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Abstract: In view of the continuous increase in labor costs for complex picking tasks, there is an
urgent demand for intelligent harvesting robots in the global fresh fruit cultivation industry. Fruit
visual information is essential to guide robotic harvesting. However, obtaining accurate visual
information about the target is critical in complex agricultural environments. The main challenges
include the image color distortion under changeable natural light, occlusions from the interlaced
plant organs (stems, leaves, and fruits), and the picking point location on fruits with variable shapes
and poses. On top of summarizing the current status of typical fresh fruit harvesting robots, this paper
outlined the state-of-the-art advance of visual information acquisition technology, including image
acquisition in the natural environment, fruit recognition from the complex backgrounds, target stereo
locating and measurement, and fruit search among the plants. It then analyzed existing problems and
raised future potential research trends from two aspects, multiple images fusion and self-improving
algorithm model.
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1. Introduction
1.1. Urgent Need of Fresh Fruit Robotic Harvesting

Fresh fruit is an excellent food source for human nutritional needs, essential for food
safety, and is widely planted and produced all over the country. Fresh fruit plants can be
grouped into two categories: herbaceous plants represented by tomato, strawberry, and
sweet pepper, and woody plants represented by apple, citrus, and kiwi. Fresh fruit planting
scale and economic benefits play an essential role in agricultural products internationally.
They are an essential source for farmers to increase their income. For example, the an-
nual global production of typical fresh fruit of tomato, citrus, apple, and strawberry is
182 million tons [1], 89 million tons [2], 86 million tons [3], and 9 million tons [4], respec-
tively. Their planting scale and yield in China rank first globally, accounting for 34% [1],
15% [2], 46% [3], and 40% [4] of total production, respectively.

Since fresh fruit products require good eating and appearance quality, selective har-
vesting methods are required to ensure that mature fruits are harvested quickly and without
damage. Fresh fruit harvesting involves a series of processes such as fruit maturity discrim-
ination, fruit separation from plants, fruit collection, and transportation. It is a complex,
labor-intensive, and minimally mechanized operation. With the aging population and the
increasing loss of the agricultural labor force, the phenomenon of “difficult and expensive
labor” in fresh fruit harvesting has become increasingly prominent, and the labor cost of
harvesting has reached 30~50% of the total production cost [5–7].

Given this, the use of intelligent harvesting robots to replace or assist the manual
harvesting of fresh fruits is significant for reducing the production costs and improving
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economic returns [8]. As a typical representative of the agricultural robot, the fruit harvest-
ing robot is considered to have good prospects in the future of smart agriculture and has
attracted extensive attention around the world.

1.2. Target Visual Information Acquisition of Harvesting Robots

Fruit characteristics, such as color, shape, position, and posture, are prerequisites
for autonomous picking, and the visual information acquired by the robot’s camera is
the comprehensive reflection of the fruit’s reflection characteristics, imaging sensors, and
lighting conditions. The fruit’s image color and size are usually necessary for estimating
its maturity. For example, mature fruits such as strawberries, apples, and tomatoes are
relatively easy to identify from the background, where there is a significant difference in
color from the background objects such as plant stems and leaves. Fruits such as cucumber,
pepper, and watermelon, have similar colors to plant stems and leaves, making them
difficult to recognize. Besides, based on the identification of mature fruit in the image,
it is necessary to locate and measure the spatial posture of the fruit to guide the robot’s
end-effector achieving an expected picking operation. For fruit with long stems, such as
strawberry [5], tomato [9], and sweet pepper [10], the stem is usually considered as the
holding area for picking and separating the fruit from the plant to avoid damage. For fruit
with short stems that are challenging to detect, such as apple [7], kiwi [11], and citrus [12],
the fruit body is usually defined as the retention area to locate.

However, for the biomorphic plants in the natural environment, their fruits, leaves,
and stems show the characteristics of cluster crisscross, random distribution, and mutual
shielding, and their image color varies dynamically with the fluctuation of sunlight. Due
to the special working conditions in an unstructured agricultural environment, the acqui-
sition of target visual information has become one of the main bottlenecks restricting the
application of harvesting robots in production [13,14].

Given the significance of visual information acquisition for harvesting robots, this
paper reviews the advances in four aspects: image information acquisition in a natural
environment, fruit recognition from complex background, fruit stereo location, and fruit
search among the plant, based on the state-of-the-art robots for typical fruits. Additionally,
the existing problems are summarized and analyzed, then the future development trend of
harvesting robot’s vision technology is proposed.

2. Current Status of Fresh Fruit Harvesting Robots
2.1. Typical Harvesting Robots

With the breakthrough development of basic technology theories such as artificial
intelligence, deep learning, and intelligent control, the fresh fruit harvesting robot has
entered a critical period from laboratorial research to industrial application. As shown
in Figure 1, taking typical fresh fruits such as apple [15], strawberry [16], tomato [17],
and kiwi [18] as objects, a series of commercial fresh fruit harvesting robots have been
developed and applied in standardized greenhouses and orchards.

