they suspected solved Na to be indirectly detected. This optophysical
mechanism has to be kept in mind also for other soluble nutrients (e.g., K+).

Best results for the main plant nutrients nitrogen and phosphorus in liquid livestock
manures were published by Zimmermann et al. [69] for TN (R2 = 0.96, RMSEP = 0.25 g/kg),
for NH4-N (R2 = 0.98, RMSEP = 0.11 g/kg), and for P (R2 = 0.98, RMSEP = 0.025 g/kg).
They also achieved the highest correlations for dry matter content (DM) with R2 = 0.98 and
RMSEP = 0.27 g/kg. They used a diode array spectrometer combined with two simultane-
ously measuring sensors, fixed on a slurry tanker behind two sapphire windows enabling
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on-line and real-time measurements during slurry application in the field. Nevertheless, based
on a larger sample set, they published lower values at the end of their study, especially for P
(R2 = 0.86; [70]; Table 5). Williams et al. [67] published best correlation values for K (R2 = 0.94,
SEP = 0.03 g/kg), using 304 samples of lagoon hog manure for the validation of their on-line
NIRS system using four equal spectrometers in a line.

The question of which parameters of the whole measurement process can be rec-
ommended to obtain the best prediction results cannot be answered easily because the
complex setups of the examined studies are not always comparable with each other. Never-
theless, it can be stated that an intensive homogenization is needed for a representative
sampling or subsampling and additionally immediately before starting the spectroscopic
measurements. To avoid the need for homogenization, drying might be an option. However,
drying is an additional time-consuming work step that even seems to impair the prediction
performance [16,22,34]. Finzi et al. [25] tested filtering as an alternative way of obtaining
homogeneous samples. Although this pretreatment step improved prediction accuracy,
their procedure might not be advisable because they only correlated the spectra of the
eluates to the lab reference eluate concentrations. Thus, the true nutrient concentrations of
the raw manures remain unknown because it can be assumed that nutrient concentrations
in raw manures are just partly correlated to those of the eluates or the filter residues.

Cabassi et al. [21] showed that under laboratory conditions benchtop spectrometers
with a wide wavelength range and a high resolution lead to better results compared to
miniaturized portable spectrometers with a lower wavelength range and resolution.

However, it is expected that in the future such low-cost spectrometers can lead to
similarly good results [71] because of technical, statistical, and procedural improvements.
Moreover, it can be summarized that the VIS region does not seem to provide much more
additional information than the NIR region, and thus VIS wavelengths might be negligible.
Comparing NIR to MIR, the MIR technique has been scarcely used to assess nutrient
concentrations in liquid organic fertilizers. Up to now, only Kemsley et al. [12], Reeves [16],
and Du et al. [27] published articles applying MIR spectrometry for the characterization
of animal manures. However, a clear preference for either NIR or MIR spectroscopy was
not shown, but the fact that MIR spectrometers are in general more expensive than NIR
instruments might be an argument to prefer NIR spectrometry.

According to Malley et al. [29] and Saeys et al. [18], the transflection measuring mode
leads to more accurate calibrations in comparison with the reflection mode. However,
the application of the transflection mode is more challenging because it requires a very
thin sample layer of 1–2 mm in front of the sensor head. The heterogeneity of liquid
organic manures with some particles larger than 2 mm and the corresponding difficulty of
achieving a homogeneous distribution of the sample in the small gap between the reflector
and the glass surface make transflection mode unsuitable, especially in the context of
on-line applications [18].

A further aspect that needs to be addressed is the material for sample vessels. The less
light is absorbed by this material, the more intensive signals with less noisy sample spectra
can be detected. For this reason, sapphire glass is superior to quartz glass whereas quartz
glass is superior to ordinary borosilicate glass. Polyethylene (PE) bags have the advantage
of not breaking like glass, and the liquid slurry inside the bags can more easily be mixed
without splashing. This is probably the reason why PE bags had been utilized in many of
the presented studies. However, PE bags are not useful for continual measurements, which
are needed for on-line applications. There, sapphire glass is the best option.

