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Abstract: Fritillaria is a perennial herb with medicinal properties. There are 158 Fritillaria species
worldwide, 33 of which have reported therapeutic efficacy. Alkaloids are the principal constituents
in Fritillaria. Fritillaria species growing at 2700–4000 m are the sources of extract namely Chuan
Beimu (the Pharmacopoeia of the People’s Republic of China, 2020 Edition), with low biomass,
mainly containing more 5α-cevanine isosteroidal alkaloids with cis-configuration. In contrast, species
growing below 1500 m are usually taller than 50 cm, and they mainly contain more trans-configuration
isosteroidal alkaloids. There are two schemes of the biosynthetic pathways of steroidal alkaloids
with different frameworks and catalytic reactions and combined high-throughput omics data. Based
on the distributed elevations, Fritillaria species were divided into three major categories, which met
classification features based on phylogenetic analysis or morphological features. Artificial or in vitro
cultivations are effective strategies for balancing economical requirements and ecological protection.
Fritillaria species growing at lower altitudes can be cultivated by bulb reproduction, but species
growing at higher altitudes still rely mainly on gathering a large number of wild resources. Integration
of asexual tissue culture and bulb reproduction with sexual artificial or imitated wild cultivation
may create a very promising and effective way to maintain sustainable industrial development
of Fritillaria.

Keywords: Fritillaria; alkaloid composition; phytochemical biosynthesis; taxonomy; domestication;
cultivation

1. Introduction

Traditional Chinese medicine (TCM) has used the bulbus Fritillariae for thousands of
years [1]. The nature of Fritillariae is slightly chilly, making it useful for removing heat,
moistening the lungs, and lowering fever, according to TCM theory [2–4]. Fritillariae is also
used to treat under-the-skin tumors including scrofulous swellings and breast lumps [2].
According to their morphology, molecular markers, and major pharmacological activities,
the Pharmacopoeia of the People’s Republic of China (2020 Edition) classifies five species
of dry bulbus Fritillariae as Beimu [5]. A dry cough owing to lung heat and a taxation
cough due to yin deficiency are cured using Chuan Beimu (F. cirrhosa D. Don, F. unibracteata
Hsiao et K. C. Hsia, F. przewalskii Maxim., F. delavayi Franch., F. taipaiensis P. Y. Li, and
F. unibracteata Hsiao et K. C. Hsiavar. wabuensis (S. Y. Tanget S. C. Yue) Z. D. Liu., S. Wang
et S. C. Chen. Jiang et al.), Ping Beimu (F. ussuriensis Maxim), and Yi Beimu (F. walujewii
Regel and F. pallidiflora Schrenk) [2,5]. The geo-authentic bulbus F. cirrhosae D. Don have
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been used as an ingredient in more than 200 traditional Chinese prescriptions such as the
drug Nin Jiom Pei Pa Koa [6]. F. ussuriensis naturally grows in the Northeast region of
China, and it is the main ingredient of the Chinese patented “Fufang Beimu Tablets” for
relieving cough and reducing sputum [7]. F. walujewii and F. pallidiflora as the botanical
origins of Yi Beimu are the main ingredients in the prescription medicine “Qiuzao Ganmao
Granules” [8]. F. thunbergii Miq. (Zhe Beimu) grows in the Zhejiang Province of China. Its
bulbus is utilized as a prime ingredient in various herbal formulae, including the compound
medicine known as “Danggui Beimu Kushen Wan” because it is particularly effective at
preventing a cough, eliminating phlegm, and hemostasis [9]. Oral liquids of F. hupehensis
Hsiao et K. C. Hsia decoction are used for relieving phlegm heat coughs [10]. Chuan Beimu,
Zhe Beimu and Hubei Beimu are also effective at treating carbuncle [10].

Isosteroidal alkaloids and steroidal alkaloids have been identified as the active ingre-
dients in Fritillaria (Figure 1 and Figures S1–S7) [10,11]. According to Hao et al. [2], several
chemical compositions of 10 different Fritillaria species were proposed, and these species
were divided into two groups depending on whether they contained trans- or cis-cevanine
alkaloids. Simultaneously, the evolutionary connection between the several Fritillaria
species was inferred using both a nuclear internal transcribed spacer (ITS) and chloroplast
matK sequences. Traditional uses, 72 phytochemical profiles, and the pharmacological
properties of F. thunbergii were summarized in Nile et al. [4]. Meanwhile, 182 chemical
compounds from the genus Fritillaria, including alkaloids, terpenoids, and other com-
pounds had their structures, traditional applications, and pharmacology elucidated [12].
Soon afterwards, 293 chemical profiles and analytical methodologies for phytochemical
composition of Fritillaria species were covered in depth by Wang et al. [13].
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Figure 1. The types of steroidal alkaloids in Fritillaria species.

Herein, we present an interdisciplinary and a multi-perspective review on the compo-
sition and biosynthetic pathways of alkaloids, with a taxonomy based on classical methods
and molecular decoding, domestication, and cultivation for medicinal Fritillaria species.
This review will systematically expound on the composition, synthesis, and regulation of
alkaloids in Fritillaria species. Additionally, alkaloids from various base sources will be
contrasted. Medicinal Fritillaria species will be categorized based on distributed elevations,
phylogenetic analysis, and morphological features. Various classification results will be
compared and analyzed. Finally, this review will introduce several effective techniques and
methods for the domestic cultivation and protection of Fritillaria species. Simultaneously,
we also provide insights into Fritillaria species for further research.
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2. Composition and Biosynthesis of Alkaloids in Fritillaria Species

Fritillaria is rich in various secondary metabolites. The identification and isolation
of various chemical compounds in Fritillaria have been conducted using several meth-
ods and techniques, including ultra-performance liquid chromatography (UPLC), mass
spectrometry (MS), nuclear magnetic resonance (NMR), and supercritical fluid extrac-
tion (SFE) [14–18]. Particularly, the advanced technique of ultra-performance liquid
chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) based
untargeted metabolomics coupled with chemometric analysis has been successfully applied
to the accurate identification of major components [14,19], such as alkaloids, terpenoids,
nucleosides, organic acids, saponins, carbohydrates, amines, and sterols in various Chinese
herbs [1,2]. Undoubtedly, characterization of major bioactive ingredients and verification
of their pharmacological activities is crucial for quality evaluation and control of various
bulbus Fritillariae with different origins [3].