The fresh fruit harvesting robots in the greenhouse environment mainly focused
on strawberry, tomato, sweet pepper, and cucumber. The widely concerned prototype
robots include: The sweet pepper harvesting robot SWEEPER by Arad et al. [10] that
could work in the greenhouse day and night with an average picking success rate of 61%
and a picking efficiency of 24 s per fruit. The strawberry harvesting robot developed by
Agrobot company [16] that realized the full-automatic picking of strawberries, with the
picking efficiency of 3~5 s per fruit. The tomato harvesting robot developed by MetoMotion
company [17] that was supposed to reduce labor costs by 50% with the multiple picking
arms. The cucumber picking robot developed by Li et al. [19] that could identify cucumbers
of similar color with plant leaves and stems, and its picking success rate is 85%, and the
efficiency 8.6 s per fruit.
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sion from Ref. [17]. 2019, Leichman A.K.); (d) apple harvesting robot (Photo: Reprinted with per-
mission from Ref. [15]. 2019, Thorne J.); (e) apple harvesting robot (Photo: Reprinted with permis-
sion from Ref. [20]. 2017, Dininny S.); (f) kiwi harvesting robot (Photo: Reprinted with permission 
from Ref. [18]. 2021, Saunders S.).  

2.2. Characteristics of the Robot’s Visual Unit 
The vision system of the harvesting robots varies for different picking targets; its 

characteristics mainly include the imaging sensor, the specific content of the fruit visual 
information, the detection range, the view height, and so on. RGB-D, binocular camera, 
and ranging sensor are widely used for harvesting robots to obtain the color, size, posi-
tion, and pose information of fruits in a specific operational area. As shown in Figure 2, 
RGB-D could output color images and depth point cloud data in the field of view; the 
binocular camera outputs two field images corresponding to the left and right cameras, 
respectively, and the target point’s 3D coordinate in the public area of the two views cal-
culated through image pixel matching; ranging sensors are usually used to obtain depth 
information of individual points based on the principle of reflection ranging. 

Figure 1. Typical harvesting robots. (a) Sweet pepper harvesting robot (Photo: Reprinted with
permission from Ref. [10]. 2020, Arad B.); (b) strawberry harvesting robot (Photo: Reprinted with
permission from Ref. [16]. 2019, Zitter L.); (c) tomato harvesting robot (Photo: Reprinted with
permission from Ref. [17]. 2019, Leichman A.K.); (d) apple harvesting robot (Photo: Reprinted
with permission from Ref. [15]. 2019, Thorne J.); (e) apple harvesting robot (Photo: Reprinted with
permission from Ref. [20]. 2017, Dininny S.); (f) kiwi harvesting robot (Photo: Reprinted with
permission from Ref. [18]. 2021, Saunders S.).

The fresh fruit harvesting robot in the orchard environment mainly took apple, kiwi,
and citrus fruits as the objects. Representative robot products include: The apple harvesting
robot by Abundant Robotics company [15], that had an average picking efficiency of one
second per fruit for the standardized-shape trees, saving more than 60% of picking labor.
The apple harvesting robot by Israel FFrobotics [20] that adopted six picking arms to
achieve an efficiency of 8000 fruits per hour and a success rate of 80%. A kiwi harvesting
robot by Robotics Plus [18], that had a picking efficiency of 5.5 s per fruit, and a success
rate of 51%.

2.2. Characteristics of the Robot’s Visual Unit

The vision system of the harvesting robots varies for different picking targets; its
characteristics mainly include the imaging sensor, the specific content of the fruit visual
information, the detection range, the view height, and so on. RGB-D, binocular camera,
and ranging sensor are widely used for harvesting robots to obtain the color, size, position,
and pose information of fruits in a specific operational area. As shown in Figure 2, RGB-D
could output color images and depth point cloud data in the field of view; the binocular
camera outputs two field images corresponding to the left and right cameras, respectively,
and the target point’s 3D coordinate in the public area of the two views calculated through
image pixel matching; ranging sensors are usually used to obtain depth information of
individual points based on the principle of reflection ranging.

The main characteristic parameters of some representative typical robot vision units
are listed in the Table 1. Compared with the harvesting robots in a greenhouse whose target
fruit exist in a small field of view, the orchard robot needs to obtain the image information
from the large-scale canopy. To meet the locating needs for soft fruit stalks, except the
cameras, auxiliary ranging sensors also could be used for strawberries and tomatoes.
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Figure 2. Typical visual units of harvesting robots.

Table 1. Characteristic list of some harvesting robots’ visual units.