At least one of the classical preprocessing methods such as SG1, SG2, SNV, and MSC
or combinations of them were utilized in almost all the presented studies. Although no
preprocessing stood out with better results, it was shown that using at least one prepro-
cessing method generally improved prediction performance (e.g., [32]). Furthermore, more
sophisticated preprocessing methods such as DOSC may, in some cases, be superior to
other preprocessing methods, as was shown by Chen et al. [45] for predicting N, P, and K
by poultry manure spectra.
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Regarding the best suitable regression model, PLSR seems to be the favorite one, as this
algorithm was used by most of the researchers. However, from the present state of research, it
cannot be assessed if more sophisticated machine learning methods such as LASSO, random
forest, or ANNs are superior to PLSR because there are almost no data available in that context.
Only Chen et al. [51] compared ANNs with PLSR using spectra of poultry manures and found
an overall improvement for TN, NH4-N, P, and K by using ANNs.

The question of if it is better to use separate calibration models for pig, cattle, digestate,
mixed manure, etc., or if it makes more sense to use a global calibration model for all types
of manure and digestate cannot be answered based on the presented studies. However,
it is supposed to use an adapted model for each manure type, as they have their own
characteristics despite their great similarities.

Saeys et al. [37], Williams et al. [67], Zimmermann et al. [69], and Zimmermann and
Hartung [70] demonstrated that it is possible to transfer NIR spectrometry from laboratory
to on-line applications using NIR spectrometers mounted on slurry tankers. In particular,
the published calibration R2s of Zimmermann and Hartung [70] in the range of 0.86 to 0.96
and the validation R2s of Williams et al. [67] in the range of 0.90 to 0.96 for the parameters N,
P, K, and DM are very promising for on-line applications at farm level. When such on-farm
NIR systems are used for measuring nutrient concentrations in liquid organic manures,
a changing ambient temperature might influence the reliability of the data. However,
Finzi et al. [25] came to the conclusion that temperatures varying between 10 and 35 ◦C
have no significant impact on the results. However, the effect of colder temperatures
between 0 and 10 ◦C has not been examined.

4. Applications in Laboratory and Field Practice

In recent years, there has been intensive progress in commercializing and formalizing
the NIR technique for determining nutrient concentrations and physicochemical parameters
in livestock manures and biogas digestates.

The commercial lab Eurofins Agro (Wageningen, the Netherlands) offers NIR measure-
ments as an alternative to wet chemical standard methods for the analysis of manures and
biosolids. Besides TN, NH4-N, P, and K, Mg and S are also determined using NIR spectrometry.

In cooperation with LFZ Raumberg-Gumpenstein (Irdning, Austria), IPUS Mineral-
& Umwelttechnologie GmbH (Rottenmann, Austria) developed a laboratory service for
liquid organic manure analysis focusing on DM, ash, pH, TN, NH4-N, P, K, Ca, and Mg,
as well as urea and volatile fatty acids. As sample containers, they are using so-called
Nanobags [35,36], which are filled with a strongly absorbing carrier material based on
zeolites. Their VIS-NIR measurements are cheaper and faster in comparison to wet chemical
standard analysis.

Carl Zeiss AG (Oberkochen, Germany) sells the NIR spectrometer “Corona extreme”
to measure several parameters in various agricultural products, including manure. This
device is also supposed to be installable on agricultural vehicles (e.g., slurry tankers) for on-
line measurements of TN, NH4-N, P, and K. In cooperation with Carl Zeiss AG, the globally
acting agricultural company John Deere (Moline, IL, USA) developed the measurement
system HarvestLabTM (John Deere, Moline, IL, USA) for NIR on-line and on-site analysis
of agricultural products (e.g., maize silage, liquid organic manures). With the support of
the Belgian company Joskin SA (Soumagne, Belgium), this device was mounted to the
flow path of slurry tankers to enable real-time analysis of DM, TN, NH4-N, P, and K in
liquid organic manures during field application. For this method, the German subsidiary
company John Deere GmbH & Co. KG (Walldorf, Germany) received a certification seal by
the German Agricultural Society (DLG) (Frankfurt am Main, Germany) for TS, TN, NH4-N,
P, and K in cattle manures, pig manures, and digestates (Table 7). The certificate assures
that at least 60% of the measured samples differ less than 25% and no sample differs more
than 35% from the reference lab value [72]. The cooperating German companies m-u-t
GmbH (Wedel, Germany) and Zunhammer GmbH (Traunreut, Germany) also received
a certification by the DLG for their on-line and real-time NIRS system to determine TS,
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TN, NH4-N, P, and K in cattle manures, pig manures, and digestates. This system was
also the first NIRS system that was certified by DLG for analysing mixed pig and cattle
manures. This NIRS system is also utilized by the companies Kotte Landtechnik GmbH
(Rieste, Germany), Kamps de Wild and Kaweco (Winkelskamp, the Netherlands), Veenhuis
Machines (Rijssen, the Netherlands), and Topcon Agriculture (Madrid, Spain); however,
each company received its own certificate (Table 7). In addition, the Italian Dinamica
Generale S.p.A.( Poggio Rusco, Italy) received a certificate for their on-line system to
analyse TN in liquid pig manure [73]. A German start-up company (TENIRS GmbH, Kiel,
Germany) tried to commercialize on-line NIR analyses of nutrients in liquid manures and
biogas substrates. However, their innovative technique using a special flow-through cell
in bypass mode [74] could not establish on the market. The company was later bought by
m-u-t GmbH.

