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Abstract: Genetic diversity is invaluable in developing climate-smart and drought-adapted wheat
varieties. The aim of this study was to determine the extent of genetic variation present in wheat
germplasm collections for biomass allocation and drought tolerance based on complementary pheno-
typic and root attributes and high-density single nucleotide polymorphism (SNP) markers to select
breeding parents. A total of 97 bread wheat (Triticum aestivum L.) genotypes were evaluated in field
and greenhouse trials under drought-stressed and non-stressed conditions. The molecular variance
analysis showed that the intrapopulation variance was very high at 99%, with a small minimal
inter-population variance (1%). The genetic distance, polymorphic information content and expected
heterozygosity were 0.20–0.88, 0.24–1.00 and 0.29–0.58, respectively. The cluster analysis based on
SNP data showed that 44% and 28% of the assessed genotypes maintained their genetic groups
when compared to hierarchical clusters under drought-stressed and non-stressed phenotypic data,
respectively. The joint analysis using genotypic and phenotypic data resolved three heterotic groups
and allowed the selection of genotypes BW140, BW152, BW157, BW162, LM30, LM47, LM48, LM52,
LM54 and LM70. The selected genotypes were the most genetically divergent with high root biomass
and grain yield and are recommended for production or breeding.

Keywords: biomass allocation; carbon sequestration; drought-stress; genetic diversity; root traits

1. Introduction

Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is a highly valued commodity
crop cultivated on about 216 million hectares and provides some 766 million tonnes of
grain annually globally [1]. In sub-Saharan Africa (SSA), wheat productivity remains
low, with a total production of 7.5 million tonnes accounting for only 1.4% of global
wheat production [2]. Wheat production in sub-Saharan Africa (SSA) is predominantly
under dryland conditions. The region is exceptionally vulnerable to climate change, with
devastating consequences on poor productivity and food insecurity [3]. Climate change-
induced abiotic stresses, such as heat, drought and poor soil fertility conditions, are the
major cause of low wheat productivity [4]. Pironon et al. [5] reported that new sources of
genes with abiotic stress tolerance, targeted breeding and speed breeding technologies are
among the key strategies in increasing the productivity and adaptive capacity of dryland
agriculture in SSA. Therefore, ideotype breeding using key above-ground yield influencing
traits, root biomass and root-related traits in plant breeding programs will directly increase
drought-stress tolerance and resilience of crops.

The root system is a vital part of a plant providing anchorage and support, access and
mobilization of water and nutrients and soil carbon sequestration for plant growth and
development [6]. However, breeding under intensive agronomic management and high
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input production systems has progressively led to weaker root systems in modern wheat
cultivars [7,8]. As a result, most modern wheat varieties are highly susceptible to moisture
stress, and their weak root system has limited agility to environmental adaptation and
access to soil moisture and nutrients [9]. Developing new and modern wheat cultivars with
optimized biomass allocation and large root systems will enhance adaptation and wheat
productivity in dryland farming systems of SSA [10].

Breeding for high-yielding varieties with robust root systems requires adequate genetic
variation for above-ground agro-morphological traits and root biomass. However, due to
difficulties associated with root sampling and phenotyping, a few studies have evaluated
genetic variation and selection for root traits in wheat [11–15]. Above-ground phenotypic
traits such as days to flowering and maturity, tillering ability, plant height and grain yield
can be assessed using direct and simple measurements. However, assessing root attributes
such as root biomass, root length and root diameter is laborious and invasive, requiring
destructive sampling to access root samples [16]. Understanding the interrelationship
between above-ground phenotypic traits and root attributes could allow breeders to ma-
nipulate biomass allocation between roots and shoots to create a better crop ideotype with
more extensive roots to improve productivity in a wide range of environments [17]. For
instance, high root biomass has been found to be highly correlated with improved seedling
shoot development, water use efficiency and high grain yield [18–21]. Dual selection for
increased root biomass and yield gain is dependent on the balance of sink-source between
root and reproductive organs [22].

Genetic diversity analysis through phenotypic traits and root attributes is affected by
genotype by environment interaction. Crop species have phenotypic plasticity and modify
their response due to prevailing environmental conditions [23]. Phenotypic plasticity could
limit the efficiency and accuracy of phenotyping [24]. Conversely, genomic tools such as
genomic selection, genome engineering, genome editing and quantitative trait loci (QTL)
analysis have become valuable in crop improvement programs, including wheat [25–27].
Different molecular markers such as random amplified polymorphic DNA (RAPD), simple
sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers have been used
in genetic diversity studies of wheat [28–30]. SNP markers have gained prominence in
genetic diversity analysis due to wide distribution across the genome, genetic stability,
compatibility with automation and ease of genotyping [31,32]. SNP markers are especially
suitable for studying the genetic diversity of crops with a large and complex genomic
structure, such as wheat [33]. Therefore, it is essential to complement phenotypic selection
with molecular markers to capture allelic diversity [34] and understand the underlying
genetic basis and interrelationships with root traits and biomass partitioning.