Object Fruit Sensor Visual Information View Field

Pepper RGB-D [10,21],
Binocular camera [22]

Fruit color [21], 3D point cloud [21],
spatial coordinates [21], fruit stalk

posture [21], plant main stem
morphology [10]

Detection range 200~600 mm [22],
Height range 1000 mm [23]

Strawberry
Laser ranging sensor [24], 3 CCD

cameras [25], binocular camera [26],
RGB-D [5], infrared sensor [5]

Fruit color [25], position [26], and
stem posture [5]

Detection range 200~700 mm [26,27],
Width range 350~670 mm [26,27],

Height range 200~300 mm [28]

Tomato
Photoelectric sensor [29], binocular

camera [30], laser sensor [9],
RGB-D [31]

Fruit color [9], size [9] and position
[30], fruit stalk posture [31]

Detection range 400~1000 mm [32],
Height range 600 mm [33]

Apple Binocular camera [34], RGB-D [35] Fruit color [34,35], size [34,35] and
position [34,35]

Detection range 1000~2000 mm [36],
Height range 1000~1500 mm [7]

Citrus Binocular camera [37], RGB-D [38] Fruit color [37,38], size [37,38] and
position [37,38]

Detection range 500~1000 mm [38],
Height range 1850 mm [39]

Kiwi
Monocular camera + infrared position

switch [40], binocular camera [41],
RGB-D [42]

Fruit color [40], size [40] and
position [40], trunk shape [43] and

position [11]

Detection range 500~1000 mm [42],
Visible area 3170 × 968 mm [43],

1250 mm × 1800 mm [11]

3. Image Acquisition under Agricultural Environment
3.1. Image Color Correction for Various Sunlight Conditions

Image color distortion under sunlight with temporal and spatial variation is an objec-
tive challenge for visual information acquisition in the agricultural natural environment.
With the high dynamic range (HDR) [44] of the foreground target and background ra-
diation, and the limited range of target radiation sensed by the camera under a certain
exposure intensity, the exposure distortion (overexposure/underexposure) of the image
needs to be corrected. The image color correction methods under the natural environ-
ment mainly involve two aspects: imaging hardware unit optimization and image data
correction processing.

In terms of imaging hardware unit optimization, the imaging color is stabilized mainly
through the artificial light source and camera imaging adjustment. Yuan [45] proposed a
various sunlight compensation method based on the color constancy principle, which en-
sured the stable color of cucumber flower by dynamically adjusting the camera’s exposure
gain and white balance parameters. Fu [46] set the foreground LED light to highlight the
contour boundary of overlapping targets and reduce background interference for acquiring
kiwi fruit images at night, and the detection accuracy was 88.3%. Zhang [47] addressed
the problem of shadow and high brightness on the fruit surface through fusing the multi-
view images, and the apple recognition accuracy was improved from 90.5% to 93.2%. To
overcome the color distortion of the sweet pepper plant image under the background with
intensive radiation, Arab [48] integrated the image under the condition of natural light and
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artificial light by the Flash-No-Flash (FNF) controlled illumination unit (Figure 3), and the
fruit recognition accuracy was improved by 4%.
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Figure 3. Color correction from images with/without artificial lighting (Photo: Reprinted with
permission from Ref. [48]. 2019, Arad B.). (a) Image without artificial lighting; (b) Image with
artificial lighting; and (c) Image after color correction.

In terms of the image data correction processing, the color distortion is mainly resolved
according to the actual image data. Xiong et al. [49] proposed the Retinex enhancement
algorithm to overcome the uneven brightness of lychee images under natural lighting
conditions. Kurtulmus [50] established a neural network model for green peach recognition
based on the color difference between the backlight and front-light images to weaken the
influence of various light conditions. Yu [35] and Vitzrabin [51] transformed RGB images
into HSV and NDI color spaces to separate image brightness channels, and then processed
them based on chroma channels to improve the red apple’s identification. Lv [52] used
an adaptive gamma correction algorithm to correct the image color. Silwal [7] fused the
optimal imaging area in different exposure images of the same view field to overcome
the exposure distortion in specific image areas under natural light conditions. Feng [53]
estimated the illumination radiation intensity according to four images of different exposure
intensity, and then restored the image color of the global view (Figure 4).
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3.2. Similar-Colored Target Image Acquisition

When the picking objects are cucumber, pepper, green orange, and so on, the fruit
has a similar color to the plant stems and leaves. It is not easy to accurately recognize
fruit targets based on the broad visible light image information. Fortunately, due to the
variability in intrinsic micro-structure components such as carbohydrates, water, and fiber,
the reflection characteristics of plant stems, leaves, and fruits in the specific waveband are
significantly different [54].