The next step for an established on-field application is to embed the NIRS technology
for liquid organic manures in the law. Presently, this technology is officially approved in the
Netherlands as well as 3 out of 16 German federal states, although a quality assurance sys-
tem is still missing to guarantee sufficient accuracy over time. However, the developments
of such quality management standards are in progress [75].

Table 7. Commercial NIR sensors, certified by the German DLG.

Sensor and Company
No. of DLG
Certificate

Liquid Organic
Manure

Parameter/DLG—Results

DM TN NH4-N P2O5 K2O

«HarvestLab 3000»
John Deere GmbH,

global
6811 + 6814 cattle + ++ ++ 0 +

6886 pig + 0 − 0 −
6809 + 6887 digestate 0 + 0 − 0

«EVO NIR online Analyser»
Dinamica Generale S.P.A.,

Italy
7139 cattle 0 + - 0 -

7057 pig − 0 − − −

«NIR speedspy on board»
m-u-t GmbH,

Germany
6796 + 7122 cattle + 0 + 0 ++

6796 + 7122 pig ++ 0 0 0 0
6796 + 7122 digestate + + + 0 0

7122 mix of pig and cattle 0 ++ − 0 +
The m-u-t sensor is also used in devices of Kaweco, Kotte, Topcon, Veenhuis, Zunhammer, and more:

«Kaweco NIR Sensor»
Kamps de Wild B.V.,

the Netherlands
6867 same as m-u-t same as m-u-t

«NutrientContent Lab (NCL) 2.0»
Kotte Landtechnik GmbH,

Gemany
7087 same as m-u-t same as m-u-t

«LMS 20-NIR Sensor»
Topcon Agriculture,

Spain
7141 same as m-u-t same as m-u-t

«Nutriflow 3.0»
Veenhuis Maschines BV,

the Netherlands
6981 same as m-u-t same as m-u-t

«Van-Control 2.0»
Zunhammer GmbH,

Germany
6801 same as m-u-t same as m-u-t

++: 4/5 of the tested sample concentrations differ less than 10% and no sample concentration more than 20%
from the reference; +: 4/5 of the tested sample concentrations differ less than 15% and no sample concentration
more than 25% from the reference; 0: 3/5 of the tested sample concentrations differ less than 25% and no sample
concentration more than 35% from the reference; −: not passed or not tested.
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5. Conclusions

This literature survey on using optical spectroscopy to analyse physicochemical param-
eters and macro- and micronutrient concentrations in liquid organic manures (for reviewing
information about further organic fertilizers such as composts, the reader is referred to [76])
reveals a great potential for NIRS to be established as an alternative measurement method,
be it for manure application or manure selling purposes. Best prediction models could at
least achieve a determination coefficient of 0.93 for each mentioned parameter. However,
it has to be kept in mind that almost all presented papers focused on laboratory setups.
The assumption that dynamic on-line measurements at the farm level can continue this
successful progress in characterizing liquid organic manures (e.g., during the filling opera-
tion of slurry tankers or during field application) could be confirmed by a few studies and
rather new developments of some agricultural companies. They now offer such systems
for on-line measurements and site-specific manure applications and give this technology
the possibility to manifest in agribusiness.

