
Citation: Zhu, Q.; Xu, X.; Sun, Z.;

Liang, D.; An, X.; Chen, L.; Yang, G.;

Huang, L.; Xu, S.; Yang, M.

Estimation of Winter Wheat Residue

Coverage Based on GF-1 Imagery

and Machine Learning Algorithm.

Agronomy 2022, 12, 1051. https://

doi.org/10.3390/agronomy12051051

Academic Editor: Gniewko Niedbała

Received: 13 March 2022

Accepted: 25 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Estimation of Winter Wheat Residue Coverage Based on GF-1
Imagery and Machine Learning Algorithm
Qilei Zhu 1,2,3, Xingang Xu 1,2,* , Zhendong Sun 1,2, Dong Liang 3, Xiaofei An 4, Liping Chen 4, Guijun Yang 1,2,
Linsheng Huang 3, Sizhe Xu 1,2 and Min Yang 1,2

1 Key Laboratory of Quantitative Remote Sensing in Agriculture, Ministry of Agriculture and Rural Affairs,
Beijing 100097, China; p19301153@stu.ahu.edu.cn (Q.Z.); 201983020071@sdust.edu.cn (Z.S.);
yanggj@nercita.org.cn (G.Y.); 2222016068@ujs.edu.cn (S.X.); yangmin@stu.hubu.edu.cn (M.Y.)

2 Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China

3 National Engineering Research Center for Agro-Ecological Big Data Analysis and Application,
Anhui University, Hefei 230601, China; dliang@ahu.edu.cn (D.L.); linsheng0808@ahu.edu.cn (L.H.)

4 Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China; anxf@nercita.org.cn (X.A.); chenliping@iea.ac.cn (L.C.)

* Correspondence: xuxg@nercita.org.cn

Abstract: Crop residue is an important component of farmland ecosystems, which is of great signifi-
cance for increasing soil organic carbon, mitigating wind erosion and water erosion and conserving
soil and water. Crop residue coverage (CRC) is an important parameter to characterize the number
and distribution of crop residues, and also a key indicator of conservation tillage. In this study, the
CRC of wheat was taken as the research object. Based on the high-resolution GF-1 satellite remote
sensing imagery from China, decision tree (DT), gradient boosting decision tree (GBDT), random
forest (RF), least absolute shrinkage and selection operator (LASSO), extreme gradient boosting
regression (XGBR) and other machine learning algorithms were used to carry out the estimation of
wheat CRC by remote sensing. In addition, the comparisons with sentinel-2 imagery data were also
utilized to assess the potential of GF satellite data for CRC estimates. The results show the following:
(1) Among the spectral indexes using shortwave infrared characteristic bands from sentinel-2 imagery,
the dead fuel index (DFI) was the best for estimating wheat CRC, with an R2 of 0.54 and an RMSE
of 10.26%. The ratio vegetation index (RVI) extracted from visible and near-infrared characteristic
bands from GF-1 data performed the best, with an R2 of 0.46 and an RMSE of 11.39%. The spectral
index extracted from GF-1 and sentinel-2 images had a significant response relationship with wheat
residue coverage. (2) When only the characteristic bands from the visible and near-infrared spectral
ranges were applied, the effects of the spatial resolution differences of different images on wheat
CRC had to be taken into account. The estimations of wheat CRC with the high-resolution GF-1 data
were significantly better than those with the Sentinel-2 data, and among multiple machine learning
algorithms adopted to estimate wheat CRC, LASSO had the most stable capability, with an R2 of 0.46
and an RMSE of 11.4%. This indicates that GF-1 high-resolution satellite imagery without shortwave
infrared bands has a good potential in applications of monitoring crop residue coverage for wheat,
and the relevant technology and method can also provide a useful reference for CRC estimates of
other crops.

Keywords: wheat residue coverage; GF-1 remote sensing satellite; Sentinel-2 remote sensing satellite;
machine learning regression model

1. Introduction

As the final product of agricultural crop production, residue coverage plays a signifi-
cant role in soil ecological protection and secondary crop planting. In addition, residues
can reduce the evaporation of water and retain water moisture in the surface soil [1]. At
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the same time, residue mulch can also slow down the weathering and erosion of farmland
soil. Meanwhile, if the straw is returned to the field, the soil fertility can be increased by the
mineralization of the straw after ploughing. This provides natural organic matter for crop
growth, meaning straw has a good regulation effect on the crop growth process [2–4]. Stud-
ies have shown that residue plays an important role in improving the quality of agricultural
products, inhibiting the growth of weeds, reducing the cost of planting and fertilization and
increasing grain yield [4–7]. Crop residue coverage (CRC) is an important index reflecting
the crop residue distribution in farmland. Quantitative remote sensing technology can
monitor straw returning and mulching in a wide range, dynamically and accurately, which
is of great significance to the decision of straw returning conservation tillage.