Optimizing biomass allocation in new wheat cultivars would increase productivity
in rain-fed agro-ecologies while concurrently reducing agriculture’s carbon footprint [17].
Assessing the genetic variation among available wheat germplasm will provide information
to classify wheat genotypes into different genetic groups for combining ability analysis
and development of new breeding populations. Therefore, the aim of this study was
to determine the extent of genetic variation present in wheat germplasm collections for
biomass allocation and drought tolerance based on complementary phenotypic and root
attributes and high-density single nucleotide polymorphisms (SNP) markers to select
breeding parents.
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2. Materials and Methods
2.1. Germplasm

A panel of 97 bread wheat (T. aestivum L.) genotypes were used for the study. Ninety-
two of the genotypes were obtained from the International Maize and Wheat Improvement
Center (CIMMYT) drought and heat tolerant nurseries. The genotypes were selected
for their potential drought tolerance and diversity in rooting ability. The remaining five
genotypes were locally adapted and widely grown lines that were included to serve as
checks. The names and pedigrees of the assessed genotypes are presented in Table S1.

2.2. Phenotyping Trials

Three separate experiments were conducted under drought-stressed and non-stressed
conditions. Two greenhouse trials were carried out at the Controlled Environment Facility
(CEF), and one field trial was conducted at the Ukulinga Research Farm (29◦40′ S, 30◦24′ E)
of the University of KwaZulu-Natal (UKZN) in South Africa between 2016 and 2018.
The greenhouse experiments were all laid out in a 10 × 10 alpha lattice design with two
replications. Plants were sown in 10 L capacity plastic pots filled with composted pine bark.
Eight seeds were initially planted and thinned to five plants per pot after two weeks of
growth. Irrigation and fertiliser (Agchem EasyGro Starter, Pietermaritzburg, South Africa
and Agchem Easygro Calmag, Pietermaritzburg, South Africa) were applied using an
automated drip irrigation system as per recommendation [35]. The plants received 3 min
fertigation cycles four times daily to maintain moisture content at 70% of field capacity (FC).
Adequate water was supplied for six weeks after emergence before initiating the drought
stress treatment accordingly. Drought stress was induced by withholding irrigation until
soil water content dropped to 30% FC and then re-watering to field capacity to allow for
continued plant growth and development. The non-stressed treatment received adequate
moisture until maturity. The soil moisture was monitored with a soil moisture probe
(GTDSMM500, General Tools and Instruments, Secaucus, NJ, USA).

The field experiment was laid out in a 10× 10 alpha lattice design with two replications.
The soil surface was covered with a custom-made black plastic mulch to exclude infiltration
of rainwater in the soil profile. Each genotype was planted on a 0.5 m long row, and the
rows were 0.5 m apart. Ten plants per genotype were established equidistant within a row.
Nitrogen, phosphorous and potassium were applied at rates of 120, 30 and 30 kg ha−1,
respectively, at planting as per recommendation [35]. Water was supplied by an automated
drip irrigation system. For the non-stressed treatment, adequate water was supplied until
maturity. Drought stress was induced by withholding irrigation five weeks after emergence
in the drought treatment. After that, irrigation was sparingly applied to prevent permanent
wilting. Soil moisture was monitored using digital moisture sensors (HOBO UX120, Onset,
Bourne, MA, USA).

Data on days to 50% heading (DTH), days to 50% maturity (DTM), plant height
expressed in centimeters (PH), tiller number (TN), plant biomass (PB, gm−2), shoot biomass
(SB, gm−2), root biomass (RB, gm−2), root-to-shoot ratio (RS) and grain yield (GY, gm−2)
were recorded from both greenhouse and field trials. Prior to analysis, data from greenhouse
and field experiments were standardized by adjusting the plot size per m2 area to allow
comparison between greenhouse and field plots.

Genotypes were grouped into three drought tolerance levels based on the grain
yield obtained under drought-stressed conditions (Table 1). Genotypes with grain yield
>500 gm−2 were considered drought tolerant, 300 to 500 gm−2 as intermediate tolerant and
<300 gm−2 as susceptible.
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Table 1. Population groups based on observed drought tolerance levels of individual genotypes
based on grain yield under drought stress.