However, despite the obvious progress in optical spectroscopy over the last 20 years,
there is still potential to optimize this method to (1) improve predictions by sophisticated
chemometric methods, e.g., machine learning algorithms; (2) assure sufficient accuracy
by good quality management with regularly recurring calibrations; and (3) reduce costs,
e.g., by using cheaper spectrometers. All these aspects are important to establish optical
spectroscopy (mainly NIRS) as an alternative technology permitted by law to analyse liquid
organic manures with the final aim of precisely applying these fertilizers for optimizing
agricultural yield and reducing environmental pollution.

Author Contributions: Conceptualization, M.H., R.G. and H.-W.O.; formal analysis, M.H.; investi-
gation, M.H.; data curation, M.H.; writing—original draft preparation, M.H.; writing—review and
editing, S.V., H.D. and H.-W.O.; visualization, M.H.; supervision, R.G. and S.V.; project administration,
R.G., S.V. and H.-W.O.; funding acquisition, R.G., S.V. and H.-W.O. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the German Federal Environmental Foundation (Deutsche
Bundesstiftung Umwelt—DBU), grant No. AZ 33702.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, H.; Dao, T.; Basta, N.; Dayton, E.; Daniel, T. Remediation techniques for manure nutrient loaded soils. In Animal Agriculture

and the Environment—National Center for Manure & Animal Waste Management White Paper; American Society of Agricultural and
Biological Engineers (ASABE): St. Joseph, MI, USA, 2006.

2. Lin, Y.; Ye, G.; Kuzyakov, Y.; Liu, D.; Fan, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation,
and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019, 134, 187–196. [CrossRef]

3. Withers, P.J.A.; Haygarth, P.M. Agriculture, phosphorus and eutrophication: A European perspective. Soil Use Manag. 2007, 23, 1–4.
[CrossRef]

4. Zhu, J.; Ndegwa, P.M.; Zhang, Z. Manure sampling procedures and nutrient estimation by the hydrometer method for gestation
pigs. Bioresour. Technol. 2004, 92, 243–250. [CrossRef] [PubMed]

5. Saeys, W. Technical Tools for the Optimal Use of Animal Manure as a Fertiliser: On-Line Composition Measurement and Manure
Injection Control. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2006.

6. Rubenschuh, U.; Volz, F. Nährstoffgehalte in Gülle Online Mit Sensoren Bestimmen; DLG kompakt, No. 8; DLG e.V: Frankfurt am
Main, Germany, 2019.

7. Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007.
8. Schmidt, W. Optical Spectroscopy in Chemistry and Life Sciences; Wiley-VCH: Weinheim, Germany, 2005; ISBN 3-527-29911-4.
9. Suzuki, T.; Nakagawa, T.; Ohkubo, K.; Fukuzumi, S.; Matsuo, Y. Electronic infrared light absorption of a tri-palladium complex

containing two π-expanded tetracene ligands. Chem. Sci. 2014, 5, 4888–4894. [CrossRef]
10. Shenk, J.S.; Workman, J.J.; Westerhaus, M.O. Application of NIR spectroscopy to agricultural products. In Handbook of Near-Infrared

Analysis, 3rd ed.; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 347–383. ISBN 978-0-4291-2301-6.
11. Saeys, W.; Mouazen, A.M.; Ramon, H. Potential for onsite and online analysis of pig manure using visible and near infrared

reflectance spectroscopy. Biosyst. Eng. 2005, 91, 393–402. [CrossRef]

http://doi.org/10.1016/j.soilbio.2019.03.030
http://doi.org/10.1111/j.1475-2743.2007.00116.x
http://doi.org/10.1016/j.biortech.2003.09.010
http://www.ncbi.nlm.nih.gov/pubmed/14766157
http://doi.org/10.1039/C4SC02018A
http://doi.org/10.1016/j.biosystemseng.2005.05.001


Agronomy 2022, 12, 514 19 of 21

12. Kemsley, E.K.; Tapp, H.S.; Scarlett, A.J.; Miles, S.J.; Hammond, R.; Wilson, R.H. Comparison of spectroscopic techniques for
the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure. J. Agric. Food Chem. 2001, 49, 603–609.
[CrossRef]