Conventional methods, such as the random sampling method and drawstring method,
are often time-consuming and laborious in estimating crop residue coverage [8,9]. With
the development of remote sensing spatial information technology, estimation of crop
residue coverage based on remote sensing technology has become an important research
direction in the field of conservation tillage. At present, research on remote sensing
monitoring of crop residue coverage has made some progress. Using ASD hyperspectral
data, Daughtry et al. analyzed the response characteristics between the residue coverage
and reflectance spectrum of a variety of crops, such as wheat and corn, and pointed out
that 2100 nm is a unique cellulosic lignin spectral absorption characteristic of crop residue;
the cellulose absorption index (CAI) was proposed to accurately estimate the CRC of
crops [10,11]. Based on the spectral features of Sentinel-2 remote sensing images, Cai
et al. introduced texture features to estimate wheat residue coverage and achieved a good
estimation accuracy [12]. On the basis of analyzing the spatial heterogeneity of soil types,
Huang et al. constructed a remote sensing monitoring model of residue coverage based on
soil type partitioning by using the NDTI and STI extracted from sentinel-2 remote sensing
imagery in the shortwave infrared band and sufficiently estimated the residue coverage of
maize crops [3,13]. Zheng et al. extracted the mini-NDTI spectral index based on Landsat
data for crop straw estimation analysis [9,14]. Yue et al. proposed the broadband spectral
angle index (BAI) using sentinel-2 data to estimate CRC in wheat [15–17]. Ding et al. used
machine learning methods such as ANN, SVR and GPR to estimate corn residue coverage
based on sentinel-2 remote sensing image features [18]. Li et al. used the satellite image data
from Landsat-8 OLI simulated by ASD hyperspectral data to construct the index NDIOLI to
estimate the CRC of wheat [8]. Zhang et al. used IRS data from the China Environmental
Satellite (HJ-1B) to construct the index NDIIRS to monitor wheat residue coverage. However,
the low spatial resolution of IRS image data limits their application in complex farmland
environments [19]. The above studies show that the estimation of crop residue coverage
based on Sentinel, Landsat and other satellite remote sensing image data mostly uses an
index containing shortwave infrared characteristic bands to realize the remote sensing
estimation of crop residue coverage. In recent years, with the continuous development of
satellite remote sensing technology in China, a series of high-resolution satellites have been
launched successively, and the earth observation image data are increasingly abundant.
However, there are few studies on the monitoring of crop residue coverage with high-
resolution GF image data. On the other hand, with the rapid development of machine
learning application technology in recent years, research on remote sensing estimation
of crop target parameters based on machine learning algorithms has gradually become a
hotspot [20], but it is rarely seen in the application of remote sensing monitoring of wheat
crop residue.

GF-1 is China’s first high-resolution satellite, equipped with panchromatic and multi-
spectral cameras, with a short revisit cycle and many available times and phases. It plays an
increasingly important role in China’s agricultural resource survey. In this paper, based on
GF-1 remote sensing data, combined with various typical machine learning algorithms, the
remote sensing estimation of wheat residue coverage was carried out and compared with
sentinel-2 image data. This paper analyzed whether the high spatial resolution advantage
of GF-1 can make up for the lack of shortwave infrared characteristic bands to monitor
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residue coverage and then discusses the potential of domestic GF satellite image data in
crop residue coverage remote sensing monitoring, in order to provide a new technology
and method reference for remote sensing estimation of crop residue coverage.