2.1. The Composition of Alkaloids in Fritillaria Species

Alkaloids possess cyclic structures containing at least one six-membered carbon ring
embedded by one basic nitrogen atom, and they are regarded as valuable markers in
Liliaceae [13]. So far, more than 100 alkaloids have been isolated from different parts of
Fritillaria species (Table 1 and Figures S1–S7). Based on their structural frameworks, the
alkaloids extracted from Fritillaria species can be classified as isosteroidal and steroidal
types [2,20]. Subsequently, the isosteroidal type of alkaloids are further sub-divided into
three types: Cevanine, Jervine, and Veratramine, according to the patterns of linkage
between the E and F rings (Figure 1) [2,13]. On the other hand, the steroidal type of alkaloids
can be sub-divided into two types: Verazine and Solanidine, depending on the nitrogen
atom to be incorporated into an indolizidine ring or a piperidine ring (Figure 1) [2,21].
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Table 1. The main morphological features and the types of alkaloids of medicinal Fritillaria species.

Species The Number of Main Bulbs Bulb Diameter
(cm) Plant Height (cm) Florescence Habitat Types and Specimen Collection Places

Group 1 (approximately 2700–4000 m)

F. cirrhosa

2 1–1.5 15–65 May–July

Under forests, in alpine thickets, or on meadows
and flood lands. The growth altitude ranged from
2500 to 4600 m. The regions: Sichuan, Xizang, and
Yunnan in China; Nepal; India

The types of alkaloids

Cevanine type with cis-configuration (8): imperialine, chuanbeinone, imperialine-β-N-oxide, delavine, 3β-acetylimperialine, delavinone,
isodelavine, yibeinoside A [22–25]. Cevanine type with trans-configuration (6): peimine, peiminine, puqiedine, ebeiedinone, ebeiedine,
isoforticine [22,23,25]. Jervine type (2): peimisine-3-O-β-D-glucopyranoside, peimisine [22,24]. Veratramine type (1): puqienine B [22].
Verazine type (4): puqietinone, cirrhosinine A, cirrhosinine B, delavidine [22,23]. Solanidine type (4): solanidine,
solanidine-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside, demissidine,
demissidine-3-O-β-D-glucopyranosyl (1→4) glucopyranoside [22,24,26].

F. unibracteata

2 0.6–0.8 15–50 June
In moist places of thickets, or on meadows. The
altitude ranged from 3200 to 4700 m. The regions:
Sichuan and Qinghai in China.

The types of alkaloids
Cevanine type with cis-configuration (6): chuanbeinone, imperialine, delavinone, delavine, yibeinoside A, imperialine-3β-D-glucoside
[27–29] Cevanine type with trans-configuration (5): ebeiedinone, peiminine, isopeimine, peimine,
puqiedinone-3-O-β-D-glucopyranoside [28,29]. Jervine group (3): songbeisine, peimisine, peimisine-3-O-β-D-glucopyranoside [28–30].

F. taipaiensis

2 1–1.5 20–100 May–July

Under forests, in hill thickets, or on grassy slopes.
The growth altitude ranged from 1500 to 3200 m.
The regions: Shaanxi, Gansu, Sichuan, and Hubei in
China.

The types of alkaloids Cevanine type with cis-configuration (4): taipaienine, chuanbeinone, imperialine, taipainine D [31–34]. Cevanine type with
trans-configuration (2): peimine, peiminine [31,32]. Jervine type (2): peimisine, taipainine A [32,34,35].

F. delavayi

2–3 1–2 35 June–July
In sandy and gravelly places or on flood lands. The
growth altitude ranged above 4000 m. The regions:
Yunnan, Sichuan, Qinghai, and Xizang in China.

The types of alkaloids Cevanine type with cis-configuration (5): chuanbeinone, yibeinoside A, imperialine, delavine, delavinone [36,37]. Cevanine type with
trans-configuration (2): peimine, peiminine [36,37]. Jervine type (1): peimisine [36]. Verazine type (1): delavidine [37].
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Table 1. Cont.

Species The Number of Main Bulbs Bulb Diameter
(cm) Plant Height (cm) Florescence Habitat Types and Specimen Collection Places

F. crassicaulis 2 2–2.5 30–60 May
Under forests, or in alpine thickets. The growth
altitude ranged from 2500 to 3500 m. The region:
Yunnan in China.

F. przewalskii 2 0.6–1.3 20–40 June–July
In thickets or on meadows. The growth altitude
ranged from 2800 to 4400 m. The regions: Gansu,
Qinghai, and Sichuan in China.

Group 2 (approximately 1500–2700 m)

F. pallidiflora

2 1.5–3.5 30–60 May
In thickets, or on meadows. The growth altitude
ranged from 1300 to 1780 m. The region: Xinjiang
Uygur Autonomous region in China.

The types of alkaloids

Cevanine type with cis-configuration (12): imperialine, imperialine-3β-D-glucoside, imperialine-β-N-oxide, yibeinoside A, delavine,
yubeinine, sinpeinine A, delavinone, chuanbeinone, 5α, 14α, 17β-cevanin-6-oxo-3β, 20β, 24β-triol, 17β-cevanin-6-oxo-5α,20β-diol,
yibeinine [38–46]. Cevanine type with trans-configuration (7): yibeinone C, yibeinone D, dongbeinine, zhebeinone-3β-D-glucoside,
peimine, yibeinone E, yibeirine [41,42,45]. Other cevanine type (1): ebeinone [45]. Jervine type (6): peimisine, yibeissine, cyclopamine,
cycloposine, (20R,22R,23R,25R)-3β,23-dihydroxy-N-methyl-veratram-13(17)-en-6-one, yibeinone A [39,42,47,48]. Veratramine type (1):
yibeinone B [42]. Verazine type (2): pingbeinine, yibeinoside C [41]. Solanidine type (4): avenacoside C,
(25R)-26-[β-D-glucopyranosyl]oxy]-3β-[(O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl)oxy]-cholesta-5,17-diene-16,22-dione,
26-O-β-D-glucopyranosyl-3,26-dihydroxy-(25R)-5β-furost-12-on-20(22)-ene-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside,
aspidistrin [48].