13. Althaus, B.; Papke, G.; Sundrum, A. Technical note: Use of near infrared reflectance spectroscopy to assess nitrogen and carbon
fractions in dairy cow feces. Anim. Feed Sci. Technol. 2013, 185, 53–59. [CrossRef]

14. Malley, D.F.; Yesmin, L.; Eilers, R.G. Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy.
Soil Sci. Soc. Am. J. 2002, 66, 1677. [CrossRef]

15. Millmier, A.; Lorimor, J.; Hurburgh, C., Jr.; Fulhage, C.; Hattey, J.; Zhang, H. Near-infrared sensing of manure nutrients. Trans.
Am. Soc. Agric. Biol. Eng. (ASAE) 2000, 43, 903–908. [CrossRef]

16. Reeves, J.B. Near- versus mid-infrared diffuse reflectance spectroscopy for determination of minerals in dried poultry manure.
Poult. Sci. 2001, 80, 1437–1443. [CrossRef]

17. Reeves, J.B. Near-infrared diffuse reflectance spectroscopy for the analysis of poultry manures. J. Agric. Food Chem. 2001, 49, 2193–2197.
[CrossRef] [PubMed]

18. Saeys, W.; Xing, J.; de Baerdemaeker, J.; Ramon, H. Comparison of transflectance and reflectance to analyse hog manures. J. Near
Infrared Spectrosc. 2005, 13, 99–107. [CrossRef]

19. Sørensen, L.K.; Sørensen, P.; Birkmose, T.S. Application of reflectance near infrared spectroscopy for animal slurry analyses. Soil
Sci. Soc. Am. J. 2007, 71, 1398. [CrossRef]

20. Ye, W.; Lorimor, J.C.; Hurburgh, C.; Zhang, H.; Hattey, J. Application of near-infrared reflectance spectroscopy for determination
of nutrient contents in liquid and solid manures. Trans. Am. Soc. Agric. Biol. Eng. (ASAE) 2005, 48, 1911–1918. [CrossRef]

21. Cabassi, G.; Cavalli, D.; Fuccella, R.; Marino Gallina, P. Evaluation of four NIR spectrometers in the analysis of cattle slurry.
Biosyst. Eng. 2015, 133, 1–13. [CrossRef]

22. Malley, D.F.; McClure, C.; Martin, P.D.; Buckley, K.; McCaughey, W.P. Compositional analysis of cattle manure during composting
using a field-portable near-infrared spectrometer. Commun. Soil Sci. Plant Anal. 2005, 36, 455–475. [CrossRef]

23. Mouazen, A.M.; Saeys, W.; Xing, J.; de Baerdemaeker, J.; Ramon, H. Near infrared spectroscopy for agricultural materials: An
instrument comparison. J. Near Infrared Spectrosc. 2005, 13, 87–97. [CrossRef]

24. Saeys, W.; Darius, P.; Ramon, H. Potential for on-site analysis of hog manure using a visual and near infrared diode array
reflectance spectrometer. J. Near Infrared Spectrosc. 2004, 12, 299–309. [CrossRef]

25. Finzi, A.; Oberti, R.; Negri, A.S.; Perazzolo, F.; Cocolo, G.; Tambone, F.; Cabassi, G.; Provolo, G. Effects of measurement technique
and sample preparation on NIR spectroscopy analysis of livestock slurry and digestates. Biosyst. Eng. 2015, 134, 42–54. [CrossRef]

26. Tamburini, E.; Castaldelli, G.; Ferrari, G.; Marchetti, M.G.; Pedrini, P.; Aschonitis, V.G. Onsite and online FT-NIR spectroscopy for
the estimation of total nitrogen and moisture content in poultry manure. Environ. Technol. 2015, 36, 2285–2294. [CrossRef]

27. Du, C.; Zhou, G.; Jianmin, Z.; Huoyan, W.; Xiaoqin, C.; Yuanhua, D.; Hui, W. Characterization of animal manures using
mid-infrared photoacoustic spectroscopy. Bioresour. Technol. 2010, 101, 6273–6277. [CrossRef]

28. Malley, D.; Martin, P.; Woods, S.E. Analysis of Nutrients in Hog Manure by Field-Portable Near-Infrared Spectroscopy: Development
of a Mobile Laboratory and Results for Foss NIR Systems Inc. Model 6500 Spectrophotometer in the Laboratory: Final Report 1 of 3 to
CETAC-West on Manure Demo Project; PDK Projects, Inc.: Nanaimo, BC, Canada, 2001.