Tolerance
Level Entry

Tolerant
BW100 BW111 BW116 BW120 BW147 BW149 BW151
BW152 BW48 BW63 LM100 LM16 LM17 LM26
LM29 LM37 LM51 LM71 LM76 LM90

Intermediate
tolerant

BW103 BW124 BW127 BW129 BW141 BW148 BW157
BW159 BW162 BW49 BW58 BW71 BW80 LM01
LM12 LM14 LM18 LM19 LM21 LM22 LM25
LM27 LM30 LM31 LM32 LM36 LM39 LM40
LM41 LM42 LM44 LM46 LM47 LM49 LM56
LM58 LM60 LM70 LM72 LM79 LM83 LM85
LM91 LM93 LM97 LM99

Susceptible

BW128 BW140 BW142 BW145 BW150 BW28 LM15
LM20 LM23 LM24 LM28 LM33 LM35 LM38
LM43 LM48 LM50 LM52 LM54 LM55 LM57
LM59 LM75 LM77 LM80 LM81 LM82 LM84
LM86 LM96 LM98

2.3. Analysis of Phenotypic Data

Data collected from each trial was subjected to Bartlet’s homogeneity of variance test
prior to a combined analysis of variance (ANOVA) using the lattice procedure. Three-way
interactions were assessed involving genotype, water regime and site in Genstat 18th
edition [36]. Data were subjected to significance tests using the Fischer’s Unprotected Least
Significant Difference (LSD) 5% probability. The adjusted means were further subjected
to principal component analysis using SPSS version 25.0 software [37] to assess genotype
relatedness. Best linear unbiased predictors (BLUP) were calculated using the nlme package
in R software [38] across the environments to eliminate the environmental influence in
downstream analysis. Hierarchical clusters were generated using phenotypic data based
on the Gower method [39]. The phenotypic clusters were constructed using the Cluster
package in R software [40]. Different phenotypic clusters were generated for the drought-
stressed and non-stressed conditions.

2.4. Genotyping

For DNA extraction, the 97 wheat genotypes were planted in seedling trays and
raised in the greenhouse at UKZN. Genomic DNA was extracted using the modified
CTAB method [41] from fresh leaves of three-week-old seedlings using Quick-DNA Micro-
prep Plus (Zymo Research, Irvine, CA, USA) according to the manufacturer’s procedures.
Nucleic acid concentration and purity of the DNA were assessed using a NanoDrop
2000 spectrophotometer (ND-2000 V3.5, NanoDrop Technologies, Inc., Wilmington, DE,
USA). The DNA samples were then sent to Diversity Arrays Technology (DArT) Pty Ltd.
(Bruce, Australia) for genotyping by sequencing on the DArT platform.

2.5. Analysis of Genotypic Data

The marker data were subjected to quality control using minor allele frequency, miss-
ing data and heterozygosity parameters. Markers with less than 5% minor allele frequency
and more than 20% missing data were eliminated from the data. After that, 16,382 markers
distributed across the 21 chromosomes were used in the final data analysis. Genotypes with
more than 95% heterozygosity were eliminated from the analysis. Genetic parameters such
as genetic distance (GD), polymorphism information content (PIC), minor allele frequency
(MAF), observed heterozygosity (Ho) and inbreeding coefficient (F) were calculated for the
markers and individuals using the different population groups based on drought tolerance
levels of individual genotypes (Table 1) using Powermarker V3.25 software [42]. Hierarchi-
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cal clusters were generated using genotypic data based on Jaccard’s coefficient [43]. A joint
hierarchical cluster was generated using combined data from genotypic and phenotypic
dissimilarity matrices. The clusters were constructed using the “Cluster” package in R
software [40]. Analysis of molecular variance was conducted using the different population
groups based on drought tolerance levels (Table 1) using Powermarker V3.25. The genotype
hierarchical cluster was compared to the drought-stressed and non-stressed hierarchical
cluster using the Viridis package in R [44] to observe grouping patterns between genotypic
and phenotypic data.

3. Results
3.1. Phenotyping
3.1.1. Genotype and Water Regime Effects on Agronomic Traits and Grain Yield

The recorded traits, including PB, SB, RB, RS and GY, exhibited significant genotypic
and site variability, while the water regime was significant for all assessed traits except DTH.
The effects of the three-way interaction involving genotype, site and water regime were
significant for DTM, TN and RS (Table 2). The genotype × site interaction had a significant
impact on all traits apart from GY. On the other hand, the DTH and DTM response was
significantly affected by the interaction between genotype and water regime.

Genotypes LM52 (with grain yield of 929.40 gm−2), LM30 (927.70 gm−2) and LM157
(782.00 gm−2) were the highest yielding genotypes with high root biomass (>200 gm−2)
under drought stress. The phenotypic data showed wide ranges between the minimum
and maximum values for each of the traits. GY and RB had ranges of 731.40 gm−2 and
400 gm−2, respectively, under drought-stressed conditions (Table 3). The higher variability
was observed under non-stressed conditions than drought-stressed for TN, PB, SB and GY
and vice-versa for DTH, DTM, PH, RB and RS as observed among the range of values.

