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Abstract: In recent years, rapid development has been achieved in technologies and sensors related
to autonomous driving and assistive technologies. In this study, low-cost light detection and ranging
(LiDAR) was used to estimate leaf water content (LWC) by measuring LiDAR reflectance instead
of morphological measurement (e.g., plant size), which is the conventional method. Experimental
results suggest that reflection intensity can be corrected using the body temperature of LiDAR, when
using reflection intensity observed by LiDAR. Comparisons of corrected LiDAR observation data and
changes in reflectance attributed to leaf drying suggest that the reflectance increases with leaf drying
in the 905 nm band observed with a hyperspectral camera. The LWC is estimated with an R2 of 0.950,
RMSE of 6.78%, and MAPE of 18.6% using LiDAR reflectance. Although the 905 nm wavelength
used by LiDAR is not the main water absorption band, the reflectance is closely related to the leaf
structure; therefore, it is believed that the reflectance changes with structural changes accompanying
drying, which allows for the indirect estimation of LWC. This can help utilize the reflectance of the
905 nm single-wavelength LiDAR, which, to the best of our knowledge has not been used in plant
observations for estimating LWC.
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1. Introduction

Recent years have witnessed rapid developments in technologies and sensors related
to autonomous driving and driving support [1]. Among these developments, light detection
and ranging (LiDAR), which measures the distance from the time-of-flight of light to an
object, has been widely used for recognizing the surrounding environment in the context
of autonomous driving; daily advances are being reported for the associated technologies
and sensors [2]. Low-cost sensors not only broaden the base of LiDAR use but are also
advantageous to all fields associated with LiDAR, e.g., agriculture. Sensing technologies
that acquire information related to the growth state of crops in a comprehensive and
rapid manner have become increasingly important in a social context because they help
to minimize labor requirements and labor intensity, and increase refinement in both the
research and application aspects of agriculture.

LiDAR was originally developed for airborne laser scanning, and it has been used for
forest surveys prior to its use in agriculture. Structures with gaps such as a canopy allow for
part of the laser to pass without hitting the plant; this part of the laser is then reflected inside
the canopy and on the ground surface. In such cases, multiple reflections (returns) are
recorded for each laser pulse; this is called a multireturn [3]. The final return is attributed
to the ground; this is useful for acquiring topographical information regarding locations
where vegetation has been removed. A point cloud obtained in this manner was used for
estimating the height and volume of a single tree [4], estimating the forest growth [5], and
classifying tree species [6]. In addition, the return from the ground decreases when the
vegetation is densely packed [7], and therefore, this has been used in an attempt to estimate
the leaf area index (LAI) [8].
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The subsequently developed terrestrial laser scanning has a narrower scope of mea-
surement when compared with its airborne counterpart; however, this type of scanning
facilitates the measurement of the subcanopy structure of trees, which could not be cov-
ered thus far. Furthermore, the laser beam diameter is smaller, which enables the laser to
penetrate the canopy and makes it easier to obtain shape information inside the canopy [9].

The application of LiDAR for agriculture started with fruit trees [10]; it is now being
applied to target smaller crops and to protected horticulture [11]. Application examples
include the estimation of plant height/community volume [12], leaf angle [13], LAI [11],
vegetation coverage/above-ground biomass [14], and yield [15]. Sofonia et al. (2019) [16]
suggest that LiDAR not only has the same level of accuracy as the structure from mo-
tion (SfM)—a photogrammetric technique—for grass height measurement, but it can also
separate the ground surface and crops throughout the growing season, whereas the SfM
cannot restore the ground surface shape as crop growth progresses. The height of the
ground surface serves as a reference plane for measuring the height of grass, and therefore,
obtaining information on the ground surface at each measurement leads to a reduction in
the measurement error, and it can be used for estimating biomass.

