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Abstract: Although phosphides are utilized in stored pest control, efforts have been made to discover
environmentally friendly insecticides. For insecticidal properties, essential oils (EOs) are considered
to be novel alternatives for pesticide use. This study characterized the Origanum vulgare EO by gas
chromatography–flame ionization detector (GC–FID) × gas chromatography–mass spectrometry
(GC–MS) and assessed the insecticidal activities against Sitophilus granarius. Mortality, post-exposure
survival, behavior, and respiration caused by this EO in S. granarius were investigated. The majority
of the compounds were p-cymene, carvacrol, linalool, and thymol. In dose–mortality bioassays,
the lethality of this EO (LD50 = 3.05 µg insect−1 and LD90 = 10.02 µg insect−1) was confirmed in
S. granarius. The survival rate was 99.9% in adults not treated with O. vulgare EOs, reducing to 44.9%
and 10.3% in weevils treated with 3.05 µg insect−1 and 10.02 µg insect−1, respectively. The O. vulgare
EO alters the behavioral pattern in terms of walking distance and resting time, displaying repellency.
Additionally, this EO reduced the gas exchange of weevils from 2.78 to 2.36 µL CO2 h−1 at 3.05 µg
insect−1, after 3 h EO exposure. The results suggest that O. vulgare EOs affect different biological
functions in the insect, and open new perspectives for controlling stored pests, representing a first
step in the innovation of green pesticides.
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1. Introduction

The weevil, Sitophilus granarius Linnaeus (Coleoptera: Curculionidae), is a devastating
stored pest of grains, including Avena sativa (L.), Hordeum vulgare (L.), Sorghum bicolor (L.),
Triticum aestivum (L.), and Zea mays (L.) (Poaceae), worldwide. Sitophilus granarius causes
feeding damage to stored agricultural commodities [1], contaminates food with their
molted exoskeleton and feces [2], and act as a vector of fungi [3], with a strong impact
on market quality and access. Some methods to control S. granarius include temperature
treatment [4], sun treatment [5], a controlled atmosphere [6], and the fumigation of synthetic
chemicals [7]. In S. granarius, collateral effects encouraged by synthetic groups, such
as organophosphates and phosphides, have been investigated [8]. However, negative
consequences have developed as a result of insecticides (physiological and behavioral),
including resistance [9], environmental pollution [10], and residual toxicity [8], which have
limited the demand of chemical control. The search for new pest-control tactics can be
accomplished to ensure the protection of stored products, considering the harmful effects
of synthetic insecticides.

Plant essential oils (EOs) are proposed for the pest control of fields and food storage,
and they display several insecticidal activities [11]. EOs alter the insect’s digestion [12],
causing repellency [13] and disrupting olfactory response [14]. Moreover, impacts on
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physiology cause growth anomaly [15], developmental impairment [16], oxygen depriva-
tion [17], and energy depletion [18] in insects. EOs are a blend of phytochemicals, mainly
alkaloids, flavonoids, and terpenes. The latter are the most abundant chemical group within
the composition of EOs, and act as neurotoxins in insects, affecting acetylcholine [19],
γ-aminobutyric acid [20], and octopaminergic receptors [21], while also inhibiting the
electron–transport complex [22]. The EOs are administered on insects via contact (through
the integumentary system) [23], inhalation (through the respiration system) [24], or they
are administered orally (through the digestive system) [25].

The insecticidal properties of EOs may vary according to plant species, and their
efficacy has been demonstrated in coleopteran grain pests [17,24,26]. For the insecticidal
effects of plant EOs, preliminary investigations demonstrated that Calendula incana was toxic
to Necrobia rufipes DeGeer (Cleridae) [26], Carlina acaulis to Prostephanus truncatus (Horn)
(Bostrichidae) [27], and Mentha spicata to Callosobruchus chinensis Linnaeus (Bruchidae) [28],
supporting the utilization of plant types in pest-suppression tactics. In this sense, EOs from
Amarydillaceae [29], Annonaceae [22], Lauraceae [30], Meliaceae [17], and Poaceae [31] are
the most hopeful for exerting toxicity on insects.