2. Data and Methods
2.1. Overview of the Study Area

The study area was the Xiaotangshan National Precision Agriculture Research Demon-
stration Base in Changping District, Beijing, located between 40◦00′ N and 40◦21′ N, and
116◦34′ E and 117◦00′ E, with an average altitude of about 36 m. The study area is flat with
distinct seasons. The study area has a warm temperate sub-humid continental monsoon
climate, with a dry and windy spring, a hot and rainy summer and a cold and dry winter.
The annual average temperature in most areas is 10–12 ◦C, and the annual average precipi-
tation is 500–600 mm. The sampling time of the coverage measurement was 7 July 2020,
with clear weather. The wheat harvest in the experimental area was in the middle of June.
The distribution of GF-1 image data and sampling points in the study area is shown in the
Figure 1.
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Figure 1. Location of study area and remote sensing imagery ((a) GF-1; (b) Sentinel-2).

2.2. Data Acquisition and Preprocessing
2.2.1. Acquisition of CRC of Wheat Measured in Field

Field-measured data of wheat residue coverage were sampled on 7 July 2020. Wheat
residue coverage data were obtained using a RedEdge-M multispectral camera (Micasense,
Seattle, WA, USA, sensor field angle 47.2◦, 5-band channel, wavelength range 400–900 nm).
When taking samples in the test area, the camera lens was vertically downward, the
wheat residue ground samples were kept 1.5 m away from the camera and the geographic
coordinates of the field samples were recorded. A total of 121 effective samples were
taken. The selected plots and locations of sample points are shown in Figure 1. In order
to eliminate the problem of the shooting time interval, this paper used the method of
time node partitioning to process sample point data in a short time interval to reduce
the influence of light intensity change. The image mosaic method is shown in Figure 2.
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Multiple sample images with multispectral information are spliced into one picture with
the same spectral information.
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Figure 2. Partition splicing of sample points.

The obtained sample data were divided into different test areas according to the
shooting time. After splicing, the band was calculated to obtain a series of spectral index
features and obtain the HSV color space transformation features. Then, based on the
manual visual interpretation method, different categories of regions of interest (ROIs) were
constructed from the sample image data with multispectral characteristics after splicing
and made into training samples. The real residual cover value of wheat residue was
obtained by using supervised classification, in which the samples were divided into five
types: residue, soil, green vegetation, soil shadow and residue shadow. All types of pixels
were evenly distributed, and the sample size was sufficient. Supervised classification
algorithms such as random forest (RF), support vector machine (SVM) and Mahalanobis
distance were used in the experiment to accurately classify the ground object information of
various points [21]. Random forest classification is the best supervised learning algorithm
based on accuracy analysis. The random forest algorithm also has a good performance in
large-scale classification. In the ground crop recognition with GF-1 remote sensing data,
combined with the advantages of the high spatial resolution of the satellite images, a good
classification accuracy can be obtained.

Field harvest images are shown in Figure 2, which can be divided into five categories:
soil, residue, soil shadow, residue shadow and green vegetation. The ROI training samples
of real features were selected through artificial visual interpretation. In order to more
efficiently identify, classify and reduce part of the workload, the multispectral images
of experimental sample points in a similar time area were combined and processed, the
training samples were set up in batches and the classification operation was supervised.
The method to calculate the coverage is to add the number of pixels of residue, residue
shadow and green vegetation as the numerator a, and the denominator as the number of
pixels of the whole classification a + b.

CRC = a
a+b

a = Straw + StrawShadows + Vegetables
b = Soil + SoilShadows

(1)

2.2.2. Remote Sensing Data Preprocessing

The remote sensing data obtained in this paper are panchromatic/multispectral images
of the GF-1 PMS satellite with a spatial resolution of 2 m panchromatic and 8 m multispec-
tral. The acquisition date of the image data was 1 July 2020. After radiometric calibration,
atmospheric correction, geometric correction, image fusion and other processing, the final
image resolution was 2 m for the fusion multispectral data. Sentinel-2 remote sensing
data were obtained from the Google Earth Engine platform on 6 July 2020. The Level 2A
product is the reflectivity product of the lower atmosphere after radiometric calibration
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and atmospheric correction. The information parameters of the GF-1 and Sentinel-2 sensors
are shown in Tables 1 and 2.

Table 1. Main parameters of the GF-1 PMS sensor.

Name Spectral Range (µm) Pixel Size/Meters Revisit Time (Day) Description

Pan 0.45~0.90 2

4

Panchromatic

B1 0.45~0.52

8

Blue
B2 0.52~0.59 Green
B3 0.63~0.69 Red
B4 0.77~0.89 NIR

Table 2. Main parameters of the Sentinel-2 sensor.