Based on the aforementioned studies, LiDAR is primarily used for the measurement of
the size and shape of plants. Meanwhile, the reflection intensity obtained by LiDAR has thus
far only been used to improve the visibility by color-coding the point cloud based on the
difference in reflection depending on the object, such as the ground or an inhabited area [17].
The reflection intensity reflects the spectral reflection characteristics at that wavelength,
and therefore, LiDAR can overcome the weaknesses of remote sensing techniques using
conventional passive sensors that are influenced by soil or lower vegetation. This advantage
is attributed to the LiDAR characteristics of using an active sensor and simultaneously
obtaining three-dimensional (3D) information. Thus, a wide-ranging utilization of this
technology is expected.

The wavelength near the absorption band of that substance is used when estimating the
content of a given substance in remote sensing that utilizes spectral reflection characteristics.
For example, chlorophyll strongly absorbs wavelengths around 400–700 nm, and water
absorbs wavelengths around 1300–2300 nm. Furthermore, there have been studies that
focus on this spectral reflection characteristic in LiDAR, with one study estimating the in-
leaf chlorophyll content using a 532 nm single-wavelength LiDAR [18]. Du et al. (2016) [19]
obtained reflection intensities of 538–910 nm using hyperspectral LiDAR with continuously
variable wavelengths and estimated the in-leaf nitrogen content by combining multiple
wavelengths. For estimating the leaf water content (LWC), Junttila et al. (2018) [14] used
three types of single-wavelength LiDAR (690, 905, and 1550 nm) and two-wavelength
reflection intensity ratios to estimate the LWC. Zhu et al. (2015, 2017) [20,21] showed that
LWC can be estimated using the reflection intensity of 1550 nm single-wavelength LiDAR;
this is near the absorption band of water.

Currently, LiDAR using the single wavelength of 905 nm has become mainstream
because this wavelength does not interfere with other sensors (e.g., cameras, human eyes);
furthermore, solar radiation, which is a source of noise, is weak at this wavelength, and the
sensor that detects the reflected light is inexpensive [22]. There have been many research
examples that used LiDAR reflection intensity; however, these existing methods cannot
be applied to the 905 nm single-wavelength LiDAR because the wavelength is different or
because multiple wavelengths are used.

It is possible to use the changes in reflectance that accompany leaf drying when using
the spectral reflectance characteristics of leaves near 905 nm. Drying leaves induce the
highest increase in reflectance in the range 350–2500 nm [23]. The increase in reflectance
with drying, even at wavelengths below 1300 nm where water absorption is low, can be
attributed to the decrease in chlorophyll and changes in the internal structure of the leaf. As
drying progresses, the stress results in the decomposition of chloroplasts and the occurrence
of plasmolysis due to a decrease in turgor pressure, resulting in an air invasion between
the cell wall and cell membrane; this changes the number of refractions and the index of
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refraction of light that passes through the leaves. Therefore, the proportion of light returned
in the incident direction increases, which further increases the reflectance [24]. This reaction
is extremely wavelength-dependent, and therefore, it is useful for estimating water content
in regions other than the water absorption band.

Previous studies applied the knowledge of remote sensing using the spectral reflection
characteristics from plants, and they clarified that the growth state of plants could be
estimated using the wavelength corresponding to the absorption bands of chlorophyll
or water; this confirms the usability of the reflection intensity in LiDAR. Moreover, there
is the possibility that changes in water content in the wavelength band below 1300 nm
can be indirectly detected from changes in cell structure associated with drying. Most
single-wavelength LiDAR uses 905 nm, and therefore, the ability to estimate water content
using this wavelength provides new possibilities by providing not only 3D data but also
reflection intensity to LiDAR applications. Thus, in this study, a 905 nm single-wavelength
LiDAR was used to observe changes in the reflection intensity accompanying leaf drying
and estimate LWC.