3.1.2. Principal Components of Phenotypic Data

The first three components with Eigenvalues above 1.00 accounted for 70.86% of the
total variation under drought-stressed conditions (Table 4). Total plant biomass (0.92), shoot
biomass (0.87), root biomass (0.73) and grain yield (0.74) had the highest contributions
to the variation explained by the first principal component (PC1), which accounted for
33.92% of the total variation. The second principal component (PC2) explained 21.87% of
the total variation and was associated with the DTH (0.83) and DTM (0.74), which had
the highest contributions to this principal component. Root-to-shoot ratio (0.87) had the
highest contribution to the third principal component (PC3), which accounted for 15.08% of
the total variation.

Under non-stressed conditions, the first three PCs with Eigenvalues above 1.00 ex-
plained 68.60% of the total variation among the genotypes (Table 4). Notably, PB (0.97),
SB (0.86), RB (0.70) and GY (0.75) had the highest contributions to PC1, which explained
31.80% of the total variation. The highest loadings on PC2 were contributed to by DTH
(0.88) and DTM (0.74). Plant height (0.71) had the highest loading on PC3, which accounted
for 14.81% of the variation. Root-to-shoot ratio and RB had negative loadings of −0.74 and
−0.44, respectively, on PC3.
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Table 2. Mean square values and significant tests after combined analysis of variance of biomass and yield-related traits of 97 wheat genotypes evaluated under
non-stressed and drought-stressed conditions.

SOV df DTH DTM PH TN PB SB RB RS GY

Block 19 96.00 *** 225.91 *** 999.83 *** 18.00 *** 7,029,511.00 *** 2,506,321.00 *** 66,525.00 *** 0.03 * 876,453.00 ***
Rep 1 261.72 *** 552.71 *** 7673.14 *** 68.44 *** 31,575,567.00 *** 15,118,430.00 *** 157,718.00 *** 0.01 2,285,866.00 ***

Genotype (Gen) 96 197.51 *** 124.22 *** 167.49 *** 16.05 *** 711,194.00 * 270,175.00 *** 15,507.00 *** 0.03 * 146,304.00 *
Water Regime (WR) 1 53.6 28,022.20 *** 31,765.90 *** 3358.07 *** 110,774,907.00 *** 22,763,489.00 *** 1,883,093.00 *** 1.11 *** 18,109,833.00 ***

Site 2 74,612.12 *** 125,380.64 *** 134,122.84 *** 2746.88 *** 1,594,700,477.00 *** 617,123,646.00 *** 11,896,156.00 *** 35.55 *** 192,151,512.00 ***
Gen*WR 96 22.31 * 39.93 *** 30.77 5.07 437,549 144,938 11,995 0.02 82,041
Gen*Site 192 85.02 *** 61.80 *** 65.12 *** 9.69 *** 657,583.00 * 267,142.00 *** 15,107.00 *** 0.02 ** 123,754

Gen*WR*Site 192 19.72 35.19 *** 35.91 7.42 ** 495,229 156,342 11,818 0.03 * 92,026
Residual 561 17.21 23.47 30.18 5.43 532,134 160,226 10,445 0.02 106,404

* Significant at p < 0.05, ** p < 0.01, *** p < 0.001, SOV = source of variation, df = degrees of freedom, DTH = days to 50% heading, DTM = days to 50% maturity, PH = plant height (cm),
TN = tiller number, PB = total plant biomass (gm−2), SB = shoot biomass (gm−2), RB = root biomass (gm−2), RS = root-to-shoot ratio, GY = grain yield (gm−2), Rep = replication.

Table 3. Mean values of the 10 best genotypes and five bottom genotypes based on grain yield (GY) under drought-stress for nine agronomic traits of 97 bread wheat
lines under drought-stressed (DS) and non-stressed (NS) conditions.

ENTRY
DTH DTM PH TN PB SB RB RS GY

DS NS DS NS DS NS DS NS DS NS DS NS DS NS DS NS DS NS

Top ten genotypes

LM52 56.51 64.52 103.8 118.1 60.6 75.94 9.83 15.84 2137 3089 994 1487 214.2 352.4 0.43 0.53 929.4 1249.9
LM30 66.12 66.73 109.3 116.3 67.12 82.39 11.11 12.13 2513 2600 1260 1370 325.9 295.4 0.5 0.49 927.7 934.4

BW157 65.13 65.85 104.4 114.8 65.42 75.11 7.94 10.84 2091 2145 1060 1042 249.4 298.1 0.42 0.53 782 802.6
BW152 64.39 65.53 108.6 116.8 65.09 75.73 10.36 11.5 1672 2417 945 1266 218.3 453.1 0.49 0.6 509.1 699.5
BW140 68.16 57.36 108.5 115.6 69.72 66.36 7.59 15.85 1559 1978 850 1168 228.4 310 0.46 0.49 481.7 497.3
LM47 69.05 67.27 112 121.1 65.35 78.57 9.1 12.25 1460 2901 898 1661 171.2 311.7 0.39 0.61 469 926.7
LM70 68.25 68.83 109.2 119 68.11 74.79 8.61 13.84 1478 1990 839 990 190.9 274.9 0.48 0.57 449.1 722.1
LM48 71.99 65.67 112.3 118.5 63.74 83.69 9.01 10 1606 2335 921 1181 238.4 276.8 0.4 0.55 447.4 876.7