Name Pixel Size/Meters Wavelength Description

B1 60 443.9 nm (S2A) Aerosols
B2 10 496.6 nm (S2A) Blue
B3 10 560 nm (S2A) Green
B4 10 664.5 nm (S2A) Red
B5 20 703.9 nm (S2A) Red Edge 1
B6 20 740.2 nm (S2A) Red Edge 2
B7 20 782.5 nm (S2A) Red Edge 3
B8 10 835.1 nm (S2A) NIR

B8A 20 864.8 nm (S2A) Red Edge 4
B9 60 945 nm (S2A) Water vapor

B11 20 1613.7 nm (S2A) SWIR 1
B12 20 2202.4 nm (S2A) SWIR 2

2.3. Remote Sensing Spectral Index for CRC Estimation

In the experiment, GF-1 and Sentinel-2 remote sensing data were used to construct
the CRC model. The spectral indexes selected mainly include the normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI) and soil-adjusted vegetation
index (SAVI), and the index information involved in this paper is shown in Table 3.

Table 3. Spectral indexes.

Vegetation Index Abbreviation Formula Reference

Dead fuel index DFI 100
(

1− SWIR2
SWIR1

)
× R

NIR
[22]

Normalized differential tillage index NDTI SWIR1−SWIR2
SWIR1+SWIR2 [23]

Simple tillage index STI SWIR1
SWIR2 [23]

Normalized difference vegetation index NDVI NIR−R
NIR+R [24]

Differential vegetation index DVI NIR− R [25]
Enhanced vegetation index EVI 2.5 NIR−R

1+NIR+6R−7.5B [26]

Ratio vegetation index RVI NIR
R [27]

Optimized soil-adjusted vegetation index OSAVI (1+0.16) NIR−R
NIR+R+0.16 [28]

Two-band enhanced vegetation index EVI2 2.5 NIR−R
NIR+2.4R+1 [29]

Transformed vegetation index TVI 60(NIR− G)− 100(R− G) [30]

Modified soil-adjusted vegetation index MSAVI2 2NIR+1−
√
(2NIR+1)2−8(NIR−R)

2
[31]

Wide dynamic range vegetation index WDRVI 0.12NIR−R
0.12NIR+R [32]

Soil-adjusted vegetation index SAVI 1.5 NIR−R
NIR+R+0.5 [33]

Green NDVI GNDVI NIR−G
NIR+G [34]

Red vegetation index RI R−G
R+G [35,36]
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2.4. Technical Route

The overall research route of the experiment is shown in Figure 3. In Figure 3, the
red dotted box corresponds to the sentinel-2 data preprocessing method ( 1© 2© 3©), and the
blue dotted box corresponds to the GF-1 data preprocessing method ( 1© 2© 3© 4©). Spectral
features of the corresponding sample locations were extracted from the processed remote
sensing images. After the classification and processing of measured sample images, the
corresponding coverage value was extracted. Two types of regression models, namely, a
univariate regression model and a machine learning model, were constructed based on the
spectral characteristics and coverage information.
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2.5. Machine Learning Methods

The supervised classification methods adopted in this paper include random for-
est (RF), support vector machine (SVM), Mahalanobis distance classification and other
algorithms, and the supervised classification can effectively reflect the ground object infor-
mation of real sample points [21,37,38]. In the experiment, the random forest supervised
learning method had the highest classification accuracy and the smallest error. RF per-
forms well in many fields with relatively good operation speed and accuracy [21,37–40].
The RF classification algorithm is a type of ensemble algorithm, made up of many of the
decision tree branch collection. Many of the decision tree results can work together to
attribute data classification and prediction tasks, and this algorithm adopts the bootstrap
sampling method for randomly generated data, multiple decision trees and the introduc-
tion of a random model, which means it is not easy to fall into overfitting [41]. The main
machine learning algorithms used in the regression model constructed by characteristic
variables and coverage include decision tree, LASSO regression, ridge regression and the
GBDT algorithm. These machine learning methods all belong to a supervised integrated
learning method.

The decision tree (DT) algorithm can easily obtain the target result by giving the
formulated decision rules. Researchers can easily understand and grasp this structure, and
it has a strong explanatory character [42–44].

The LASSO algorithm, first proposed by Robert in 1996, can automatically eliminate
insignificant regression coefficients when building models. The complexity of the model is
reduced, that is, the overall regression coefficient is reduced, and the function of automatic
variable screening is realized [45,46].