Oregano, Origanum vulgare Linnaeus (Lamiales: Lamiaceae), is a prominent plant
rich in secondary metabolites and is used in medicine [32], the food industry [33], and
agriculture [34]. Origanum vulgare EO is utilized for a continuous period as a natural
tool to safeguard against several microorganisms of stored grains [35], with low animal
toxicity and rapid degradation in the environment. Among the antimicrobial properties,
this EO exhibits strong insecticidal effects against stored pests [25]. In particular, O. vulgare
EO has been demonstrated, with promising results, to control several Coleopteran stored
pests, such as Acanthoscelides obtectus (Say) (Bruchidae) [36], Alphitobius diaperinus (Panzer)
(Tenebrionidae) [37], and Trogoderma granarium (Everts) (Dermestidae) [38]. However,
O. vulgare EO has been not evaluated to manage S. granarius populations.

The objective in this research was to characterize the principal compounds of O. vulgare EO
and to evaluate its effect on the mortality, survival, behavior, and respiration rate of S. granarius.

2. Materials and Methods
2.1. Weevils

Sitophilus granarius was obtained from a mass-rearing colony in the Institute of Applied
Biotechnology for Agriculture (BIOAGRO) of the Federal University of Viçosa (UFV), Viçosa,
Minas Gerais, Brazil. Adults were kept in plastic bottles (750 mL) at 27 ± 3 ◦C and 55 ± 25%
relative humidity under a 12:12 h light/dark cycle. The weevils were fed Triticum aestivum
Linnaeus (Poaceae) grains. Newly emerged (24 h-old) adults were utilized in the experiments.

2.2. Essential Oil

The organic O. vulgare EO, produced on an industrial scale by steam distillation (using
a Clevenger-type apparatus), was purchased from Ferquina Industry and Commerce Ltda.
(Catanduva, São Paulo, Brazil).

2.3. Gas Chromatography-Flame Ionization Detector (GC–FID) Analysis

Quantitative analysis of O. vulgare EO was made using a Shimadzu GC-17A Series
instrument (Shimadzu Corporation, Japan), equipped with a capillary column (Supelco
DB-5 30 m × 0.22 mm × 0.25 µm film) and coupled with a flame-ionization detector
(FID). The operating conditions were the following: carrier gas, helium at a flow rate
of 1.5 mL min−1; injector temperature, 220 ◦C; detector temperature, 240 ◦C; column
temperature to start at 40 ◦C (isothermal for 3 min), with a ramp of 3 ◦C min−1, until
reaching 240 ◦C, and held isothermally at 240 ◦C for 10 min; injection, 1 µL (1% w/v in
dichloromethane, three times); split ratio, 1:10; and column pressure, 118 kPa. For each
component identified, the amount was expressed in relative percentage, calculated by the
normalization of chromatographic peak areas.
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2.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis

GC–MS analyses were made on a Shimadzu GCMS-QP5050A gas chromatograph
equipped with a Rtx-5MS (Restek Corporation, Bellefonte, USA) capillary column
(30 m × 0.25 mm i.d., 0.25 µm film thickness). The desorption was operated via the
splitless mode (1:10 ratio), with a programmed temperature of 50 ◦C to 220 ◦C at
5 ◦C min−1, and a final holding time of 240 min. An aliquot (1 µL) of this EO (in 1% w/v
in dichloromethane) was injected three times, and the spectra were recorded in electron
impact mode (ionization energy at 70 eV), with a range of 40–400 Da. The identified
O. vulgare EO compounds were achieved by comparing their Kovats indexes from the
original literature [39–41], retention time, and MS data with those of C3−C24 n-alkanes,
obtained from the NIST v.11 and Wiley v.07 libraries.