2. Materials and Methods

This study was conducted in a laboratory based on the following process to achieve
the stated objectives (Figure 1). During the experiment, the blinds in the laboratory were
closed to prevent direct sunlight from entering.
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2.1. Observation Equipment, and Leaf Samples

In this study, the leaves of sweet potatoes (cultivar: Beni-haruka, Beni-azuma) were
used as samples for measuring the LWC. The leaves were attached to a plastic cardboard
panel with a MicaSense 51% standard reflection panel placed in the center (Photo 1). A
Mid-70 (Livox) was the LiDAR used for the observation. A near-infrared laser with a wave-
length of 905 nm was used. This LiDAR is a model developed for autonomous driving,
and the main unit price was USD 1099 (as of May 2022), which was lower than that of the
conventional LiDAR [14,20,21] (Table 1). The conventional LiDAR is 7.9–36.3 times more
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expensive than Mid-70. The Livox LiDAR adopts a characteristic laser scanning pattern
called the non-repetitive scanning method; this pattern can improve the coverage within the
viewing angle compared with that of the conventional horizontal linear scanning method.
The sensor does not have a built-in GNSS or IMU. Table 2 summarizes the main specifi-
cations. Images were captured using a hyperspectral camera (NH-7, Eba Japan Co., Ltd.
Tokyo, Japan) and observations were obtained using LiDAR simultaneously; changes in
the spectral reflection characteristics of the leaves attributed to drying were observed. With
the NH-7, the measurements could be conducted in the shooting wavelength band of
350–1100 nm with a wavelength resolution of 5 nm. A 500 W halogen lamp was used as the
light source during shooting. As a general rule, the error of reflection intensity in LiDAR
will be large if the shooting distance is too close to the object (according to the specifications,
the error will be large if the distance is less than 2 m). Meanwhile, the footprint becomes
larger with a greater distance, and this is affected by reflections from objects other than the
leaves or standard reflection panel; therefore, the distance was set to 5 m in this study.

Table 1. A price list of conventional LiDAR and Livox Mid-70 (as of May 2022).

Sensor Price (USD) References

Leica HDS6100 18,000
Junttila et al. (2018) [14]FARO Focus3D S120 8700

FARO Focus3D X330 30,000
RIEGL VZ-400 39,900 Zhu et al. (2015, 2017) [20,21]
Livox Mid-70 1099 This study

Table 2. The main specifications of Mid-70 (Livox).

Item Specification

Laser Wavelength 905 nm

Point Rate 100,000 points/s (first or strongest return)
200,000 points/s (dual return)

Detection Range 0.05–260 m
Range Precision ≤2 cm @ 20 m

Angular Precision <0.1◦

FOV 70.4◦ (Circular)
Beam Divergence 0.28◦ (Vertical) × 0.03◦ (Horizontal)

Weight 580 g
Dimensions 97 × 64 × 62.7 mm

2.2. Correction of Measurements Using LiDAR Body Temperature (Experiment 1)

The intensity of the laser received by the LiDAR is described by the radar equation.
According to Wagner (2010) [25], when the surface of the object reflected by the laser is a
Lambert surface, the received output, Pr (unit: W), is expressed as

Pr =
PtD2

r ρλcosα

4R2 ηatmηsys, (1)

where Pt, Dr, ρλ, α, R, ηatm, and ηsys represent the transmission output (W), sensor receiv-
ing aperture (m), reflectance at wavelength λ, incident angle, distance (m), atmospheric
permeability coefficient, and system transmission efficiency, respectively. Among these
variables, the transmission output and sensor receiving aperture, reflectance at wavelength
λ, and incident angle and distance, depend on the device, object, and shooting conditions,
respectively. Other parameters need to be corrected to obtain the reflectance of the object
from the received output accurately. First, the transmission output and sensor receiving
aperture are considered as sensor-specific constants. The atmospheric permeability coeffi-
cient depends on the atmospheric conditions (e.g., visibility, temperature, humidity, and
aerosol concentration); however, this was assumed to be constant in this study. Based on
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the aforementioned assumptions, the parameters to be corrected are system transmission
efficiency, incident angle, and distance. The system transmission efficiency depends on
the internal temperature of the sensor, and this change based on internal (e.g., warm-up
after startup) and external factors (ambient temperature and relative humidity) [26]. In this
study, a thermocouple was attached to the surface of the LiDAR body; the recorded body
temperature was used to correct the measured values.

In LiDAR, the reflection intensity corresponding to Pr is output; however, the LiDAR
used in this study records the digital number (DN) obtained by correcting the influence
of distance with the reflection intensity. The DN takes an integer from 0 to 255, and if
the object does not have specular reflection, then the DN value of 0–150 corresponds to a
reflectance of 0–100%. In this study, a DN corrected using the body temperature of LiDAR
was used, shown in Equations (2) and (6).