Ridge regression was proposed in 1970. It was first used to deal with the case that the
sample size was less than the input characteristic parameters. By introducing regular terms
into the objective function, the unsolved condition was solved [47,48].

Similar to the previous supervised learning methods, GBDT can be used to solve
classification and regression problems simultaneously. The GBDT algorithm can combine
multiple weak classifiers to realize the process of strong classifiers, and the feedback
residual after each run is matched with the result of the previous one, in order to achieve
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a stronger prediction effect through combination. XGBR was further developed from the
traditional GBDT [49,50].

2.6. Evaluation of Fitting Accuracy

In the coverage evaluation after classification, the regression relationship between the
real ground classification results and the satellite images was established, and the spectral
index with a better fitting effect was selected using correlation analysis to establish the
regression model. In this paper, 70% of the modeling process was used to establish the
training set, and 30% was used to establish the test set. There were 121 samples in the
GF-1 dataset, including 84 training samples and 37 test samples. A total of 115 samples
were collected from Sentinel-2 data, including 80 training samples and 35 test samples
(there are 121 experimental sample points, among which sentinel-2 has multiple sample
points with different geographical locations on the same pixel due to the pixel scale). The
determination coefficient (R2) and root mean square error (RMSE) were used to judge the
fitting degree of the model. The closer R2 is to 1, the smaller the RMSE value is, and the
better the inversion effect; otherwise, the worse the model fitting effect. The determination
coefficient and root mean square error can be calculated as follows, where the coefficient n
is the total number of test samples, yi is the true measured value of the ith sample, ŷi is the
model predicted value of the ith sample and y is the mean value. The root mean square
error shows the difference between the true value and the predicted value. It makes the
error more significant.

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (2)

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (3)

3. Results
3.1. Extraction of Wheat Straw Coverage and Comparison of Different Filtering Results

In the experiment, there were three types of coverage in the regression model, which
were the results of the random forest classification, and morphological transformation
was performed under 5 × 5 and 3 × 3 clustering processing windows after classification.
Morphological transformation can alleviate the salt and pepper phenomenon and increase
the coherence and smoothness between classes to some extent. The original sample image
and classification filtering results are shown in Figure 4.
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The confusion matrix evaluation coefficient and Kappa coefficient were used to evalu-
ate the classification accuracy. In this paper, the overall classification accuracy and Kappa
coefficient of experimental ground samples from high to low were 88% and 0.85 for random
forest, 82% and 0.77 for support vector machine, 75% and 0.67 for Mahalanobis distance,
and 69% and 0.59, respectively.

3.2. Sensitivity Analysis of Spectral Index Based on GF Image Data to CRC in Wheat

The evaluation results of the GF-1 data spectral index and wheat CRC construction
model are shown in Figure 5. It can be found from the Figure 5 that under the advantage of
a higher spatial resolution, a variety of spectral indexes can construct the coverage model
with a good fitting effect. Through correlation analysis, 12 spectral indexes and coverages
were selected to construct the CRC estimation model. Among them, the spectral index
with a higher CRC estimation accuracy in the univariate regression model was the RVI.
In different morphological window processing, the 5 × 5 clustering results show the best
performance in the CRC5 × 5-RVI model (Figure 6). Meanwhile, as can be seen from the
Figure 5, the spectral indexes in the GF-1 data analysis results all had a good fitting accuracy
in CRC estimation. The CRC model based on the spectral characteristics of CRC and the
RVI after different window processing had good stability.
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At the same time, it can be observed from the Figure 7 that the determination co-
efficient (R2) of the models without morphological processing of RF classification was
generally lower than that of the other two cases and was concentrated around 0.45. By
using the mathematical statistical results of the boxplot, it was found that there were some
abnormal samples in the results of RF classification processing, while the results of clus-
tering processing were stable. Then, according to the results obtained from the boxplot
analysis, the corresponding abnormal sample data were found and removed, and the
CRC-RVI model was constructed again. By comparing the CRC models before and after the
elimination of abnormal samples, the coefficient of determination (R2) increased from 0.45
to 0.52. The results show that the accuracy of the CRC model can be improved to a certain
extent after the abnormal data are removed by reasonable data analysis tools, which also
reflects the better applicability of the data pretreatment method of different morphological
windows after classification adopted in this paper. Figure 7 shows the statistical results
after boxplot analysis of different classification processing. The left side of Figure 7 is the
univariate regression model constructed by the CRC data after RF classification and the
RVI spectral index, and the right side is the CRC-RVI estimation model after excluding the
RF classification outliers.
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3.3. Sensitivity Analysis of Spectral Index to CRC in Wheat Based on Sentinel-2 Image Data