BW162 63.85 63.65 108.8 114.8 66.69 78.79 8.79 12.35 1358 2639 788 1288 160.7 280 0.45 0.62 414.7 1068.4
LM54 61.5 69.71 105.8 119.7 60.62 78.49 11 11.67 1157 2952 653 1739 136.2 424.5 0.44 0.57 368 789.4
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Table 3. Cont.

ENTRY
DTH DTM PH TN PB SB RB RS GY

DS NS DS NS DS NS DS NS DS NS DS NS DS NS DS NS DS NS

Bottom five genotypes

LM39 69.16 68.61 109 118.5 66.39 79.89 7.68 13.03 1290 2195 799 1147 208.9 305.3 0.42 0.52 281.5 741.3
LM44 70.22 66.17 102.6 113 66.61 83.28 9.2 12.84 1186 2174 716 1286 189.6 213.8 0.49 0.39 281.5 674.1

BW147 73.45 67.16 111 117.4 65.07 76.27 7.34 9.7 1441 2167 940 1140 218.5 346 0.43 0.52 278.9 680.7
LM55 65.43 63.15 108.1 113.7 60.29 76.94 9 14.45 1127 2034 778 1133 131.9 210.5 0.32 0.39 216.3 679.8
LM29 64.83 66.39 112.8 122.9 62.22 80.86 8.5 13.08 1062 2662 710 1694 186.5 272.2 0.4 0.48 198 870.2

Mean 65.64 65.9 107.4 117.7 65.32 78.67 9.22 12.75 1490 2298 853.5 1252 206.2 295.1 0.43 0.49 444.3 757.1
SEM 0.85 0.41 0.47 0.3 0.49 0.44 0.1 0.16 23.86 37.75 13.26 24.68 4.87 6.05 0.01 0.01 12.19 15.48

CV (%) 12.72 6.16 4.33 2.49 7.35 5.52 10.81 12.63 15.77 16.18 15.31 19.42 23.26 20.19 13.99 13.04 26.88 20.14
Range 28.19 21.45 26.1 16.7 42.73 19.84 5.22 7.74 1451 2257 767 1498 400 268.5 0.34 0.3 731.4 825.6

LSD (5%) 4.3 5.29 6.61 4.17 6.68 4.87 0.35 3.16 532.7 1053 274.8 591.3 74.81 148.6 0.13 0.16 274.2 449.2
R2 (%) 80.86 72.25 77.06 82.45 76.48 74.24 44.81 33.04 79.7 76.79 78.78 73.41 14.99 20.71 19.43 42.68 62.26 68.91

DTH = days to 50% heading, DTM = days to 50% maturity, PH = plant height (cm), TN = tiller number, PB = total plant biomass (gm−2), SB = shoot biomass (gm−2), RB = root biomass
(gm−2), RS = root-to-shoot ratio, GY = grain yield (gm−2), DS = drought stressed, NS = non-stressed, SEM = standard error of mean, CV = coefficient of variation, LSD = least significant
difference, R2 = coefficient of determination.
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Table 4. Principal component scores and variance of traits measured on 97 wheat genotypes assessed
under drought-stress and non-stress conditions.

Traits
Drought-Stressed Non-Stressed

PC1 PC2 PC3 PC1 PC2 PC3

DTH 0.35 0.83 0.05 0.14 0.88 0.10
DTM 0.40 0.74 −0.08 0.19 0.74 0.01
PH 0.13 0.13 −0.46 0.14 0.39 0.71
TN −0.12 −0.56 −0.15 −0.05 −0.53 0.10
PB 0.94 −0.29 −0.15 0.97 −0.17 0.12
SB 0.87 −0.03 −0.27 0.86 −0.07 0.22
RB 0.73 0.08 0.50 0.70 0.10 −0.44
RS 0.18 −0.19 0.87 0.22 0.29 −0.74
GY 0.74 −0.53 −0.12 0.75 −0.33 0.08

Eigenvalue 3.05 1.97 1.36 2.86 1.98 1.33
Explained variance (%) 33.92 21.87 15.08 31.80 21.99 14.81

Cumulative variance (%) 33.92 55.79 70.86 31.80 53.79 68.60
PC = principal component, DTH = days to 50% heading, DTM = days to 50% maturity, PH = plant height (cm),
TN = tiller number, PB = total plant biomass (gm−2), SB = shoot biomass (gm−2), RB = root biomass (gm−2),
RS = root-to-shoot ratio and GY = grain yield (gm−2).