F. walujewii

2 1–1.5 20–40 May–June

In thickets, on meadows, or in the cracks of rocks.
The growth altitude ranged from 1300 to 2000 m.
The regions: Xinjiang Uygur Autonomous region in
China; Russia.

The types of alkaloids
Cevanine type with cis-configuration (8): tortifoline, imperialine-3β-D-glucoside, imperialine, yibeinoside A, walujewine B, walujewine
C, walujewine D, walujewine E [49,50]. Cevanine type with trans-configuration (2): petilidine, ebeiedine [50,51]. Jervine group (3):
walujewine A, songbeisine, peimisine [50].
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Table 1. Cont.

Species The Number of Main Bulbs Bulb Diameter
(cm) Plant Height (cm) Florescence Habitat Types and Specimen Collection Places

F. karelinii
2 1 12–35 April

In Artemisia desert or on ferulic beach. The growth
altitude ranged from 590 to 3150 m. The region:
Xinjiang Uygur Autonomous region in China.

The types of alkaloids Cevanine type with cis-configuration (1): persicanidine B [52]. Other cevanine type (3): 27-epiebeienine, ebeienine, heilonine [52].
Jervine type (2): karelinine, 5-epikarelinine [52].

F. maximowiczii
4–5 1–2 27–54 June

On the hillsides. The growth altitude ranged from
1400 to 1480 m The regions: Hebei, Liaoning, and
Jilin in China.

The types of alkaloids Jervine type (2): kuroyurinidine, 23-isokuroyurinidine [53].

F. davidii 3–4 1–2 10–35 April
On meadows, or in the cracks of rocks. The growth
altitude ranged from 1800 to 2300 m. The region:
Sichuan in China.

F. verticillata
2 2 40–50 April–July

On the hillsides. The growth altitude ranged at
1600 m. The regions: Xinjiang Uygur Autonomous
region in China; Japan.

The types of alkaloids Cevanine type with trans-configuration (2): fritillarizine, isobaimonidine [54,55].

F. tortifolia

2–3 1–3 20–40 April–May
In alpine thickets or on grassy slopes. The growth
altitude range was: 1500–2000 m. The region:
Xinjiang Uygur Autonomous region in China.

The types of alkaloids
Cevanine type with cis-configuration (9): tortifoline, frititorine A, frititorine B, imperialinol, imperialine, yubeinine,
imperialine-3β-D-glucoside, delavinone, hupehenizioiside [56,57]; Cevanine type with trans-configuration (2): ebeinine, ebeiedinone
[57]; Jervine type (3): frititorine C, peimisine, peimisine-3-O-β-D-glucopyranoside [57].

F. meleagroides 2 0.5–1.5 40 April

In thickets, on meadows, or on flood lands. The
growth altitude range was: 1500 m. The region:
Xinjiang Uygur Autonomous region in China;
Kazakhstan.
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Table 1. Cont.

Species The Number of Main Bulbs Bulb Diameter
(cm) Plant Height (cm) Florescence Habitat Types and Specimen Collection Places

Group 3 below 1500 m

F. thunbergii

2–3 1.5–3 50–80 March–April
Low altitude hill under partial shade. The regions:
Zhejiang, Anhui, Jiangsu, Jiangxi, and Hunan in
China; Japan.

The types of alkaloids

Cevanine type with trans-configuration (15): peimine, peimidine, peiminine, zhebeinine, eduardine, zhebeirine, ebeiedine, puqiedine,
fritillarizine, isobaimonidine, isopeimine, zhebeininoside, peiminoside, verticine-N-oxide, ebeiedinone [3,4,58–62]. Jervine type (2):
cyclopamine, peimisine [4,63]. Veratramine type (1): zhebeisine [64]. Verazine type (2): N-demethylpuqietinone, fetisinine [64].
Solanidine type (2): solanidine, solanidine [65].

F. monantha

2–3 1.2–3 60–100 April–June

Under forests, in water side, or on wetlands. The
growth altitude ranged from 700 to 1200 m. The
regions: Hubei, Henan, Anhui, Zhejiang, and
Jiangxi in China.

The types of alkaloids

Cevanine type with trans-configuration (6): peimine, peiminine, hupeheninoside, isopeiminine, 3-O-acetoxyverticinone,
3-O-acetylverticine [66–70]. Cevanine type with cis-configuration (1): delavine [66,69]. Jervine type (4): pengbeimine B, pengbeimine D,
peimisine, ebeiensine [71,72]. Veratramine type (2): (3β, 5α, 13α, 23β)-7, 8, 12, 14-tetradehydro-5, 6, 12, 13-tetrahydro-3,
23-dihydroxyveratraman-6-one, (3β, 5α, 13α, 23β)-7, 8, 12, 14-tetradehydro-5, 6, 12, 13-tetrahydro-3, 13, 23-trihydroxyveratraman-6-
one [69].

F. anhuiensis

2–3 2 50 March–April Under forests. The growth altitude ranged from 300
to 1500 m. The region: Anhui in China.

The types of alkaloids
Cevanine type with trans-configuration (6): wanpeinine A, peimine, peiminine, isopeimine, ebeiedinone, verticinedinone [73,74]. Jervine
type (4): peimisine, pengbeimine A, pengbeimine B, pengbeimine D [74]. Verazine type (1): sitosterol [74]. Solanidine type (2):
solanidine, (22S,25S)-solanid-5,20(21)-dien-3beta-ol [75].

F. ussuriensis

2 1–1.5 100 May–June

In thickets, on meadows, or in river valleys. The
growth altitude ranged at low elevations. The
regions: Liaoning, Jilin, and Heilongjiang in China;
Russia, Korea.

The types of alkaloids

Cevanine type with trans-configuration (7): pingpeimine A, pingpeimine C, peimine, peiminine, ebeiedinone, eduardine, isopeimine
[76–79]. Cevanine type with cis-configuration (3): pingpeimine B, delavine, imperialine [78,79]. Other Cevanine type (5): ussuriedine,
ussurienine, ussurienone, ussuriedinone, heilonine [77,79,80]. Jervine type (1): peimisine [76]. Veratramine type (1): pingbeimunone A
[77]. Verazine type (2): pingbeinine, pingbeidinoside [81].

Note: The structures of these mentioned alkaloids are listed in Figures S1–S7.