In this experiment, we combined sentinel-2 remote sensing data and extracted relevant
spectral information of the experimental area. Through analysis, it was found that the
NDTI, DFI and STI performed well in the univariate regression model, and the highest
determination coefficient (R2) was 0.54. However, the spectral index RVI synthesized by
Sentinel-2 in the visible–near-infrared band range was not as accurate as the CRC-RVI
model constructed by the GF-1 data and had almost no correlation. A machine learning
model will be used for further exploration and research in the subsequent experimental
analysis. Figure 8 shows the results of the CRC estimation model analysis of Sentinel data
based on spectral information synthesis. Figures 9 and 10 show the univariate regression
model constructed by the different spectral indexes in Figure 8, wherein the characteristic
index RVI synthesized by Sentinel-2 in the visible–near-infrared spectral range does not
show a good response correlation with the estimation model constructed by CRC.
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Figure 9. Response relationship between NDTI or STI and CRCRF based on Sentinel-2.
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Figure 10. Response relationship between Sentinel-2 DFI or RVI and CRCRF of winter wheat.

It can be seen from Figure 10 that in the sentinel-2 data with a low spatial resolution,
in the same univariate model, the RVI model synthesized by Sentinel-2 data in visible light
and near-infrared does not have the fitting accuracy of the GF-1 data. Sentinel-2 has a high
spectral resolution dominance in the shortwave region, and the construction of various
spectral indexes has a model accuracy similar to the GF-1 imagery in the CRC estimation.
A spectral index synthesized by the shortwave band such as the DFI can be used as a
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reference for accurate estimation of residue coverage, but there are some limitations in
achieving accurate estimation of residue coverage on a more precise regional scale. From
the perspective of conservation tillage, this study shows that a coverage of more than
30% is defined as conservation tillage. As the experimental base of modern precision
agriculture, the coverage of most sample plots in this experiment exceeds 30%. It can be
seen from the image that the coverage distribution is relatively uniform. In the experiment,
the phenomenon of “supersaturation” described in previous experiments may occur in
areas with high coverage [9,11,51]. The possible causes of this phenomenon are further
analyzed through the display of the original images below. Compared with the GF-1 data,
the relatively coarse spatial resolution of the Sentinel-2 data has some mixed pixel problems,
and it is still feasible to roughly estimate CRC in farmland, but it is still insufficient to
accurately estimate the crop state in small areas with a scale that is too large. Sentinel-2
data were used as reference objects for GF-1 remote sensing image data in this experiment,
highlighting their advantages.

3.4. Remote Sensing Estimation of Wheat CRC Based on Machine Learning and Two Remote
Sensing Images

A variety of regression models were selected in the experiment, such as DT, RF and
GBDT, among which the DT regression, LASSO regression and ridge regression algorithms
have a better model fitting effect. In this paper, the RVI, NDVI and WDRVI constructed
by GF-1 and S2 in the visible and near-infrared bands were selected as the parameter
combination of the machine learning model because these three characteristic indexes
have a good correlation with CRC. In the experiment, reasonable parameter combinations
were selected and provided to the basic model for selection through a grid search, and the
parameters of the model were tuned by the fitting results after ten cross-fitting tests. The
results of various machine learning algorithms for GF-1 and Sentinel-2 data training sets
and test sets are shown in Table 4.

Table 4. Comparison of machine learning regression models for GF-1 and Sentinel-2 data.

Characteristic
Parameter

Data
Source

Machine Learning
Method

DT RF LASSO Ridge GBDT XGBR

GF S2 GF S2 GF S2 GF S2 GF S2 GF S2

RVI,
NDVI,

WDRVI

CRCRF

training
set

R2 0.53 0.11 0.53 0.1 0.43 0.03 0.43 0.03 0.52 0.09 0.54 0.12
RMSE/% 10.67 13.62 10.58 13.71 11.67 14.24 11.68 14.24 10.81 13.92 10.52 13.73