3.1.3. Phenotypic Hierarchical Clustering

Using phenotypic data, hierarchical cluster analysis allocated the wheat genotypes into
three groups under non-stressed conditions (Figure 1). The largest cluster (cluster II) con-
tained 45 genotypes, followed by the second largest cluster (cluster III) with 37 genotypes.
In general, cluster II contained late maturing genotypes with low plant biomass and grain
yield. High yielding genotypes (LM52, BW63 and BW127) were grouped in cluster I, which
was characterized by shorter genotypes with early heading, high RB (BW148 and BW152)
and high tiller number. Cluster III consisted of genotypes with high root biomass and
late flowering.
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The genotypes were also grouped into three groups under drought-stress conditions
(Figure 2). The first and second largest clusters (cluster III and cluster II, respectively)
had 62 and 23 genotypes, respectively, while cluster I had 12 genotypes only. Cluster III
consisted of late heading and maturity genotypes with high root-to-shoot ratios. Genotypes
with early maturity and low plant biomass were grouped in cluster I. Cluster II contained
genotypes with high root and plant biomass and early heading. However, there were some
high-yielding genotypes in each cluster.
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3.2. Genotyping
3.2.1. Population Genetic Parameters Based on SNP Markers

The general pattern showed that the average values of the genetic parameters did
not vary widely among the different populations of highly drought-tolerant, intermediate
tolerant and susceptible genotypes (Table 5). The genetic distances of the different popu-
lations ranged from 0.20 to 0.88. The polymorphic information content showed that the
tested markers contained non-polymorphic and highly polymorphic markers. The lowest
PIC was 0.24, while the highest was 1. The average minor allele frequency was highest
for the susceptible genotypes (0.47) and was lowest for drought-tolerant genotypes (0.43).
The genotypes exhibited high levels of heterozygosity, ranging between 0.29 and 0.58. The
inbreeding coefficient had lower and upper values of −0.60 and 0, respectively.

Table 5. Genetic parameters of 97 wheat genotypes genotyped with 16,382 SNP markers.

Population GD PIC MAF Ho F

Drought tolerant 0.63 0.75 0.38 0.43 −0.38
Intermediate tolerance 0.64 0.8 0.44 0.39 −0.33

Susceptible 0.63 0.81 0.47 0.38 −0.32
Range 0.20–0.88 0.24–1.00 0.05–0.50 0.29–0.58 0–−0.60

GD = genetic distance, PIC = polymorphic information content, MAF = minor allele frequency, Ho = observed
heterozygosity, F = inbreeding coefficient.
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3.2.2. Analysis of Molecular Variance and Genotypic Hierarchical Clustering

Analysis of molecular variance was conducted based on observed drought tolerance
levels of individual genotypes using phenotypic data (Table 1). The within-population
variation was very high (99%) with a negligible among-population variation of 1% (Table 6).

Table 6. Analysis of molecular variance among 97 wheat genotypes genotyped with 16,382 SNP markers.

Source df SS MS Estimated
Variance

Proportion
of Variance

Among Pops 2 7713.672 3856.836 21.935 1%
Within Pops 94 299,495.7 3186.124 3186.124 99%

Total 96 307,209.3 3208.059 100%
df = degrees of freedom, SS = sum of squares, MS = mean squares, Pops: populations.

The genotypes were grouped into three heterogeneous clusters based on the SNP
markers (Figure 3). The largest cluster (cluster III) had 46 genotypes, followed by cluster
I with 30 and cluster II with 21. Cluster III contained genotypes from the International
Bread Wheat Screening Nursery (IBWSN) program at CIMMYT and three from the 6th
Heat Tolerant Wheat Screening Nursery (HTWSN) designated as LM23, LM47 and LM48.
Common parents for most genotypes in this cluster included 0B, WGY and 099TOPY.
Cluster I and Cluster II consisted of genotypes that were part of the HTWSN.
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3.2.3. Comparison of Phenotypic and Genotypic Hierarchical Clusters

A comparison of genetic and phenotypic clusters was conducted to determine geno-
type consistency between different dendrograms. None of the genotypes maintained their
positions when genotypic hierarchical clusters were compared to phenotypic clustering
under non-stress conditions (Figure 4). Similarly, the genotypic clustering was discor-
dant with the phenotypic clusters under drought-stressed conditions (Figure 5). Under
drought stress, only two genotypes (LM56 and LM57) maintained their positions across
the genotypic and phenotypic dendrograms. The tanglegram comparison showed that
44% of the genotypes under drought stress maintained their cluster membership in the
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genotypic and phenotypic hierarchical clustering (Figure 4). Under non-stress conditions,
only 28% of genotypes maintained their membership in the genotypic and phenotypic
hierarchical clustering (Figure 5). Three different clusters were revealed by the joint matrix
of phenotypic and genotypic data (Figure 6).
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4. Discussion
4.1. Genotypic Variation for Agronomic Traits and Biomass Allocation