2.3. LWC Estimation Experiment by LiDAR (Experiments 2 and 3)
2.3.1. Experiment 2

The change in reflectance attributed to drying was monitored as follows:

1. Leaves with no holes or symptoms were selected; a total of eight leaves adjusted to
10 cm × 10 cm were attached to the panel so that wrinkles were not present (Figure 2).

2. The panel was installed perpendicular to the LiDAR and the hyperspectral camera
(Figure 3).

3. Reflectance was measured over time with LiDAR and a hyperspectral camera from a
point 5 m away.

Agronomy 2022, 12, x FOR PEER REVIEW 5 of 12 

the aforementioned assumptions, the parameters to be corrected are system transmission 
efficiency, incident angle, and distance. The system transmission efficiency depends on 
the internal temperature of the sensor, and this change based on internal (e.g., warm-up 
after startup) and external factors (ambient temperature and relative humidity) [26]. In 
this study, a thermocouple was attached to the surface of the LiDAR body; the recorded 
body temperature was used to correct the measured values. 

In LiDAR, the reflection intensity corresponding to Pr is output; however, the LiDAR 
used in this study records the digital number (DN) obtained by correcting the influence 
of distance with the reflection intensity. The DN takes an integer from 0 to 255, and if the 
object does not have specular reflection, then the DN value of 0–150 corresponds to a re-
flectance of 0–100%. In this study, a DN corrected using the body temperature of LiDAR 
was used, shown in Equations (2) and (6).  

2.3. LWC Estimation Experiment by LiDAR (Experiments 2 and 3) 
2.3.1. Experiment 2 

The change in reflectance attributed to drying was monitored as follows: 
1. Leaves with no holes or symptoms were selected; a total of eight leaves adjusted to

10 cm × 10 cm were attached to the panel so that wrinkles were not present (Figure 2).
2. The panel was installed perpendicular to the LiDAR and the hyperspectral camera

(Figure 3).
3. Reflectance was measured over time with LiDAR and a hyperspectral camera from a

point 5 m away.

Figure 2. The images of leaf samples. 
Figure 2. The images of leaf samples.



Agronomy 2022, 12, 1183 6 of 12Agronomy 2022, 12, x FOR PEER REVIEW 6 of 12 

Figure 3. Schematic diagram of the observation. 

2.3.2. Experiment 3 
The LWC estimation equation that uses the LiDAR reflectance was formulated and 

verified as follows: 

1. Samples with adjusted dryness were prepared by changing the time after leaf collec-
tion so that a wide range of water content data could be obtained.

4. A total of 18 leaves adjusted to 7 cm × 7 cm were attached to the panel so that wrinkles 
were not present (Figure 2).

5. The panel was installed perpendicular to the LiDAR.
6. Reflectance was measured over time with LiDAR from a point 5 m away.
7. After obtaining the reflectance, the fresh biomass of each of the 18 leaves was meas-

ured, after which the leaves were dried at 105 °C for 24 h to measure the dry biomass.
8. The same experiment was conducted twice, with the first used for calibrating the

LWC estimation equation, and the second for validation.
In Experiment 3, the area of one section of the plastic plate was changed to 7 cm2

(total number of sections: 18) to increase the number of samples processed per experiment. 

2.4. Data and Analysis 
2.4.1. Analysis of LiDAR and Hyperspectral Data 

Data were acquired for 1 min using the Livox viewer, which is a point cloud data 
viewing/recording software manufactured by Livox; the collected data were saved in LAS 
format. Then, the open-source software CloudCompare was used to generate a raster im-
age with a pixel size of 0.5 cm that recorded the average DN in the pixel. Subsequently, 
after considering the beam divergence angle of LiDAR, the DN of the central 4 cm2 area, 
which was unaffected by the surrounding plastic plate, was averaged and used as the DN 
of the individual leaves. The individual leaf reflectance was obtained by dividing the in-
dividual leaf DN by the DN of the standard reflection panel and multiplying it by 51 (%); 
this is the reflectance of the standard reflection panel and is given as  𝑅𝑒𝑓 = 𝐷𝑁𝐷𝑁 × 𝑅𝑒𝑓, (2)

where Refleaf, DNleaf, DNpanel, and Refpanel represent the leaf reflectance, leaf DN, DN of the 
standard reflection panel, and reflectance of the standard reflection panel of the leaf (51%), 
respectively. 