test set
R2 0.49 0.19 0.49 0.28 0.5 0.18 0.49 0.18 0.52 0.3 0.51 0.37

RMSE/% 10.78 15.22 10.77 14.87 10.76 15.8 10.77 15.81 10.51 15.56 10.53 14.8

CRC3 × 3

training
set

R2 0.57 0.14 0.57 0.13 0.51 0.07 0.51 0.07 0.58 0.13 0.62 0.14
RMSE/% 12.48 17.64 12.6 17.83 13.42 18.36 13.43 18.36 12.55 18.06 11.89 18.16

test set
R2 0.52 0.33 0.55 0.38 0.52 0.24 0.52 0.24 0.55 0.39 0.56 0.39

RMSE/% 13.35 17.47 12.91 17.36 13.54 18.49 13.55 18.51 12.95 18.42 12.85 17.79

CRC5 × 5

training
set

R2 0.61 0.17 0.6 0.15 0.53 0.11 0.53 0.11 0.62 0.17 0.63 0.17
RMSE/% 13.87 20.55 14.11 20.85 15.37 21.28 15.33 21.28 13.8 21.07 13.72 22.68

test set
R2 0.55 0.34 0.59 0.39 0.55 0.25 0.55 0.25 0.57 0.37 0.57 0.35

RMSE/% 15.27 20.12 14.52 19.8 15.64 21.24 15.63 21.26 14.92 21.43 14.78 22.39

Note: Of the two columns of data under each machine learning method in the table, GF-1 data are on the left and
Sentinel-2 data are on the right.

The CRC results after different filtering (CRCRF, CRC3 × 3, CRC5 × 5) were compared
and analyzed by machine learning algorithms. It can be found that compared with the
sentinel-2 data results, the training set and verification set of the CRC estimation model
constructed by GF-1 are more accurate and stable. The accuracy of the two models after
different cluster processing was compared with that of the previous analysis only using
the RVI spectral index, which was generally consistent with the results of the previous
analysis. Through observation, it was found that the estimation accuracy of the RVI, NDVI
and WDRVI constructed by GF-1 in visible and near-infrared light as machine learning
model parameters for CRC is better than that of S2.
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Figure 11 shows the CRC models constructed by the GF-1 feature index combined
with machine learning in Table 4 and their R2 and RMSE. The R2 and RMSE of the training
set and test set of the GBDT regression algorithm were 0.52, 10.81%, 0.52 and 10.51%, and
those of the training set and test set of the LASSO regression were 0.43, 11.67%, 0.49 and
10.76%. In sentinel-2 (S2) data, the R2 and RMSE of the training set and test set with a
better performance of the decision tree regression algorithm were 0.11, 13.62%, 0.19 and
15.22%. The results show that the training set and validation set R2 of the XGBR, GBDT
and DT models has high accuracy and low errors. However, it can be seen from the data
distribution that the LASSO model is more concentrated on both sides of the 1:1 line.
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models of GF-1 data.

Based on the above analysis results, the GF-1 index combined with the LASSO model
and S2 combined with the DFI model had a good correlation with CRC. In this paper, the
respective advantages of the two satellite data models were used to evaluate the distribution
of CRC in wheat in the whole test base. The results are shown in Figure 12. As a national
agricultural demonstration base, it can be seen from the figure that the CRC distribution
after wheat harvest was relatively uniform, and the overall coverage level reached the
standard of returning to the field. This paper aimed to improve the accuracy of the model
and reduce the error in the process of CRC inversion, but it is difficult to avoid the error
in the modeling process. It can be seen from the distribution image that there are some
high-coverage or low-coverage areas around the coverage beyond the estimation range, so
there are individual blank values.
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4. Discussion

According to the analysis results of GF-1 and Sentinel-2 data, sentinel-2 images can
sufficiently distinguish residue and soil by the spectral difference in the wavelength range
of 2100 nm, depending on their own high spectral resolution. This experiment has similar
results to the research on the residue coverage rate in the existing literature. The NDTI, DFI
and STI are common spectral indexes [22,52]. In the sentinel-2 data analysis in this paper,
the DFI had a good estimation accuracy in the fitting of residue coverage identification. In
the univariate regression model, the maximum determination coefficient (R2) reached 0.54.
However, compared with GF-1, sentinel-2 data in the same spectral index synthesized in
the range of the visible light and near-infrared wavelengths could not be used to construct
a regression model with a certain fitting accuracy with CRC, while the model constructed
by GF-1 had a higher fitting accuracy. The spectral index constructed from GF-1 data had a
certain degree of correlation with CRC. At the same time, more fine-scale CRC monitoring
can be realized.