Agronomy 2022, 12, 1844 8 of 24

As previously reported, 5α-cevanine isosteroidal alkaloids are the pharmaceutical
active ingredients of the Fritillaria genus [10,11]. By analyzing the composition of 5α-
cevanine isosteroidal alkaloids in Fritillaria species, some regularities were found (Table 1).
F. thunbergii and F. anhuiensis S. C. Chen and S. F. Yin only contained the 5α-cevanine
isosteroidal alkaloids with trans-configuration (i.e., the two H atoms of C-13 and C-17 at
the state of trans-configuration), including peimine (verticine), peiminine (verticinone),
isoverticine, and ebeiedine (Figure S1), as well as F. ussuriensis Maxim and F. monantha
Migo mainly contained 5α-cevanine isosteroidal alkaloids with trans-configuration. Al-
ternatively, F. cirrhosa, F. unibracteata, F. walujewii and F. delavayi mainly contained more
isosteroidal alkaloids with a cis-configuration (i.e., the two H on C-13 and C-17 at the state
of cis-configuration), including imperialine, chuanbeinone, and taipaienine among others
(Figure S2). It was reported that the rank order of potency was imperialine > peimine
> peiminine > ebeienine [82]. Moreover, F. maximowiczii mainly contained Jervine group
alkaloids instead of either trans- or cis-configuration alkaloids (Figure S4). Importantly,
5α-cevanine isosteroidal alkaloids are key quality control indicators for several bulbus
Fritillariae. Peimine and peiminine are the main alkaloids in the bulbus F. thunbergii [12,83],
with the latter being a key quality control indicator for F. ussurensis and F. monantha [3,58].
Further, imperialine (sipeimine) is used for quality assessment of Chuan Beimu. The com-
bination of imperialine and imperialine-3β-D-Glu is also used as the analytical index for
F. pallidiflora and F. walujewii [5].

2.2. Comparison of Alkaloids in Fritillaria from Different Base Sources

There are six species of the Fritillaria genus used as the botanical origins of Chuan
Beimu in the Chinese Pharmacopoeia (2020 Edition), including F. cirrhosa, F. unibracteata,
F. przewalskii, F. delavayi, F. taipaiensis, and F. wabuensis [5]. Among these six species, the
classification of F. wabuensis is controversial. In Chinese Flora, F. wabuensis is a variant of
F. crassicaulis, while F. wabuensis is a variant of F. unibracteata in the Chinese Pharma-
copoeia. In fact, F. wabuensis is related to both F. crassicaulis and F. unibracteata but more
closely to F. unibracteata [84]. In addition, there is currently a lack of data on alkaloids in
F. przewalskii. We compared the types of alkaloids in F. cirrhosa, F. unibracteata, F. taipaiensis,
and F. delavayi (Table 1), all of which contain imperialine, chuanbeinone, peimine, peimi-
nine, and peimisine (Figures S1, S2 and S4). The geo-authentic bulbus F. cirrhosae are well
known for good healing effects against chronic cough and asthma [22] in which 21 alkaloids
have been identified (Table 1 and Figures S1, S2 and S4–S7). The reported alkaloid types of
other base source species of Chuan Beimu are much lower than F. cirrhosae. F. ussuriensis is
used as a substitute for Chuan Beimu in the Northeast region of China [85], which is the
only Fritillaria growing below 1500 m that contains imperialine.

F. pallidiflora and F. walujewii are used as the botanical origins of Yi Beimu in the Chinese
Pharmacopoeia. They both contain imperialine, imperialine-3β-D-glucoside, yibeinoside A
and peimisine (Table 1 and Figures S2 and S4). A total of 33 alkaloids have been identified
in F. pallidiflora, while there were 13 alkaloids identified in F. walujewii. The method of
UPLC-ELSD fingerprint was used for the comprehensive quality evaluation of F. walujewii
and F. pallidiflora, and the fingerprint similarity was ≥0.801 [86]. In the fingerprints, the
co-peak area of imperialine and imperialine-3β-D-glucoside accounted for 80.32–93.68% of
the total peak area.

2.3. Synthesis and Regulation of Alkaloids in Fritillaria

Up to now, the biosynthetic mechanism of various steroidal alkaloids in Fritillaria is
still not fully understood due to the diverse origins and variable chemical composition.
At present, there are two schemes of the biosynthetic pathways of steroidal alkaloids
in Fritillaria species (Figures 2 and 3). It is currently recognized that the syntheses of
various alkaloids in Fritillaria may occur via the classical mevalonate (MVA) or 2-methyl-D-
erythritol-4-phosphate (MEP) pathways [87]. Along the pathway of reactions catalyzed by
specific enzymes in Figure 2, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
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(DMAPP) as 5C-intermediates were synthesized, which resulted in cycloartenol formation
and in turn converted to a series of metabolic intermediates, such as farnesyl pyrophos-
phate (FPP), squalene, and cycloartenol via chair-boat-chair-boat conformational changes,
which eventually leads to Cevanine and Jervine types isosteroidal alkaloid biosynthesis
by using various modification reactions by CYPs, hydroxysteroid decarboxylase (HSD),
isomerase, reductase, methyltransferases, etc. [87–91]. In Figure 2, the biosynthesis of
isosteroidal alkaloids was initiated with squalene oxidation and subsequently catalyzed by
different forms of (S)-2,3-oxidosqualene cyclase [92], while the frameworks of the Cevanine
or Jervine type were formed from cycloartenol by catabolic processes with nitrogen incor-
poration or hydroxylation reactions [2]. However, in Figure 3, the frameworks of Cevanine
type isosteroidal alkaloids and Solanidine and Veratramine type steroidal alkaloids were
formed from cholesterol, which was converted into Cevanine type by oxidation, nitrogen
incorporation, and multiple reduction reactions [34]. At the same time, through nitro-
gen incorporation, cholesterol can form Solanidine type and Veratramine type steroidal
alkaloids [77].