29. Malley, D.; Martin, P.; Moffatt, T. Analysis of Minor Elements and Metals in Hog Manure by Field-Portable NIR Spectroscopy: Results
for the Textron-Case NH Pro Spectra-Spectrometer: Final Report 2 of 3 to Manitoba Livestock Manure Management Initiative on Project
00-02-03; PDK Projects, Inc.: Nanaimo, BC, Canada, 2001.

30. Malley, D.; Martin, P.; Dettman, L. Analysis of Minor Elements and Metals in Hog Manure by Field-Portable Near-Infrared Spectroscopy:
Results for the Zeiss Corona®Spectrometer: Final Report 3 of 3 to Manitoba Livestock Manure Management Initiative on Project 00-02-03;
PDK Projects, Inc.: Nanaimo, BC, Canada, 2001.

31. Bries, J.; Vanongeval, L.; Goppens, G. Variaties in Samenstelling van Dierlijke Mest: Beïnvloedende Factoren en te nemen Voorzoren voor
Verantwoord Gebruik Als Meststof ; KVIV Studiedag Mestproblematiek: Antwerp, Belgium, 1997.

32. Yang, Z.; Han, L.; Fan, X. Rapidly Estimating Nutrient Contents of Fattening Pig Manure from Floor Scrapings by near Infrared
Reflectance Spectroscopy. J. Near Infrared Spectrosc. 2006, 14, 261–268. [CrossRef]

33. De Ferrari, G.; Gallina, P.M.; Cabassi, G.; Bechini, L.; Maggiore, T. Near infrared spectral analysis of cattle slurries from Lombardy
(Northern Italy) breeding farms NIR. In NIR 2005- NIR in Action. Making a Difference. Near Infrared Spectroscopy Proceedings of the
12th International Conference, Auckland, New Zealand, 9–15 April 2005; NZNIRSS—The New Zealand Near Infrared Spectroscopy
Society: Auckland, New Zealand, 2005.

34. Dong, Y.; Chen, Y.; Zhu, D.; Li, Y.; Xu, C.; Bai, W.; Wang, Y.; Li, Q. The determination of total N, total P, Cu and Zn in chicken
manure using near infrared reflectance spectroscopy. In Computer and Computing Technologies in Agriculture IV.; Li, D., Liu, Y.,
Chen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 92–98. ISBN 978-3-642-18353-9.

35. Tauber, M.; Wenzl, W.; Somitsch, W. NIRS-Nanobag Methode als Schnellanalytik von Gärgut für die Begleitende Prozesskontrolle
von Landwirtschaftlichen Biogasanlagen. In Gute Herstellungspraxis für Pflanzliche Produkte; ALVA Tagungsbericht: Wien, Austria,
2007; pp. 30–32.

36. Wenzl, W.; Steiner, B.; Haberl, L. Feldstudie zur NIRS-Gülleanalyse und Vergleich der Nährstoffbilanzen mit Tabellenwerten. In
Gute Herstellungspraxis für Pflanzliche Produkte; ALVA Tagungsbericht: Wien, Austria, 2007; pp. 33–34.

http://doi.org/10.1021/jf001060r
http://doi.org/10.1016/j.anifeedsci.2013.07.003
http://doi.org/10.2136/sssaj2002.1677
http://doi.org/10.13031/2013.2986
http://doi.org/10.1093/ps/80.10.1437
http://doi.org/10.1021/jf0013961
http://www.ncbi.nlm.nih.gov/pubmed/11368576
http://doi.org/10.1255/jnirs.462
http://doi.org/10.2136/sssaj2006.330
http://doi.org/10.13031/2013.20000
http://doi.org/10.1016/j.biosystemseng.2015.02.011
http://doi.org/10.1081/CSS-200043187
http://doi.org/10.1255/jnirs.461
http://doi.org/10.1255/jnirs.438
http://doi.org/10.1016/j.biosystemseng.2015.03.015
http://doi.org/10.1080/09593330.2015.1026287
http://doi.org/10.1016/j.biortech.2010.03.010
http://doi.org/10.1255/jnirs.643


Agronomy 2022, 12, 514 20 of 21

37. Saeys, W.; Watté, R.; Postelmans, A. Role of NIR Spectroscopy in Precision Fertilisation with Manure; International Fertilizer Society:
Colchester, UK, 2019; pp. 1–21.