In Table 5, Sentinel-2 uses the spectral index model synthesized by shortwave advan-
tages, and GF-1 uses the spectral index model synthesized by visible and near-infrared
advantages. It can be found that both of them can obtain a great CRC estimation ac-
curacy by virtue of their respective advantages. Among them, the CRCRF-LASSO and
CRC3 × 3-LASSO models’ R2 and RMSE are the statistical results of model accuracy for the
training set and test set.
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Table 5. Comparison of machine learning regression models for GF-1 and Sentinel-2 data.

Data Model R2 RMSE/% Reference

Sentinel-2
CRCRF-DFI 0.54 10.26 [22]

CRCRF-NDTI 0.52 10.50 [23]
CRCRF-STI 0.52 10.50 [23]

GF
CRCRF-RVI 0.46 11.39 In this paper

CRCRF-LASSO 0.46 11.4 In this paper
CRC3 × 3-LASSO 0.52 13.46 In this paper

According to the analysis results of the estimation model, it can be seen that the CRC
of a small number of sample points has a low value overestimation phenomenon, which is
similar to the results of previous studies [13], as shown in the results shown in Figure 12
under the condition of a high spatial resolution. As shown in Figure 13, in the case of
high-spatial resolution photography, the shadow produced by the straw occlusion leads to
a certain misclassification of the pixel number of the soil and straw. In this experiment, due
to the HSV color space transformation, a variety of characteristics of the vegetation index
join, and different categories of the ROI area are constructed with a detailed observation of
the different objects in the shadow. To a certain extent, the classification of real samples
can be effectively separated, the experimental error can be reduced and the estimation
accuracy of the model can be improved. The shadow produced by the light irradiation on
the residue is projected on the soil surface and the residue surface at the same time. From
the classification results, it is a problem to distinguish shadows belonging to the residue or
the soil. The classification accuracy of experimental samples has a certain influence on the
model. Because the shadow produced by sunlight in other periods is smaller and covers
the residue surface, and the results of the shadow on the soil and residue are different, most
of the shadows in the experiment can be correctly classified.
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In order to verify the above-mentioned reasons and the feasibility of the experimental
results, some comparative experiments were conducted. In the experiment, filter windows
of different scales were selected to cluster and merge the adjacent regions. Then, a univariate
model and a machine learning estimation model were constructed and compared with the
CRC results obtained from the three classification processes. From the classification results,
the category continuity of random forest classification is poor, because of the existence of
residual residue debris on the ground, but its statistical results are comprehensive, and the
overall accuracy of the confusion matrix is good. Due to their lower spatial resolution than
GF-1, Sentinel-2 data can only make a rough estimation of CRC in areas with a large crop
area, but there is still a problem with the large scale in terms of accurately determining the
plot coverage in small areas. The high spatial resolution of the GF-1 data has an obvious
advantage for regression modeling analysis, and the sentinel-2 data regression model
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has a better accuracy in the DFI univariate features under the condition of the same data
sample coverage.

The model fitting accuracy of the GF-1 data is similar to that of Sentinel-2, which
provides empirical support for accurate point-to-point data experimental analysis under a
high spatial resolution and makes up for the experimental blank of coverage analysis in
the range of visible–near-infrared bands. In future studies, the impact of shadow will be
solved by feasibility analysis and combination with ground handheld multi-hyperspectral,
UAV image and GF-1 satellite remote sensing data.

5. Conclusions

In this paper, a new method based on the visible-to-near-infrared spectral information
from multi-source satellite images and machine learning algorithms was put forward
to estimate wheat residue coverage. The performance of sentinel-2 and GF-1 remote
sensing data in estimating wheat residual coverage was compared and analyzed under
the advantages of the spatial resolution and spectral resolution. The results show that
the spectral index extracted from GF-1 and Sentinel-2 images had a significant response
relationship with wheat residue coverage. Based on the machine learning regression
algorithms, GF-1 was much better than the sentinel-2 spectral index in the visible and
near-infrared bands at estimating wheat residue coverage. The results show that the GF
satellite images with spectral information in the visible–near-infrared region and high
spatial resolution advantages have potential for the estimation of large-area crop residue
coverage. Related studies can also provide certain ideas and method references for the
accurate quantitative monitoring of residue coverage in a large area.
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