Figure 3. Schematic diagram of the observation.

2.3.2. Experiment 3

The LWC estimation equation that uses the LiDAR reflectance was formulated and
verified as follows:

1. Samples with adjusted dryness were prepared by changing the time after leaf collec-
tion so that a wide range of water content data could be obtained.

2. A total of 18 leaves adjusted to 7 cm × 7 cm were attached to the panel so that wrinkles
were not present (Figure 2).

3. The panel was installed perpendicular to the LiDAR.
4. Reflectance was measured over time with LiDAR from a point 5 m away.
5. After obtaining the reflectance, the fresh biomass of each of the 18 leaves was mea-

sured, after which the leaves were dried at 105 ◦C for 24 h to measure the dry biomass.
6. The same experiment was conducted twice, with the first used for calibrating the

LWC estimation equation, and the second for validation.

In Experiment 3, the area of one section of the plastic plate was changed to 7 cm2 (total
number of sections: 18) to increase the number of samples processed per experiment.

2.4. Data and Analysis
2.4.1. Analysis of LiDAR and Hyperspectral Data

Data were acquired for 1 min using the Livox viewer, which is a point cloud data
viewing/recording software manufactured by Livox; the collected data were saved in LAS
format. Then, the open-source software CloudCompare was used to generate a raster image
with a pixel size of 0.5 cm that recorded the average DN in the pixel. Subsequently, after
considering the beam divergence angle of LiDAR, the DN of the central 4 cm2 area, which
was unaffected by the surrounding plastic plate, was averaged and used as the DN of the
individual leaves. The individual leaf reflectance was obtained by dividing the individual
leaf DN by the DN of the standard reflection panel and multiplying it by 51 (%); this is the
reflectance of the standard reflection panel and is given as

Re flea f =
DNlea f

DNpanel
× Re fpanel , (2)

where Refleaf, DNleaf, DNpanel, and Refpanel represent the leaf reflectance, leaf DN, DN of
the standard reflection panel, and reflectance of the standard reflection panel of the leaf
(51%), respectively.
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The estimation equation was evaluated using the coefficient of determination (R2) as
well as the root mean square error (RMSE) and mean absolute percentage error (MAPE).
The calculation equation is

RMSE =

√
1
n

n

∑
K=1

( fi − yi)2, (3)

MAPE =
100
n

n

∑
k=1

∣∣∣∣ fi − yi
yi

∣∣∣∣, (4)

where n, fi, and yi represent the number of data, measured value, and model-estimated
value, respectively.

2.4.2. Measurement of Leaf Moisture Content

Sweet potato leaves without any holes or disease were selected, and they were attached
to the plastic plate with care to ensure there were no wrinkles. After obtaining the DN, the
fresh biomass of the leaves was immediately weighed and dried at 105 ◦C for 24 h to obtain
the dry biomass. The LWC of one sweet potato leaf is defined by

LWC =

(
B f resh − Bdry

)
B f resh

× 100, (5)

where LWC denotes the leaf water content (%), Bfresh denotes the fresh biomass (g), and
Bdry represents the dry biomass (g).