An image is a visual representation of the spectral reflection characteristics of an object.
Based on the spectral characteristics of the plant’s similar-colored organs, it is sensible
to obtain the optimal spectral image reflecting the similar-colored organs’ microscopic
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differences, so as to enrich the detection basis of the near color targets. Particularly, it is
effective to select the strong reflection band as the imaging band. The target area would
be highlighted in gray and background interference would be weakened. Gan et al. [55]
distinguished the fruit and leaves of green orange according to the characteristics of the
orange color image and thermal image (Figure 5). Bac et al. [56] established a binary
tree classification model based on the images of six wavebands in the 447~900 nm range
to identify the sweet pepper stems, leaves, and fruits. Li et al. [57] and Yuan et al. [58]
selected 800 nm as the optimal wavelength to distinguish the cucumber fruit from the
similar-colored leaves. Sa [59] fused the color image and near-infrared image as the input
of the Fast R-CNN network, so that the detection accuracy of green pepper, green apple,
and melon was improved from 0.816 to 0.838. Fernandez [60] constructed the visual system
obtaining 635 nm, 880 nm, and depth images (Figure 6), to improve the recognition result of
apple and grapefruit. Feng [61] selected 450, 600, and 900 nm bands as the optimal imaging
wavelength. After the multi-band image fusion, the image grayscale difference between
the fruit and background was 7.89 times that of a single-band image. Both Liu [62] and
Choi [63] improved the image detection result of kiwi fruit and citrus by fusing RGB and
NIR images.
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Table 2. Visual unit for fruits in the similar-colored background.

Fruit Object Sensor Optimal Imaging
Wavelength

Green Citrus Color camera + thermal
camera [55]

750~1400 nm [55],
827~850 nm [63]

Green Pepper
CCD camera + 6 wavelength

filters [56]
Multispectral camera [59]

447 nm [56], 562 nm [56],
624 nm [56], 692 nm [56],

716 nm [56], 900~1000 nm [56],
750~1400 nm [59]

Apple
Color camera + 2 band-pass

interference filters [60]
Thermal imager [64]

635 nm [60], 880 nm [60],
750~1400 nm [64]

Tomato Near infrared camera + filter
wheel with 3 filters [61]

450 nm [61], 600 nm [61],
900 nm [61]

Kiwi Near infrared image from
Kinect camera [63] 827~850 nm [63]

4. Fruit Target Identification from Complex Background
4.1. Visual Feature Extraction and Fusion

Because of the unstructured characteristics of agricultural objects, such as random
spatial distribution, overlapping occlusion, and various shapes, it is necessary to establish
an adaptive recognition model for improving the detection effect of fruit targets [65], which
could integrate multiple features such as color, shape, texture, and posture. Mathematical
definition of the visual features is the premise for the model. Giselsson [66] classified the
seedling leaf species of cornflower and eggplant according to the shortest Euclidean dis-
tance between the pixels on the leaf edge contour. Additionally, the highest discrimination
accuracy of 97.5% was achieved with the Legendre polynomial feature set consisting of
10 numerical values. Pastrana [67] segmented the adhesive tobacco leaf through elliptic
fitting. With no overlapping, the method was able to detect plants with 2~4 leaves with
almost 100% accuracy. Senthilnath [68] took the green fruit in the large-scale tomato plant
image by using the expectation–maximization algorithm (EM), and the segmentation ac-
curacy reached 73.5%. Vitzrabin [69] proposed the adhesive sweet pepper fruit detection
method according to the depth gradient on fruit, which obtained the true-positive rate
of 0.909 under the natural illumination. Combining the normal vector with the depth
data, Barnea [70] proposed the segmentation method of green sweet pepper fruit under
the near color background. With the best combination of the symmetry detection and
highlight-based pruning, the mean average precision reached 0.55. Rakun [71] used the
Wigner Ville distribution algorithm to classify green apple and leaf features according to
the texture features, obtaining at least 53% of all fruit pixels. Kurtulmusti [72] proposed
a green orange recognition method based on Gabor texture analysis, and the detection
accuracy reached 75.3%.

4.2. Classic Machine Learning Algorithms Application

The classic algorithm research mainly focused on application and improvement of ma-
chine learning algorithms with better computation efficiency and intelligibility. Song [73]
established the support vector machine classifier (SVM) for pepper fruit recognition, com-
bined with the most stable chroma (MSCR) and texture information, and the recognition
rate was 74.2%. Ostovar [74] adopted the reinforcement learning Epsilon-Greedy algorithm
to obtain the adaptive segmentation threshold, so as to improve the segmentation of yellow
sweet pepper fruit under different lighting conditions. The performance with the Decay-
ing Epsilon-Greedy algorithm reached 91.5% of the performance achieved by exhaustive
search, with 73% fewer iterations than the benchmark. According to color features and
shape features, Zhao [75] developed a support vector machine (SVM) algorithm with ra-
dial basis function kernel to recognize apple fruit, with the average recognition accuracy
of 93.3%. Vitzrabin [51] proposed an image adaptive segmentation algorithm based on
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multi-objective optimization, and the red sweet pepper recognition rate under various
illumination was 87%. Lee [23] took the color parameters of hue, saturation, brightness
Y, Cb, Cr as inputs of the neural network to recognize the red sweet pepper fruit with
82.16% accuracy.