Previous studies have mainly focused on the isolation, identification, and pharma-
ceutical activity validation of active ingredients in plants. In recent studies, transcriptome
sequencing efforts were often made to reveal the biosynthesis pathways of bioactive com-
pounds for herbal Fritillaria. It is worth noting that the synthetic pathway of steroidal
alkaloids seems to vary according to different transcriptional analysis for different Fritillaria
species. In the regenerated bulbs of F. cirrhosa, RNA-seq and bioinformatics analysis were
performed to study the gene expression profile related to biosynthesis of alkaloids, which
showed the MEP pathway was the main route to produce steroidal backbones [89]. De
novo comparative transcriptome sequencing of bulbs in vivo and in vitro illuminated the
positive correlation between a higher expression of biosynthetic pathway genes and a rela-
tively higher accumulation of imperialine in F. roylei [90]. However, the MVA pathway was
considered as the predominant route for 5C intermediate biosynthesis based on related gene
expression and quantitative analysis in F. roylei. Subsequently, transcriptome sequencing
efforts were made to elucidate isosteroidal alkaloids biosynthesis by creating organ-specific
genomic resource of F. roylei, which also suggested a primary site of MVA to mediate
biosynthesis of isosteroidal alkaloids, while some enzymes involved in the MEP pathway
exhibited higher enrichment in leaf tissue [18]. Chemical inhibitors to the rate-limiting
enzymes on the two pathways could be effective players to validate the main synthetic
pathway of steroidal alkaloids in Fritillaria. For instance, the 3-hydroxy-3-methylglutaryl
coenzyme A reductase gene (HMGR) was used to remove the feedback regulation of the
MVA pathway [93], while the key mutants of squalene oxidase (SQE) in natural evolution
of F. thunbergii, F. unibracteata, and F. ussuriensis might play some important roles in differ-
entiating the content of alkaloids [14]. In addition, a repertoire of full-length transcripts of
F. hupehensis were provided, and flavonoid biosynthesis genes were blasted against those in
Solanum lycopersicum L. and Arabidopsis thaliana (L.) Heynh, which could partially address
the weakness caused by the lack of genome [94].
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Figure 2. The biosynthetic pathways of Cevanine and Jervine types isosteroidal alkaloids in Fritillaria
species. Peimine and peiminine are the Cevanine type alkaloids with trans-configuration. Imperialine
and chuanbeinone are the Cevanine type alkaloids with cis-configuration. Peimisine and cyclopamine
are the Jervine type alkaloids. IDI: Isopentenyl diphosphate isomerase; FPS: farnesyl diphosphate
synthase; SQS: squalene synthase; SQE: squalene oxidase; CAS: cycloartenol synthase; CPI1: cyclo-
propyl sterol isomerase1; DIM: delta (24)-sterol reductase; DWF5: 7-dehydrocholesterol reductase;
3β-HSD: 3β-hydroxysteroid decarboxylase; CYP450-90B1: C-22 hydroxylase.
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3. Taxonomy of Fritillaria Species

Some estimates suggest that there are approximately 140 Fritillaria species in the
world [95]. However, by searching some mainstream plant taxonomic databases (eFlo-
ras (http://www.efloras.org/ (accessed on 20 July 2022)), Flora of China (http://www.
iplant.cn/ (accessed on 20 July 2022)), Fritillaria (Pacific Bulb Society) (https://www.
pacificbulbsociety.org/pbswiki/index.php/Fritillaria (accessed on 20 July 2022)), and
World Checklist of Selected Plant Families (WCSP) (https://wcsp.science.kew.org/ (ac-
cessed on 20 July 2022)), we found a total of 158 Fritillaria species in the world (Tables S1 and
S2), including 91 species in Asia (Centered in the Himalayas and Qinghai-Tibet Plateau),
41 species in Europe (Centered in Greece), and 21 species in North America (Centered in
California), with the rest being randomly distributed. In recent years, several new Fritillaria
species have been identified but they have yet to be studied [52,96].

3.1. The Taxonomy Based on Classical Methods

Fritillaria species can be classified and identified by classical methods based on their
morphological features. In principle, various morphological parameters, including but
not limited to stem height, leaf shape and phyllotaxis, inflorescence characteristics, pollen,
capsule, bulbs, and starch grains in bulbs may be selected for plant identification [83,97].

http://www.efloras.org/
http://www.iplant.cn/
http://www.iplant.cn/
https://www.pacificbulbsociety.org/pbswiki/index.php/Fritillaria
https://www.pacificbulbsociety.org/pbswiki/index.php/Fritillaria
https://wcsp.science.kew.org/
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Of these identifying morphological features, pollen and starch grains in bulbs may provide
a higher resolution for Fritillaria identification [97]. F. thunbergii, F. cirrhosa, F. ussuriensis,
F. hupehensis, and F. pallidiflora were taxonomically identified on starch grains [97]. The
short diameter of a bulb with less intra-specific but more inter-specific variations could be
used as one of the key indicators for identification of bulbus Fritillariae [83]. As a traditional,
intuitive, and convenient method, however, morphological features alone are not sufficient
to accurately categorize Fritillaria species.

Elevation usually interacts with temperature and light intensity, which has a signifi-
cant influence on metabolite accumulation in underground bulbs [98]. Fritillaria species
can be roughly classified into three groups according to distributed elevations (Table 1).
Group 1 Fritillaria species, which are as the botanical origins of Chuan Beimu, are mainly
distributed at 2700–4000 m. Group 3 Fritillaria species are mainly distributed below 1500 m.
In addition, Group 2 Fritillaria species are mainly distributed between 1500–2700 m. By
searching mainstream plant taxonomic databases (eFloras (http://www.efloras.org/ (ac-
cessed on 20 July 2022)), Flora of China (http://www.iplant.cn/ (accessed on 20 July 2022)),
the correlation between elevation and morphological features of Fritillaria species were
summarized. The elevation and biomass are correlated. As shown in Figure 4C and Table 1
(Group 1), these Fritillaria species growing between 2700–4000 m are generally 15–50 cm in
length and usually open a single flower. While those species growing below 1500 m are
normally taller than 50 cm and will blossom a few flowers to form a racemose or umbellate
inflorescence (Figure 4B and Group 3 in Table 1). However, morphological features are
vulnerable to geographic, environmental, and climatic influences, and they could only be
used as a classification aid.
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Figure 4. The morphological ideograms of the representative Fritillaria species in three altitude
groups. (A). The morphological features of F. maximowiczii Freyn growing distributed between
1500–2700 m in Group 2. a. The plant of F. maximowiczii. b. The flower of F. maximowiczii.
c. The capsule of F. maximowiczii. d. The bulb of F. maximowiczii. (B). The morphological features of
F. thunbergii growing below 1500 m in Group 3. a. The plant of F. thunbergii. b. The flower of
F. thunbergii. c. The capsule of F. thunbergii. d. The bulb of F. thunbergii. (C). The morphological
features of F. cirrhosae growing between 2700–4000 m in Group 1. a. The plant of F. cirrhosae. b. The
flower of F. cirrhosae. c. The capsule of F. cirrhosae. d. The bulb of F. cirrhosae.