38. Arnold, M.A.; Small, G.W. Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier
transform near-infrared spectra. Anal. Chem. 1990, 62, 1457–1464. [CrossRef]

39. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639.
[CrossRef]

40. Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance
spectra. Appl. Spectrosc. 1989, 43, 772–777. [CrossRef]

41. Martens, H.; Jensen, S.A.; Geladi, P. Martens; Harald; Jensen, S.A.; Geladi, P. Multivariate linearity transformation for near-infrared
reflectance spectrometry. In Proceedings of the Nordic Symposium on Applied Statistics, Stavanger, Norway, 12–14 June 1983.

42. Martens, H.; Stark, E. Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods
for near infrared spectroscopy. J. Pharm. Biomed. Anal. 1991, 9, 625–635. [CrossRef]

43. Wold, S.; Antti, H.; Lindgren, F.; Öhman, J. Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst. 1998,
44, 175–185. [CrossRef]

44. Westerhuis, J.A.; de Jong, S.; Smilde, A.K. Direct orthogonal signal correction. Chemom. Intell. Lab. Syst. 2001, 56, 13–25. [CrossRef]
45. Chen, L.J.; Xing, L.; Han, L.J. Influence of data preprocessing on the quantitative determination of nutrient content in poultry

manure by near infrared spectroscopy. J. Environ. Qual. 2010, 39, 1841. [CrossRef]
46. Wold, H. Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach. J. Appl. Probab.

1975, 12, 117–142. [CrossRef]
47. Mevik, B.-H.; Wehrens, R. The pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 2007, 18, 1–23.

[CrossRef]
48. Sternberg, J.C.; Stillo, H.S.; Schwendeman, R.H. Spectrophotometric analysis of multicomponent systems using least squares

method in matrix form. Ergosterol irradiation system. Anal. Chem. 1960, 32, 84–90. [CrossRef]
49. Dagnew, M.; Crowe, T.; Schoenau, J. Measurement of nutrients in Saskatchewan hog manures using near-infrared spectroscopy.

Can. Biosyst. Eng. 2004, 46, 33–37.
50. Malley, D.F.; Currie, R.S. Feasibility Study on the Rapid Analysis of Available N and P in Hog Manure and Manure-Amended Soils by

Near-Infrared Spectroscopy: Report; PDK Projects, Inc.: Nanaimo, BC, Canada, 1999.
51. Chen, L.J.; Xing, L.; Han, L.J. Quantitative determination of nutrient content in poultry manure by near infrared spectroscopy

based on artificial neural networks. Poult. Sci. 2009, 88, 2496–2503. [CrossRef] [PubMed]
52. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Society. Ser. B 1996, 58, 267–288. [CrossRef]
53. Hoerl, A.E.; Kennard, R.W. Ridge regression: Applications to nonorthogonal problems. Technometrics 1970, 12, 69–82. [CrossRef]
54. Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann. Stat. 2004, 32, 407–499. [CrossRef]
55. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
56. Reeves, J.B.; van Kessel, J.S. Near-infrared spectroscopic determination of carbon, total nitrogen, and ammonium-N in dairy

manures. J. Dairy Sci. 2000, 83, 1829–1836. [CrossRef]
57. Sakirkin, S.L.P.; Morgan, C.L.S.; MacDonald, J.C.; Auvermann, B.W. Effect of diet composition on the determination of ash

and moisture content in solid cattle manure using visible and near-infrared spectroscopy. Appl. Spectrosc. 2011, 65, 1056–1061.
[CrossRef]

58. Williams, P.C. Interpretation of statistical evaluation of NIR analysis. In Near-Infrared Technology in the Agriculture and Food
Industries; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1987; pp. 146–148. [CrossRef]