4.3. Deep Learning Model Application

With the improvement in the performance of computing chips in recent years, the
deep learning model [76] with a multi-layer convolution feature extraction network as
the core concept has been widely used in target recognition for harvesting robots. Due to
its “end-to-end” model structure and good portability to avoid the complex construction
process, the model has higher recognition accuracy, and has unique advantages in the
perceptual fusion of complex visual information with agricultural work objects [77,78].
According to the recognition results of the target area, the deep learning model can be
categorized into the classification detection model and semantic segmentation model. The
classification detection model takes the target category and its bounding box area as the
output results. In addition, the semantic segmentation model can also output the target
pixel area for accurate labeling.

The single-stage network model represented by the YOLO deep convolution neural
network was widely used in fruit target detection. Zhao [79] and Yan [80] proposed an
apple detection method based on YOLOv3 and YOLOv5, with fruit accuracy of 87.71%
and 83.83%; Kounalakis et al. [81] used YOLOv3 to identify tomatoes with 98% accuracy
and fruit stalks with 90% accuracy. Birrell [82] used YOLOv3 to detect cabbage in four
growth stages with the overall detection accuracy of 0.91 and the classification accuracy of
0.82. Yu [83] adopted the improved rotated YOLO (R-YOLO) model, which can output the
bounding box with rotating attitude parameters. Compared with the traditional YOLOv3,
the harvest success rate of the harvesting robot was increased by 12%. Regarding the
two-stage network model represented by fast R-CNN, Williams [11] obtained a recognition
accuracy of 90.70% for kiwi calyx in a small area, but its real-time operation was 5 fps,
which was not as good as the two-stage model. Combined with the characteristics of the
two-type model, Kirk [84] adopted a new one-stage model RetinaNet, the recognition
accuracy for mature strawberry fruit was 89.2%, and its performance was better than fast
R-CNN for the same sample set. In order to further improve the real-time performance
of the algorithm, Cui [85] built a lightweight model including a LeanNet backbone, fea-
ture enhancement module (P-Enhance), self-attention module, and four-scale perdition
network. The recognition accuracy of green peach in the far and near view scale was 97.3%,
which is better than YOLOv4 and Fast R-CNN models in terms of detection accuracy and
real-time performance.

Compared with the traditional machine learning algorithm, the deep learning net-
work model significantly improves the target detection accuracy. However, because the
rectangular bounding box output by the detection network has difficulty fitting the edge of
the fruit target accurately, the fruit position and posture information could not be obtained.
If the central point of the bounding box is directly used as the central point of the fruit,
there will be a significant positioning error. Therefore, the target segmentation network is a
better choice to obtain accurate fruit target pose information.

Williams [43] proposed a semantic segmentation method for the kiwi calyx region
based on the FCN-8S complete convolution network (Figure 7), and the detection accuracy
of dense fruits reached 79.0%; to maintain the clarity of the segmentation results, Zhang [86]
used the Deeplab v3 network to segment multiple targets such as branches, trunks, leaves,
and apples, and the per-class accuracy was 97%. To meet the segmentation and recognition
needs of individual targets of overlapping fruits, Yu [87] and Jia [88] used the instance
segmentation model Mask R-CNN to identify the overlapping strawberry and apple fruits,
which could determine not only categories but also individuals. To improve the time
efficiency of multiple category target segmentation, Kang [34] proposed a multi-task deep
neural network DaSNet, which could realize the semantic segmentation on the branch and
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instance segmentation on apple fruit, as shown in Figure 8. Compared with mask R-CNN,
the accuracy of fruit recognition was equal, but the detection time was reduced by 50%.
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5. Fruit’s Stereo Location and Measurement

Based on the 2D image information recognition and segmentation of the fruit target
area in the field of view, obtaining the 3D pose information of the target fruit is essential for
guiding the robot operation. The positioning of the fruit picking operation part by the robot
is mainly divided into three steps: the measurement of the 3D coordinates of the target
area; the dynamic servo alignment control in the process of target approaching; and the
accurate measurement of the pose parameters of the picking target area in the close-up field
of view. The specific implementation methods of each step require selecting the appropriate
hardware and algorithm model of the stereo measurement unit in combination with the
requirements of the picking operation and the target characteristics.