http://www.efloras.org/
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3.2. Molecular Decoding- and Phylogenetic Analysis-Based Taxonomy

DNA barcoding is a widely used tool for rapidly identifying plant species, but none of
the available loci works across all species [99,100]. Both ITS1 and ITS2, which are internal
regions between 18S and 5.8S and 5.8S and 28S, respectively, are also used as molecular
markers for phylogenetic relationships [98]. Due to low rates of nucleotide substitutions,
lack of recombination, and restriction of uni-parental inheritance, the chloroplast genome
(cp genome) is more conserved compared to nuclear and mitochondrial genomes [101–103].
A variety of intergenic spacers, genes in the cp genome, and the entire cp genome of Fritil-
laria have been utilized to establish a phylogenetic tree. However, phylogenetic analysis
based on some barcodes generally demonstrated low resolution, especially for the deep
phylogenetic relationships with short internodes and fast rates [85]. Based on the aligned
assembly of tree chloroplast markers (matK, rbcL, rpl16) and nuclear ITS, phylogenetic
relationships of Liliaceae species (including Fritillaria) were analyzed to indicate that Lilium
was nested within Fritillaria to be paraphyletic and partitioned into two monophyletic
clades, but these results were not supported by nuclear ITS data [104]. The ITS1, ITS2,
ITS1 + ITS2, and cp phylogenetic trees were constructed, and the evolutionary distances
based on ITS1 + ITS2 and overlapping extent showed a positive correlation with a relatively
higher accuracy and lower p-values [98]. The phylogenetic relationship of Fritillaria species
was also analyzed based on 64 single-copy genes and the whole chloroplast genomes of
8 subgenera further confirmed the species to be monophyletic, except for the polyphyletic
subgenus Fritillaria [105]. The reported results revealed the genus Fritillaria to be a sister to
Lilium. Furthermore, the phylogenetic tree of 7 Fritillaria species with combined nucleotides
of 74 common protein-coding genes was constructed, which provided a highly support-
ive bootstrap [106]. The phylogenetic tree based on an entire cp genome also showed
high resolution for Fritillaria species with individuals of each species in a monophyletic
clade [103].

In this review, the phylogeny of 18 medicinal Fritillaria species was compared to the
combined amino acid sequences of chloroplasts from 74 common protein-coding genes,
and 4 Lililum species of Liliaceae family set as the outgroups (Figure 5), and the phylogenetic
relationship was relatively consistent with the discovery based on 64 single-copy genes and
entire cp genomes [103,105]. It was interesting that these medicinal Fritillaria species could
be roughly divided into three groups, and the phylogenetic relationships of these species,
except for F. ussuriensis, coincided with the three groups classified by the elevations (Table 1).
The groups included F. cirrhosa, F. przewalskii, F. delavayi, F. crassicaulis, F. unibracteata, and
F. taipaiensis, all of which showed homologous relationships, grew at the same elevation
and displayed morphological similarity. These were the main sources of Chuan Beimu
(Group 1 in Table 1 and Figure 4C). F. thunbergii, F. monantha, and F. anhuiensis grew
below 1500 m, and they also showed a high degree of homology. Moreover, these mainly
contain 5α-cevanine isosteroidal alkaloids with trans-configuration (Group 3 in Table 1 and
Figure 4B). The above results indicated that phylogenetic analysis clarified the evolutionary
relationships of species, and they serve as an important parameter for the classification and
the identification of species. Future phylogenomic studies require the barcodes with higher
resolution and more samples with extensive representation of taxonomy.
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Figure 5. The phylogeny of major medicinal Fritillaria species based on the combined chloroplast
protein sequences. (A). The chloroplast genome map of major medicinal Fritillaria. (B)The combined
chloroplast protein length of major medicinal Fritillaria species. (C). The phylogeny of major medicinal
Fritillaria species based on the 74 combined chloroplast protein sequences. Major medicinal Fritillaria
species could divide into three groups based on the evolutionary tree.

4. Domestication and Culture of Fritillaria Species

With the advancement in analytical chemistry and pharmacology as well as available
scientific and experimental research, the pharmacological effects of Fritillaria have been
gradually and widely recognized in the world, and especially the successful application
in COVID-19 treatment and prevention [107,108], which has greatly increased the market
demand for herbal Fritillaria. Currently, more than 1500 medicines patented in China
contain raw ingredients originated from the bulb or other tissues of medicinal Fritillaria [12].
Unfortunately, the huge economic benefits from Fritillaria species were generated at the
cost of their overexploitation. Up until January 2022, 20 Fritillaria species have been listed
in the IUCN Red List of Threatened Species (https://www.iucnredlist.org/ (accessed on
20 July 2022)) (Table S2). To balance economic requirements and ecological protection,
domestication and resource conservation of Fritillaria species must go hand in hand.

4.1. Artificial Cultivation of Fritillaria Species

Artificial cultivation is an effective way to protect wild resources and relieve the
contradiction between supply and demand in the Fritillaria industry. Up to now, sev-
eral Fritillaria species, including F. thunbergii, F. monantha, F. anhuiensis, F. ussuriensis,
F. cirrhosa, F. unibracteata, F. taipaiensis, and F. delavayi, have been successfully cultivated
artificially [1,94,109–111]. The reproduction of bulbs was the main method to domesticate
Fritillaria species [109]. Since the growth period of bulb reproduction usually takes ap-
proximately 100 days–3 years [4], the bulbs would be used as seeds in advance. While
reproductive cycle by seed generally takes more than five years in Fritillaria species [93].