59. Minasny, B.; McBratney, A. Why you don’t need to use RPD. Pedometron 2013, 33, 14–15.
60. Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators

commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. Trends Anal. Chem. (TrAC) 2010,
29, 1073–1081. [CrossRef]

61. Asai, T.; Shimizu, S.; Koga, T.; Sato, M. Quick determination of total nitrogen, total carbon and crude ash in cattle manure using
near infrared reflectance spectroscopy. Jpn. J. Soil Sci. Plant Nutr. 1993, 64, 669–675. [CrossRef]

62. Becaccia, A.; Ferrer, P.; Ibañez, M.A.; Estellés, F.; Rodríguez, C.; Moset, V.; de Blas, C.; Calvet, S.; García-Rebollar, P. Relationships
among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms. Spanish J. Agric. Res.
2015, 13, e0602. [CrossRef]

63. Benozzo, F.; Berzaghi, P. Use of a near infrared portable instrument in monitoring anaerobic digestion process parameters and
nutrients in digestates. Proceeding of Biogas Science Conference 2018, Lingotto Conference Center, Torino, Italy, 17–19 September
2018; Biogas Science: Tulln an der Donau, Austrian, 2018.

64. Dolud, M.; Andree, H.; Hügle, T. Rapid analysis of liquid hog manure using near-infrared spectroscopy in flowing condition. In
Pecision Livestock Farming ‘05; Cox, S., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 115–122.

65. Reeves, J.B.; van Kessel, J.S. Determination of ammonium-N, moisture, total C and total N in dairy manures using a near infrared
fibre-optic spectrometer. J. Near Infrared Spectrosc. 2000, 8, 151–160. [CrossRef]

66. Sørensen, P.; Birkmose, T.; Hansen, M.; Sorensen, L. Rapid analysis of animal slurry by NIR spectroscopy. In NJF-Seminar-Manure-an
Agronomic and Environmental Challenge; Nordiska Jordbruksforskares Förening (NJF): Uppsala, Sweden, 2005; pp. 95–96.

http://doi.org/10.1021/ac00213a021
http://doi.org/10.1021/ac60214a047
http://doi.org/10.1366/0003702894202201
http://doi.org/10.1016/0731-7085(91)80188-F
http://doi.org/10.1016/S0169-7439(98)00109-9
http://doi.org/10.1016/S0169-7439(01)00102-2
http://doi.org/10.2134/jeq2009.0449
http://doi.org/10.1017/S0021900200047604
http://doi.org/10.18637/jss.v018.i02
http://doi.org/10.1021/ac60157a025
http://doi.org/10.3382/ps.2009-00210
http://www.ncbi.nlm.nih.gov/pubmed/19903946
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1080/00401706.1970.10488635
http://doi.org/10.1214/009053604000000067
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.3168/jds.S0022-0302(00)75053-3
http://doi.org/10.1366/11-06333
http://doi.org/10.1002/food.19880320825
http://doi.org/10.1016/j.trac.2010.05.006
http://doi.org/10.20710/dojo.64.6_669
http://doi.org/10.5424/sjar/2015131-6575
http://doi.org/10.1255/jnirs.274


Agronomy 2022, 12, 514 21 of 21

67. Williams, P.; Eising, E.; Malley, D.F. Industrial-scale continuous on-line analysis of liquid hog manure by NIRS. NIR News 2020, 31, 25–29.
[CrossRef]

68. Xing, L.; Chen, L.J.; Han, L.J. Rapid analysis of layer manure using near-infrared reflectance spectroscopy. Poult. Sci. 2008, 87, 1281–1286.
[CrossRef]

69. Zimmermann, A.; Thiessen, E.; Andree, H.; Hartung, E. Einsatz von. Nahinfrarotspektroskopie für eine nährstoffgesteuerte Gülleaus-
bringung In Proceeding of Unternehmens-IT: Führungsinstrument oder Verwaltungsbürde? Referate der 28. GIL Jahrestagung, Kiel,
Germany, 10–11 March 2008; Müller, R.A.E., Sundermeier, H.-H., Theuvsen, L., Schütze, S., Morgenstern, M., Eds.; GIL: Esslingen,
Germany, 2008; pp. 169–172. ISBN 978-3-88579-219-2.
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