5.1. Hardware Unit of Stereo Vision

Stereo vision technology is the most widely used stereo measurement method for fruit
harvesting robots. Three products are relevant according to the measurement principle,
including the RGB-D depth camera, dual/multi-camera, and structured light vision sys-
tems (monocular camera + optical auxiliary components). Wang [32] and Yu [35] built
a fixed-mounted binocular vision system to measure the spatial coordinates of the fruit
center according to the matching relationship between the left and right camera images.
Kaczmarek [89] developed a five-eye stereo vision system (Figure 9a) and proposed a par-
allax map synthesis method based on error matching point exclusion (EEMM) to improve
the measurement accuracy of the vision system. On top of obtaining the point coordinates,
in order to further measure the spatial pose information of the fruit area, Ling [30] and
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Xiang [90] reconstructed the discrete point coordinates obtained by the binocular camera-
based on the parallax constraints and the grayscale feature matching of the target area to
form the point cloud data of the target area in the camera field of view. In view of the
high precision and fast response of the laser radar, Si [91] and Eizentals [92] matched and
fused the laser detection depth image with the color image to measure the 3D shape and
spatial attitude of the fruit (Figure 9b). Gongal [93] fused 2D image and PMD CamCube3D
camera depth image data to locate apple targets spatially in a large field of view (Figure 9c).
Feng [94] built a vision system (Figure 9d) composed of a single camera and line structured
light to locate the overlapping fruit according to the image morphology of the fruit surface
stripes to reduce the redundant information of the laser radar field of view. With the perfor-
mance improvement and cost reduction of depth camera products in recent years, RGB-D
cameras represented by Microsoft Kinect, Intel RealSense, and LIPS LIPSedge have become
the best choice for picking robots. Lehnert [95] can realize the comprehensive measurement
of fruit size, posture, and surface contour curvature by fitting the 3D geometric shape of
fruit and solving the surface normal vector according to the RGB and depth point cloud
information automatically aligned and matched by the RGB-D camera.
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Figure 9. Stereo vision system for fruit harvesting. (a) Multiple cameras set for obtaining depth maps
of plants (Photo: Reprinted with permission from Ref. [89]. 2017, Kaczmarek A.L.); (b) camera and
laser sensor combined application for pepper 3D pose estimation (Photo: Reprinted with permission
from Ref. [92]. 2016, Eizentals P.); (c) 2D and 3D cameras combined application for apple fruit yield
estimation (Photo: Reprinted with permission from Ref. [93]. 2016, Gongal A.); (d) structured light
stripe vision unit for overlapped tomato fruits (Photo: Reprinted with permission from Ref. [94].
2014, Feng Q.).
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In addition, according to the size of the image field of view obtained by the robot
vision system, the vision unit can be divided into three types: distant view, close view, and
distant–close view combination. The close-range vision system usually installs the camera
at the end of the manipulator in the form of the eye-in-hand to collect the close range and
minor field images of plants. This method has high accuracy for fruit pose positioning, but
the effective detection range is small. Lehnert [21] can measure features such as the surface
curvature of the sweet pepper and the posture of the fruit stem through the RGB-D camera
installed at the end of the manipulator. The distant-range vision system usually fixes the
camera on the robot in the form of eye-to-hand to collect the plant distant-range image
with a large field of view, which has a sizeable effective detection range and low accuracy
for fruit pose measurement. For example, Yu [35] used the distant-range binocular vision
system to locate the center point of the apple which approximates a sphere. On this basis,
Feng [96] developed a vision system for strawberry harvesting robots with a combination
of distant and close views, reducing the long-range positioning error by 19.53% on the
premise of obtaining a large operation field of view.

5.2. Measurement of Position and Posture

In view of the differences between various fruit picking methods, the 3D pose informa-
tion that the robot needs to obtain is also different. For apple [20], kiwi [18], citrus [12], and
other fruits with short-stalked approximately spherical fruits, it is usually only necessary
to obtain the spatial coordinates of the central area of the fruit to guide the manipulator
to operate. It is challenging to locate the center point of fruit by fitting the contour of
sticky and occluded fruit based on the visible region. Nguyen [97] studied the apple pixel
clustering segmentation method based on pixel Euclidean distance for apple tree images
collected by an RGB-D camera. Xiang [90] generated a tomato plant depth map based
on parallax constraints and grayscale feature matching of the target area. Through OTSU
threshold segmentation and least squares contour fitting of the depth map, the accuracy of
single fruit recognition in clustered lychee fruit clusters was 87.9%. Kang [98] proposed a
recognition and grasping estimation method based on the PointNet model according to the
RGB-D point cloud data in the visible area of apple fruit, and the success rate of harvesting
reached 0.8.