As a typical representative, the bulb of F. thunbergii has been commercially reproduced
in China over the last 700 years, and the reproduction technology was adopted approxi-
mately 300 years ago [112]. F. thunbergii as a member of the herbal drugs “Zhebawei” is

https://www.iucnredlist.org/
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widely cultivated in the south-eastern coastal, south-central, and eastern areas of China,
mostly in the provinces of Zhejiang (Figure 6), Jiangsu, Anhui, Jiangxi, and Hunan. In
Xiangshan county of Ningbo in Zhejiang province, the wild F. thunbergii was initially
domesticated in 1600–1644 AD [111]. Between 1488 and 1722 AD in Qing Dynasty, the
seeds of F. thunbergii were spread from Xiangshan county to Zhangshui town of Ningbo.
In Panan County of Jinhua city Zhejiang province, F. thunbergii var. chekiangensis was
cultivated in the late Qing Dynasty, and F. thunbergii was introduced and cultivated in
the 1970s [113]. Both the whole and the partial bulb of F. thunbergii germinate, but the
morphological features of the plants and bulbs from the two germination ways would be
different. While artificial cultivation continues to grow year on year, the wild resources
of F. thunbergii have gradually vanished due to a lack of strict protection and scientific
management. According to the local herb farmers, nowadays the wild F. thunbergii can
occasionally be found only in the Temmoku Mountain. In recent years, the imitating wild
cultivation of F. thunbergii has become more popular (Figure 6B), which could slow down
Fritillaria species degradation. The comparison between artificial cultivation and imitating
wild cultivation will be a research direction in the future.
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Moreover, F. pallidiflora native to Xinjiang Uygur Autonomous region have been
domesticated in several regions of Inner Mongolia, Gansu, Shaanxi, Henan, and Shandong
provinces in China since 1965 [114]. F. hupehensis has been cultivated in main production
areas in Enshi City of Hubei Province for more than 200 years and been used as Chuan
Beimu before being recorded in Chinese Pharmacopoeia [115,116]. F. ussuriensis naturally
growing in the Northeast region of China has been cultivated for more than 100 years; and,
until 1984, it had been domesticated in Shandong, Hebei, Jiangsu, Shaanxi, Henan, and
Jiangxi provinces [117,118].

Currently, the species of Fritillaria growing at lower altitudes can be cultivated by bulb
reproduction, but species growing at higher altitudes still rely mainly on gathering wild
resources [119]. Bulb reproduction would firstly consume bulbs as seeds and thus cause
some economic losses to famers. Many Fritillaria species are now protected and cannot be
collected without authorization. In addition, the quality of Fritillaria species cultivated by
bulb reproduction usually does not meet the standards of the morphology or the contents
of active constituents. Low propagation rate limited the extension of bulb reproduction. It
is also important to know that species degeneration and serious diseases could be caused
by multiple asexual reproductions.

4.2. In Vitro Cultivation of Fritillaria Species

In recent years, developing in vitro cultivation techniques of medicinal plants has
been becoming a research hotspot [17,89,120]. The tissue culture of Fritillaria focused on
the induction of the regenerative bulb and the polyploid [93,109]. Since the low survival
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rate of plantlets in test tubes severely limited large-scale cultivation in the field, in vitro
bulb regeneration has become an efficient strategy to alleviate the excessive demand for
bulbus Fritillariae. In addition, regenerated bulbs are thought to accumulate more alkaloids
than wild bulbs [89]. The proper hormone composition and concentration, light, and
temperature were critical to regenerate the bulbs. So far, the methods and techniques for the
tissue culture of F. thunbergii (Figure 7), F. cirrhosa, F. unibracteata, F. anhuiensis, F. taipaiensis,
F. ussuriensis, and F. pallidiflora have been established [89,109,110,120,121]. The Fritillaria
bulbs regenerated via in vitro cultivation may promise to reduce the market pressure due
to overexploitation of wild resources. However, the difference in morphological features
and phytochemical profile between the regenerated bulbs and the wild bulbs may hinder
the marketization of in vitro bulb regeneration.
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The appropriate conditions for the dormant termination and germination of seeds
and the effective methods of bulb propagation have been investigated and simulated
for artificial cultivation of Fritillaria species. Therefore, an appropriate combination of
asexual (tissue culture and bulbs reproduction) and sexual reproduction (artificial cultiva-
tion by seed reproduction) may provide an effective and most suitable way for Fritillaria
domestication and cultivation. For the effective protection and sustainable utilization
of valuable Fritillaria species, there is an urgent need to meticulously survey the growth
environment, overcome the difficulties on genetic breeding and domestication, and develop
scientific methods of artificial or imitating wild cultivation and tissue culture. For Fritillaria
species growing at 2700–4000 m, the natural fostering system may also provide an effective
approach to vigorously protect and sustainably use them.

4.3. The Management of Fritillaria Diseases

Continuous cropping in key Fritillaria producing has resulted in a decline in soil
organic matter content, degradation of soil structure, nutritional imbalance, pathogen
accumulation, and a serious incidence of plant disease in recent years [122]. Pathogen-
caused diseases are the primary cause of Fritillaria output declines, and four prevalent
diseases in Fritillaria species are sclerotinia infections, root rot, gray mold, and rust [123].
Field management and chemical and biological controls were mostly used to manage
diseases of medicinal Fritillaria [124]. The foundation for lowering the prevalence of dis-
eases is field management, and it is typically necessary to get rid of pathogen spores,
mycelium, and other bacteria that cause soil-borne diseases, pests, and their parasite
eggs [125]. Reasonable fertilization is also essential to enhance the disease resistance
of Fritillaria [126,127]. Applying the right quantity of biochar can raise the production
of F. thunbergii, decrease the occurrence of fusarium wilt, and improve the alkaloid con-
tent of Fritillaria by lowering the soil’s bulk density, and raising the pH, total nitrogen,
and accessible potassium [122]. Carbendazim and Hymexazol are two chemical pesti-
cides that are useful in preventing and controlling Fritillaria diseases, but they also carry
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a risk of pesticide residues [128]. The control of Fritillaria diseases has greatly benefited
through the use of biological pesticides in recent years. Amistar SC and Junkeduke AS have
a 10.5–15.7% greater control efficacy than chemical pesticides for F. ussuriensis rust [129].
There are reports and applications of the biocontrol bacteria for sclerotinia diseases, root rot,
and gray mold in biological controls. The bacteriostasis rate of Trichoderma virens T43 and
its fermented extract against the sclerotinia disease for F. ussuriensis was up to 60% [130].
At present, there are few studies on the biological control of Fritillaria rust caused by
Uromyces lilii [124].