3. Results
3.1. Correction Using LiDAR Body Temperature

Figure 4a shows changes over time in the DN of the standard reflection panel and the
body temperature of the LiDAR after a cold start. Rapid increases were observed in the
body temperature of the LiDAR and decreases were observed in the DN with the start-up,
with the changes in values being large in the 30 min period after start-up. The room
temperature and humidity were 19.5 ◦C and 43.6%, respectively, at the start of experiments,
and 21.3 ◦C and 39.8%, respectively, at the end of the experiments. As shown in Figure 4b,
a strong correlation was observed between the body temperature of LiDAR and the DN of
the standard reflection panel. Therefore, the DN of the standard reflection panel from the
LiDAR body temperature was estimated using exponentiation as

DNpanel = 15,502 BT−1.555, (6)

where DNpanel represents the DN of the standard reflection panel, and BT represents the
body temperature of the LiDAR.
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3.2. Changes in Reflectance Caused by Leaf Drying

Figure 5 shows the changes in the reflection spectra of the individual sweet potato
leaves with drying, as observed by the hyperspectral camera in leaves with the largest
change in the LWC in Experiment 2. Reflectance increased in almost all wavelength bands,
including 905 nm, from 40 min after the start of experiments to 37 h, after naturally drying
in the room. The LWC before the start of experiments was 85.6%, and this decreased to
6.9% at 49 h after the end of the experiments.
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Figure 5. Changes in the reflection spectra of the sweet potato leaves with drying, as observed by the
hyperspectral camera. The solid line denotes the LiDAR wavelength 905 nm.

Figure 6a shows the correlation between the reflectance and LWC of the individual
sweet potato leaves observed with the LiDAR in Experiments 2 and 3. The reflectance
observed with the LiDAR increased with leaf drying, which was also the case with the
hyperspectral camera (Figures 5 and 6b). Furthermore, the reflectance of LiDAR and
LWC show the same tendencies even when the observation dates are different. The LWC
estimation equation using the reflectance of LiDAR is given as

LWC = −0.0451 Re flea f
2 + 2.37Re flea f + 65.6. (7)

Agronomy 2022, 12, x FOR PEER REVIEW 9 of 12 
 

 

LWC = −0.0451 𝑅𝑒𝑓ଶ + 2.37𝑅𝑒𝑓 + 65.6. (7)

 

  

(a) (b) 

Figure 6. Correlation between the reflectance (Ref leaf) and leaf water content (LWC) of the individual 
sweet potato leaves. (a) Result of the LiDAR observation; (b) result of the hyperspectral camera 
observation (905 nm). The dashed line denotes the regression line. 

Figure 7 shows the results of verifying the LWC estimation value obtained using 
Equation (7). The LWC could be estimated with an R2 of 0.950, RMSE of 6.78%, and MAPE 
of 18.6%. 

 
Figure 7. Comparison between estimated and observed leaf water content (LWC). The solid line 
denotes 1:1 and the dashed line denotes the regression line. 

4. Discussion 

0

20

40

60

80

100

40 45 50 55 60 65 70

LW
C

 (
%

)

Ref leaf (%)

Experiment 2 (n=8)

y = −0.0451x2 + 2.37x−65.6
R2 = 0.883

0

20

40

60

80

100

40 45 50 55 60 65 70

LW
C

 (
%

)

Ref leaf (%)

Experiment 2 (n=8)

y = −0.0923x2 + 7.42x−72.3
R2 = 0.788

0

20

40

60

80

100

0 20 40 60 80 100

O
bs

er
ve

d 
LW

C
 (%

)

Estimated LWC (%)

R2 = 0.950
RMSE = 6.78
MAPE = 18.6

1:1

Figure 6. Correlation between the reflectance (Ref leaf) and leaf water content (LWC) of the individual
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Figure 7 shows the results of verifying the LWC estimation value obtained using
Equation (7). The LWC could be estimated with an R2 of 0.950, RMSE of 6.78%, and MAPE
of 18.6%.
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4. Discussion

The body temperature of LiDAR is a useful parameter for correcting the system
transmission efficiency; furthermore, LiDAR reflection intensity can be corrected and
converted to reflectance without using a standard reflection panel by measuring the body
temperature. A standard reflection panel is expensive and needs to be imprinted at the same
time as the object, and therefore, it is a constraining factor for the practicality of observations.
However, the reflectance of an object can be obtained without using a standard reflection
panel when using the body temperature of the LiDAR. Although angle correction is a
future task, the 3D mapping of reflectance could be conducted while moving within a
field if angle correction is possible. Obtaining reflectance with a passive sensor such as a
camera requires the use of a standard reflection panel or simultaneously measuring the
incident light and converting it to reflectance; however, it is expected that the use of LiDAR,
though limiting applications to specific wavelengths, will allow for an easier acquisition of
reflectance values.