The effect of crop genetics, water availability and growth site on biomass partitioning
was strong. Different genotypic responses for key traits (Table 2) such as plant biomass,
shoot biomass, root biomass, root-to-shoot ratio and grain yield in the same environments
reflect a high genotype by environment interaction and presence of genetic diversity for
these traits [45]. Substantial differences in the allocation of biomass and carbon between
roots and shoots of different cultivars have been observed with influence from biomass-
related traits such as tillering ability [46] and plant height [47]. Manipulating these traits
to optimize biomass allocation to roots would increase the capacity of crops to support
higher biomass production and grain yield in the absence of sufficient soil moisture [48].
Schneider et al. [49] propose the use of root plasticity as a target trait in plant breeding
programs to stabilize crop productivity across diverse environments. Thus, a better un-
derstanding of the contribution of roots to yield is important in breeding climate-smart
crops. Hence, the plant breeders will need to integrate root phenotyping to improve wheat
productivity in resource-poor wheat production environments [50].

4.2. Multivariate Relationships Explained by Principal Components

The presence of high genetic variation in this panel of genotypes can be exploited to
develop breeding populations and identify recombinants with superior traits for drought
adaptation. The high contributions of plant biomass, shoot biomass, root biomass and grain
yield on the first principal component indicate that these traits were the most important
in explaining the variation among the genotypes (Table 4). Refs. [51,52] suggest that opti-
mizing biomass allocation will provide more benefits in selection as opposed to increasing
one parameter of biomass such as root biomass alone. These traits can therefore be used
together for parental selection to develop breeding populations with improved biomass
allocation for both grain yield and root biomass. This will increase the adaptability of
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wheat cultivars across a diverse range of environments, as the traits above were important
in explaining variation under both drought-stressed and non-stressed conditions.

4.3. Phenotypic Clustering of Genotypes and Implications for Drought Tolerance and Carbon
Sequestration Breeding

Genotypes such as LM52, BW63 and BW127 that were grouped in cluster I under
non-stressed conditions (Figure 1) can be selected to develop breeding populations for
improving grain yield in wheat. This cluster also contained generally short genotypes with
early heading and high root biomass, which are critical attributes for drought escape and
carbon sequestration potential. Early heading has been exploited in crop improvement
programs to develop cultivars that can complete their growth cycle before the onset of
terminal drought stress [53]. High root biomass exhibited by the genotypes in this cluster
will be useful for improving root systems in wheat. Extensive rooting ability renders an
advantage in moisture-stressed conditions by increasing crop access to water in deeper soil
profiles [54] while also contributing to nutrient recycling, especially carbon by rhizodeposi-
tion [55]. Breeding for shorter plants with improved harvest indices and lodging resistance
was exploited in the green revolution with great success [56]. On the other hand, tall plants
usually have higher biomass than shorter plants which contributes to carbon sequestration;
however, tall plants are prone to lodging, which negatively impacts grain yield [57]. Geno-
types from cluster III under drought-stress (Figure 2) were generally late maturing, making
them ideal for long-season environments that are not prone to terminal droughts [58]. In
the optimal production conditions, it would be ideal to cultivate late maturity genotypes to
maximize irradiation and moisture availability because early maturing genotypes incur a
yield penalty due to accelerated growth and development [59]. For carbon sequestration,
late maturity genotypes have prolonged periods for carbon assimilation in the biosphere.
However, under drought conditions, these positive attributes increase the susceptibility
of these genotypes to moisture stress. The high root-to-shoot ratios observed in cluster III
would be useful during breeding for optimized biomass allocation [60]. High root-to-shoot
ratios indicate that the root systems of these genotypes were large enough to support the
above-ground structures and possibly provided a means for increased carbon deposition in
the soil [61].

4.4. Genotypic Clustering and Molecular Variance

The low variability of the genetic parameters among the populations indicates a narrow
genetic base, which could be from common parentage; the genotypes were mainly sourced
from CIMMYT’s heat and drought stress nurseries. A considerable number of genotypes
had one or two common parents in their pedigrees. The use of a select few elite parents is
common in modern breeding programs. This has led to a focus on improving target traits
and discarding any material that does not meet the breeding objectives [62]. However,
the continuous use of a few selected lines contributes to narrowing genetic diversity for
important traits such as rooting ability, which predisposes modern cultivars to moisture
and nutrient deficiencies [63,64]. Landraces possess genetic variation for drought adaptive
traits, which are absent in modern cultivars and can be harnessed in breeding programs to
develop new cultivars with enhanced stress tolerance [65]. The major challenge would be
the need to break linkage with unfavorable traits often encountered when using landraces.