5. Conclusions and Discussion

Fritillaria, as a famous traditional Chinese herb with a slightly cool nature and low
toxicity, possesses good efficacy of reducing fever as well as moistening the lungs and
dispelling fire in the human body. There are 158 Fritillaria species worldwide, 33 of
which have reported therapeutic efficacy, and 20 of non-reported ones were listed in
the IUCN Red List of Threatened Species. Due to the large number and complexed
provenance, the establishment of high-resolution, effective, convenient, and reliable meth-
ods and techniques is of great significance for identification of various Fritillaria species.
Herein, we have summarized the taxonomy of Fritillaria species based on classical meth-
ods and phylogenetic analysis. All existing data and analytic results indicate that the
geographical environment, especially growth elevation may have an important influence
on the phytochemical components and morphological features of Fritillaria during the
evolutionary process.

At present, there are more than 100 alkaloids that have been isolated from Fritillaria
species (Table 1 and Figures S1–S7). Although it is difficult to completely distinguish the
type of chemicals by distributed elevation, isosteroidal and steroidal alkaloids, which are
responsible for the pharmacological activities of bulbus Fritillariae, are significantly different
between three major categories. Fritillaria species are the sources of Chuan Beimu, and they
mainly contain more 5α-cevanine isosteroidal alkaloids with cis-configuration. In contrast,
species growing below 1500 m mainly contain more the trans-configuration isosteroidal
alkaloids. The biosynthetic mechanism of various alkaloids in Fritillaria is still not fully
understood due to the diverse origins and variable chemical composition. According to
the available literature, there are two schemes of the biosynthetic pathways of Fritillaria
alkaloids with different frameworks and catalytic reactions. In Figure 2, the biosynthesis of
Cevanine or Jervine type isosteroidal alkaloid were formed from cycloartenol by catabolic
processes with nitrogen incorporation or hydroxylation reactions (Figure 2). However,
in Figure 3, the frameworks of Cevanine type isosteroidal alkaloids and Solanidine and
Veratramine type steroidal alkaloids were formed from cholesterol (Figure 3). Yet, the
synthetic pathway of alkaloids seems to vary according to high-throughput omics data for
different Fritillaria species. The discovery of intermediates in biosynthetic pathways may
be the strongest scientific evidence for both schemes. The transcripts of alkaloids biosyn-
thesis genes compared to those in pattern species may help to compensate for the lack of
Fritillaria genome.

Artificial or in vitro cultivations are effective strategies for balancing economical
requirements and ecological protection. Fritillaria species growing at lower altitudes can be
cultivated by bulb reproduction, but species growing at higher altitudes still rely mainly
on gathering a large number of wild resources. The bulbus of Chuan Beimu and Zhe
Beimu are commonly recognized to be excellent in quality, but their costs are significantly
different because the latter can be cultivated by domestication. Fritillaria species used as
the botanical origins of Chuan Beimu are mainly distributed in the alpine areas of the
Himalayan-Hengduan Mountains with an altitude of 2700–4000 m (Table 1). The high
distributed elevation makes Chuan Beimu susceptible not only to climate change, but
also to human activities. Chuan Beimu as the alpine plants are expected to be sensitive to
anthropogenic climate change because of their cold-adapted, which have been classified
as endangered species under the third level of protection in regulations issued by the
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Chinese government since 1980s [13,131]. Detecting the environmental factors in the
geographical distribution are critical issues for the artificial cultivation of Chuan Beimu,
which is considered to be an important way to resolve the current contradiction between
resource protection and utilization [98]. There were reported about the artificial cultivation
of Chuan Beimu in 1985 [132]. In 2017, the area for artificial cultivation of F. cirrhosae were
larger than 400 hm2 and productivity was higher than 180 t [1], which still could not meet
the market demand of Chuan Beimu, resulting in its high price and the overexploitation
of wild resources. In contrast, the area for artificial cultivation of F. thunbergii reached
4.1 × 103 hm2 and productivity was higher than 1.258 × 104 t in Zhejiang Province,
China in 2019 [133]. Excess inventory leads to an annual decline in the price of Zhe
Beimu. In addition, most Fritillaria species in the world (Tables S1 and S2) have not been
medicinally studied and exploited. The exploitation of excellent Fritillaria species based on
resource investigation, pharmacological application, quality evaluation, and commodity
circulation may be another important way to resolve the imbalance in the Fritillaria industry.
Meanwhile, integration of asexual tissue culture and bulb reproduction with sexual artificial
or imitated wild cultivation may create a very promising and effective way to maintain
sustainable development of Fritillaria in industry.

6. Data Collection

Fritillaria species data were searched and collected from a number of scientific databases,
including: eFloras (http://www.efloras.org/ (accessed on 20 July 2022)), Flora of China
(http://www.iplant.cn/ (accessed on 20 July 2022)), Fritillaria | Pacific Bulb Society
(https://www.pacificbulbsociety.org/pbswiki/index.php/Fritillaria/ (accessed on 20 July
2022)),World Checklist of Selected Plant Families (WCSP) (https://wcsp.science.kew.org/
(accessed on 20 July 2022)), Web of Science (http://apps.webofknowledge.com/ (accessed
on 20 July 2022)), Scopus (https://www.scopus.com/ (accessed on 20 July 2022)), PubMed
(https://pubmed.ncbi.nlm.nih.gov/about/ (accessed on 20 July 2022)), Google (https:
//google.com/ (accessed on 20 July 2022)), Google Scholar (http://scholar.google.com/
(accessed on 20 July 2022)), Sci-Finder (http://scifinder.cas.org/ (accessed on 20 July
2022)), Science Direct (https://www.sciencedirect.com/ (accessed on 20 July 2022)), CNKI
(www.cnki.net/ (accessed on 20 July 2022)), Wanfang (www.new.wanfangdata.com.cn/
index.html/ (accessed on 20 July 2022)), and the IUCN Red List of Threatened Species
(https://www.iucnredlist.org/ (accessed on 20 July 2022)). Further, additional informa-
tion on Fritillaria was also available through traditional Chinese medicinal books, local
chronicles, and botanical books.

A bootstrap neighbor-joining phylogenetic tree of Fritillaria based on the combined
amino acid sequences of chloroplast 74 common protein-coding genes was constructed
using the MegAlign Clustal W method with the sequences of Lililum as the anchors. The de-
tailed sequence data here can be found in NCBI (https://www.ncbi.nlm.nih.gov/ (accessed
on 20 July 2022)) databases, and the accession numbers are listed in Figure 5.
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