Most reflectance in leaves increased in the range from 350 nm to 2500 nm [23]; changes
in the reflection spectra accompanying the drying of individual sweet potato leaves ob-
tained with a hyperspectral camera were in agreement with these results. Although the
wavelength of 905 nm used by LiDAR is not within the main water absorption band,
reflectance is closely related to the leaf structure, and therefore, it is believed that changes
in structure alongside drying (invasion of air caused by plasmolysis) resulted in changes
to reflectance, which created an indirect correlation with LWC. Thus, utilizing this phe-
nomenon can enable the use of the reflectance of the 905 nm single-wavelength LiDAR,
which has not been used in plant observations to date to the best of our knowledge, for
estimating LWC.
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Water stress is a factor that influences crop productivity, and therefore, understanding
LWC is an important element in production management [27]. Thus, comprehensively
acquiring the LWC in addition to morphological information can allow for its utilization
in stress detection, irrigation timing, and yield prediction applications [28]. Furthermore,
905 nm is the mainstream wavelength used by LiDAR for sensors, and thus, the use of
this wavelength provides new possibilities for many LiDAR applications. Furthermore,
the leaf structure correlates with the photosynthetic capacity and nitrogen content [29];
the LiDAR reflection intensity may be applicable not only to LWC estimation but also to
these estimations.

However, structural changes that accompany drying vary by species, and it has
been reported that drying may result in reflectance decreasing further [23]. This can be
attributed to the cell wall damage associated with drought [30]. In fact, our sweet potato
leaf observations confirmed that reflectance decreased after initially increasing in the
720–880 nm range as drying progressed (Figure 5). A regression equation for the 905 nm
wavelength was obtained because the aforementioned effect was not present in this range;
however, care should be taken with other plants as the same changes may not occur there.

Finally, there is the possibility that favorable results were obtained because experi-
ments were conducted in a room where sunlight was not directly incident on the plant
leaves. A 905 nm wavelength corresponds to a local minimum in the solar spectrum at
the Earth’s surface caused by absorption by water vapor in the upper atmosphere [22].
However, strong background light (e.g., when direct sunlight is present) becomes a noise
in long-range LiDAR observation [31]. It is expected that the same observations can be
achieved outdoors at night, during cloudy weather, or with close-range observation; how-
ever, further verification will be required for such observations in the daytime, particularly
under conditions where direct sunlight is present.

5. Conclusions

Low-cost LiDAR was used to perform LWC estimation using the reflectance of LiDAR
instead of measuring the shape of plants.

The results of Experiment 1 show that measuring the body temperature of the LiDAR
allowed for LiDAR reflection intensity correction and its conversion to reflectance. This
eliminated the constraints associated with standard reflection panel use, and therefore,
LiDAR reflectance use became easier.

In Experiments 2 and 3, the corrected LiDAR observation data were compared with
changes in reflectance that accompanied changes in the LWC; the results indicate that the
reflectance at 905 nm, which is used in LiDAR, and the reflectance measured with LiDAR
showed a similar tendency. The same relationship between reflectance and LWC measured
with LiDAR was observed regardless of the observation day. The results of estimating LWC
using the reflectance of LiDAR show that the LWC could be estimated with an R2 of 0.950,
RMSE of 6.78%, and MAPE of 18.6%.

The wavelength of 905 nm used by LiDAR is not the main water absorption band;
however, the reflectance was closely related to the leaf structure, and therefore, it was
believed that structural changes accompanying drying resulted in changes in reflectance,
which allows for an indirect estimation of the LWC. Furthermore, it was suggested that
utilizing this phenomenon can enable the use of the reflectance of the 905 nm single-
wavelength LiDAR, which has not been used in plant observations to date to the best of our
knowledge, for estimating the LWC. These results show that physiological parameters and
plant morphology information could be simultaneously observed with LiDAR applications
in plant measurement.
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