However, for soft-skinned fruits such as tomato, strawberry, and sweet pepper, it is
usually necessary to obtain the spatial pose information of the fruit and the stems to guide
the manipulator to separate the fruit from the stems. Xiong [5] used an IR sensor to scan the
fruit (Figure 10a), and Yu [83] established the R-YOLO fruit detection model (Figure 10b)
to determine the inclined posture of the central axis of strawberry fruit, respectively, to
improve the positioning accuracy of the cutting point of the fruit stem on the central axis of
the fruit. Eizentals [92] matched and fused the depth image obtained by laser radar with
the color image to locate the growth posture of pepper fruit. Lehnert [21], according to the
RGB-D point cloud data (Figure 10c) of the sweet pepper fruit and stem area, as well as the
normal vector gradient characteristics of the fruit surface, determined the optimal posture
of the picking sucker for fruit adsorption and the cutting point of the stem. Kounalakis [81]
positioned the tomato fruit using the distant view image, and further localized the fruit
stalk through a close-up camera mounted on the picking claw, which guided the picking
claw to precisely hold the fruit stalk. To improve the obstacle avoidance performance of
robot picking operation, Bac [22] further obtained the spatial shape of the main plant stem
based on the positioning of sweet pepper fruit and the stem and obtained the optimal
operation posture of the fruit stalk from multiple perspectives (Figure 10d).
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the position relationship between the main-stem and pepper fruit (Photo: Reprinted with permission
from Ref. [22]. 2017, Bac C.W.).

6. Disordered Fruits Search from Plants

Plant stems, leaves, and fruits grow alternately and randomly distributed. Efficient
search and detection of randomly distributed fruit targets in tall plants is of great sig-
nificance for improving the effective working space of robots and improving work effi-
ciency. The fruit target search methods are mainly categorized into passive detection and
active detection.

6.1. Passive Detection with Fixed View Field

Passive detection means that the camera obtains the image of the picking area with
a fixed attitude to distinguish and locate the fruit within the characteristic field of view.
It is usually used in robot operation scenarios with large object distance space or high
fruit density, such as apple, kiwi, and strawberry. For example, Zhang [6], Silwal [7], and
Yu [35] used fixed cameras to collect the global image information of the robot operation
area; Williams [43] collected images of dense fruit of kiwifruit cultivated on trellises with
four sets of RGB-D depth cameras upward to realize the identification and positioning
of the calyx; Xiong [5] and Feng [96] obtained the image information of strawberry fruits
cultivated overhead with a fixed perspective camera, and determined the picking order of
the fruits accordingly. The passive detection vision system is simple in configuration and
easy to use, but the detection range is limited. It is difficult to cover the fruit distribution
area accurately, and the images randomly collected from a fixed perspective will contain
much redundant information.

6.2. Active Detection with Multiple View Field

Active detection refers to the identification and positioning of fruits in different field
of view areas by a single camera with a moving posture or multiple cameras with different
postures. It is usually used in operation scenes where it is difficult to obtain a large field
of view image due to small object distance, or the distribution of fruits is sparse, such as
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tomato and sweet pepper. The active detection vision system needs to integrate the image
information from the multiple fields of view. The system configuration and processing
operation are relatively complex, but it can realize the active search and detection of the
target, which is conducive to expanding the operation range of the robot. At the same time,
the directional search based on the fruit distribution law can reduce the robot’s acquisition
of redundant interference information.

Firstly, the active multi-view detection for a single fruit target can improve the accuracy
of the picking operation, as shown in Figure 10. Yamamoto [28], based on the strawberry
fruit recognition in the field of view of the distant-range camera, further determined the
posture of the fruit stem by the close-range camera at the end of the manipulator to improve
the operation accuracy of the fruit stem. Lehnert [95] installed the camera at the end of the
manipulator and realized the search for fruits distributed in different areas by controlling
the scanning movement according to a predetermined trajectory (Figure 11a). Lehnert [99]
further controlled the movement of the manipulator dynamically according to the dynamic
relationship between the occlusion of fruits in the dynamic field of view of the camera, and
the posture of the manipulator to maximize the visible area of fruits in the field of view
of the robot (Figure 11b). Mehta [12,100] adopted the camera in hand (CIH) configuration
vision system to dynamically control the movement trajectory of the manipulator according
to the coordinate changes in the citrus fruit in the dynamic field of view of the camera, so
as to realize the directional harvesting movement of the fruit. To avoid the interference
of the picking claws on the main stem of the plant, Bac [80], Arad [10], Barth [101], and
Hemming [102] et al. collected the images of sweet pepper fruits from multiple perspectives
through the camera installed at the end of the manipulator, to determine the optimal fruit
clamping strategy. The success rate of the relative passive detection method was increased
from 14% to 52% [101].
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Figure 11. Active multi-view detection for a single fruit target. (a) Scanning trajectory for determining
the pepper fruit from plants (Photo: Reprinted with permission from Ref. [95]. 2017, Lehnert C.);
(b) multi-perspective visual observation for occluded fruit (Photo: Reprinted with permission from
Ref. [99]. 2018, Lehnert C.).