The unexpectedly high level of heterozygosity observed in the population (Table 5)
could provide an opportunity to develop new segregants for wheat improvement. Ide-
ally, the population was expected to exhibit lower levels of heterozygosity because the
genotypes were advanced generations. However, high levels of heterozygosity have also
been observed in advanced wheat lines [66], providing a basis for developing new and
useful recombinants after mating divergent genotypes. It would be imperative to select the
most genetically distant and phenotypically divergent genotypes for developing breeding
populations and crosses that may be advanced for release as varieties.
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Cluster analysis grouped genotypes from drought and heat tolerant nurseries in
the same clusters indicating that these genotypes are closely related. Heat and drought
tolerance are highly correlated, and common genomic loci coding for the combined effect
of heat and drought stresses have been identified [67–69]. Drought-adaptive traits such as
stay-green characteristics and delayed senescence are also observed in wheat genotypes
that are tolerant to heat stress indicating that common physiological processes may be
responsible for plant response to both drought and heat stress [70].

The molecular variance analysis (Table 6) showed that the intrapopulation variance
was very high at 99%, with a small minimal inter-population variance (1%). Autogamous
crops like wheat are characterized by low cross-fertilization. This will suppress deleterious
genes and promote high intrapopulation diversity observed within the populations [71,72].
This high variation can be exploited to develop new breeding populations with higher
productivity than the parental genotypes. The low among-population variance among
the populations indicates that similar genetic gains could be achieved even by selecting
divergent genotypes within the same populations.

4.5. Genotypic and Phenotypic Divergence under Different Water Regimes

Genetic markers reveal allelic diversity, while phenotypic traits are important in-
dicators of genotype performance in a given environment. As such, the genotype and
phenotypic clusters under both water conditions were largely inconsistent because of
genotype–environment interactions, which caused fluctuations of phenotypic expression
in morphological traits [73]. The inconsistent genetic and phenotypic clustering under
both soil moisture conditions can also be attributed to low precision in phenotyping some
traits [74], especially root traits that are subject to large environmental variance. Despite
the differences constantly observed between genotype and phenotype clusters, the meth-
ods are complementary and are useful in assessing wheat genetic diversity for drought
tolerance and carbon sequestration as they provide a foundation for identifying underlying
genetic control of these traits. Thus, the complementary use of genetic and phenotypic
markers in selection would improve selection efficiency by consolidating all the variation
in the individuals [34].

Higher consistency in the genotypic and phenotypic clustering under drought-stressed
conditions compared to non-stressed conditions could be due to the selection pressure
exerted by the drought treatment. Drought induces drought-adaptive biochemical and
physiological processes that differ in intensity and duration, resulting in variable pheno-
typic expression among cultivars [75,76]. In addition, certain genes that confer drought
tolerance are only induced in response to stress and dehydration in the plant [75]. In
the absence of stress, these genetic regions will not be activated, and thus, it will not be
ideal for identifying quantitative trait loci or superior lines in a panel of genotypes with
similar underlying responses to soil moisture dynamics. Therefore, multi-environment
trials would provide more information on genotype performance by considering different
selection pressures exerted by the environments, thereby increasing consistency in the
grouping of genotypes.

The joint matrix of phenotypic and genotypic data was used to consolidate the geno-
typic and phenotypic data to group the genotypes into different heterotic groups to select
genotypes for combining ability analysis. This provides the opportunity to select based
on both phenotypic and molecular data. Genotypes LM30, LM48, LM52, LM54 and LM70,
were selected from cluster I and BW152, BW157, BW162 and LM47 were selected from
cluster II. One genotype (BW140) was selected from cluster III, which consisted of only
six genotypes. The selected genotypes were divergent and had high grain yield and root
biomass.

5. Conclusions

The study revealed the presence of genetic variation that is useful for developing
climate-smart and drought-adapted wheat varieties. Principal component analysis re-
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vealed that PB, SB, RB and GY explained most of the variation among the genotypes under
drought-stressed and non-stressed conditions. Genetic parameters varied widely with the
genetic distance, polymorphic information content and expected heterozygosity ranges
0.20–0.88, 0.24–1.00 and 0.29–0.58, respectively. Analysis using genotypic and phenotypic
data resolved three heterotic groups and allowed for the selection of desirable parents
for combining ability analysis. Information gathered in this study was important in high-
lighting the utility of biomass allocation partitioning and how it can be utilised to develop
new breeding populations to produce climate-smart cultivars more adaptable to changing
edaphic and climatic conditions. We recommend conducting genetic diversity analysis in
more environments to capture the variation due to the genotype–environment interaction
and increase the consistency of the information gathered from phenotypic and molecular
data. Our data suggest that landraces, older varieties, and obsolete cultivars should be
included to broaden the genetic diversity for biomass allocation and yield-related traits.

Supplementary Materials: The following supporting information can be downloaded at: https://
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