Secondly, the multi-view active search guided by the growth form of the plant stem
can improve the operation range and efficiency of the picking robot, as shown in Figure 11.
Bac [103] took the cultivated nylon suspension wire with high brightness reflection charac-
teristics as the visual mark to identify and locate the sweet pepper stem wrapped around it.
Amatya [104] used the method of combining straight lines and exponential curves to fit the
overall shape of the cherry stem (Figure 12a,b). Li [105] fitted the shape of the main lychee
stem with dense branches and leaves through discrete target spatial coordinate clustering
based on target segmentation and recognition of trunk and fruit. Feng [106] proposed a
multi-view image tracking acquisition method constrained by the main stem of a tomato,
which realizes the directional search of discrete targets such as fruits, side branches, and
inflorescence (Figure 12c).
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vision unit (Photo: Reprinted with permission from Ref. [106]. 2020, Feng Q.).

7. Challenges and Trends
7.1. Challenge Summaries

The radiation intensity of foreground plants and background sky within the robot’s
view field presents a high dynamic range in the open agricultural environment, but the
camera has a limited range of radiometric imaging at a particular exposure setting, which
would result in exposure distortion (overexposure/underexposure). The existing research
was mainly aimed at the unsaturated image color correction under specific exposure
conditions, which lacked applicability for the exposure saturation distortion under natural
light. In terms of similar-colored target identification, the current research mainly used the
strong reflection band as the imaging band, which usually not only emphasized the image
brightness of the target area but also the background. As the weak reflection image fusion
is lacking, the background brightness cannot be effectively suppressed, which makes it not
entirely valid to highlight the target and weaken the background interference.

The deep learning model with the multi-layer convolution feature extraction network
has unique advantages for the perceptual fusion of multiple visual information of agricul-
tural objects [77,78]. However, the current fruit recognition model was mainly obtained
by off-line training, and the constant weight model was applied to target detection and
segmentation. Therefore, the robustness of the model usually depended on the training
data set. For biomorphic plants in the agricultural environment, the variation in envi-
ronment, growth stage, tree shape, and imaging sensor all lead to the diversity of image
information. Limited data sets were usually challenging to ensure the off-line trained
model has broad applicability.

The fruits supported by branches/stem are distributed in the tall plants. The detection
range and efficiency of the robot directly determine the performance. It is an effective



Agronomy 2022, 12, 1336 15 of 19

way to improve the working space and efficiency of the harvesting robot by detecting the
discrete fruit individually from multi-view and multi-scale fields of view. However, the
current research on cluster target detection mainly focused on the passive detection under
fixed perspectives and scales. There was less research on active detection according to the
distribution of target groups, limiting the robot’s effective workspace. In addition, during
the picking process, the branches/stems inevitably swung by external forces, which would
shift the spatial posture of the fruits. For example, the picking operation of one manipulator
usually caused the shaking of the picking target of other manipulators, especially for the
multi-arm picking robot. In the current research, the harvesting robot usually assumed that
the pose of the target was stationary when obtaining the close-up image information of the
fruit. According to this, using the picking end-effector achieved to hold the fruit, there may
be a significant positioning error or even picking failures.

7.2. Potential Trends

Since the visual features obtained under complex agricultural conditions are usually
incomplete, it is an effective approach to acquire and fuse multiple visual information to
improve the decision-making performance of the harvesting robot. For example, restor-
ing the image color according to the multi-exposure image, measuring the fruit posture
according to the distant–close combined view images, selecting the appropriate multi-band
spectral image to highlight the difference between the similar-colored targets, combining
the camera and structured light (laser, infrared, and visible light) to improve the target
positioning accuracy, and determining the picking end-effector’s posture according to the
fruit and the main stem multi-target image, and so on.

Working with the biomorphic organisms in the natural environment, the robot’s active
learning and self-renewal for picking object feature recognition is necessary to ensure the
practicability of intelligent picking operations. Reinforcement learning technology is ac-
tively learning according to task changes and reward feedback for providing generalization
performance, which will help to improve the pick robots’ visual information perception
ability in the natural environment. With the popular application of 5G technology, the
real-time updated model for fruit detection based on a cloud computing platform [107] will
provide an essential guarantee for the online reinforcement learning, to improve the visual
information perception model of the harvesting robot.

8. Conclusions

As the key component, the perception range and accuracy of the visual unit directly
determined the picking robot’s working space and successful harvesting rate. Due to the
unique agricultural conditions, the research advances on visual information acquisition
technology mainly focused on stable imaging, feature recognition, and pose measurement.
As the recent in-depth application of AI algorithms and chips, the deep convolution network
model had significant advantages for fruit target recognition. The performance of RGB-D
and laser sensor products were continuously improved, which effectively reduced the cost
and structural complexity of the robot’s vision system.

However, there are still many challenges in the visual information acquisition for
robotic harvesting, which is one of the common technical problems restricting the com-
mercial application of harvesting robots. Facing the biomorphic plant groups, a visual
information perception model with self-learning and self-renewal ability is necessary to
ensure that the robots adapt well to different working objects. In addition, the fruit target
active search along the plant growth morphology is essential for expanding the robot’s
workspace, obtaining multi-view images of fruits, and planning the robot’s obstacle avoid-
ance path.
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