2.5. Dose–Mortality Relationship

The O. vulgare EO was prepared in 2 mL acetone to obtain a stock suspension and was
tested on weevils using identical procedures to that which were outlined for topical appli-
cation bioassays [11,13,18]. Six dilutions (0.75, 1.5, 2.5, 5, 10, and 20 µg insect−1) besides
the control (acetone) were utilized to determinate the lethality of this EO to S. granarius
adults, set up the dose–response relation, and estimate the lethal doses (LD25, LD50, LD75,
and LD90). For each EO dilution, one microliter (1 µL) was applied to the thorax of weevil
adults, Ausing a Hamilton Model-7001 microsyringe. Subsequently, one adult exposed to
the EO dilution was put into a glass tube (2.5 × 120 mm, covered with perforated lid) and
fed wheat grain. Three replicates (50 weevils per replicate) were performed per dilution,
and the dead weevils were quantified after exposure for 48 h to the essential oil.

2.6. Time–Mortality Relationship

The survival analysis for S. granarius obtained in the dose–mortality bioassay was
evaluated. Solutions prepared with the estimated lethal doses (LD25, LD50, LD75, and LD90)
were applied topically in weevils and air dried for 15 min. Acetone was utilized as the
control. Weevil adults with the various lethal doses were individualized in glass tubes
(2.5 × 120 mm), which were covered with perforated lids. Fifty weevils were employed for
the lethal doses of O. vulgare EO, and each treatment was replicated three times. The live
weevils were quantified each time at 6 h for 48 h.

2.7. Behavioral Response

The Sitophilus granarius adults were individually placed on a Petri dish arena (90 × 1.5 mm)
with filter paper (Whatman No. 1, Merck KGaA, Darmstadt, Germany) at the bottom, and
covered with Teflon® PTFE (E.I. Du Pont de Nemours & Co., Willmington, DE, USA). One half
of the arena was impregnated with 250 µL of O. vulgare EO at the LD50 or LD90, and the other
half was treated with acetone. One S. granarius adult was released into the center of the arena
and monitored for 10 min. Sixteen insects were used per treatment; for each repetition, the
arena was changed. Behavioral responses were recorded using a camcorder, and videos were
analyzed through the Videotrack computerized system (ViewPoint Behavior Technology, Lyon,
France) to measure the distance walked, resting time, and velocity. Weevils that spent less than
1 min on the treated side of the arena were considered repelled, and those that spent less than
5 min were considered irritated [42,43].

2.8. Respiration Rate

The S. granarius respiration was assessed for 3 h after exposure to the O. vulgare EO
(LD50 and LD90) or the control, in accordance with the dose–mortality procedure. The CO2
(carbon dioxide) evolution (µL of CO2 h−1/insect) was quantified with a respirometer of
the CO2 TR3C (Sable System Int., Las Vegas, NV, USA) type. One weevil adult was kept out
in a glass chamber (25 mL) in a closed system. CO2 production was measured for 12 h at
27 ± 3 ◦C after weevil acclimatization. The O2 (oxygen) molecules were infused in a glass
chamber for 4 min at a flow of 125 mL min−1 to quantify the CO2 exhaled in the chamber.
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To measure the CO2 exhaled by the insects in each chamber, an infrared reader attached to
the system detected the CO2 molecules during the passage of airflow. Fifteen weevils were
employed for EO exposure (LD50 and LD90, and the control).

2.9. Statistical Analysis

Probit analysis was performed on dose–mortality data to estimate the regression
(intercept and slope) and lethal dose values with 95% confidence limits using SAS software
(version 9.1.). The time–mortality data underwent Kaplan–Meier survival analysis using
GraphPad Prism software (version 7.1.). The respiration rate data underwent a two-way
ANOVA test and Tukey’s HSD test. The behavioral response data were evaluated by
one-way ANOVA and the means were compared with Tukey’s test. Data analysis for the
respiration and behavior was computerized with SAS software.

3. Results
3.1. Chemical O. vulgare EO Characterization

Twenty-five compounds were identified in O. vulgare EO, accounting for 98.31% of the
total composition (Table 1).

Table 1. Chemical composition of Origanum vulgare essential oil.

Peaks Compounds Composition (%)

1 α-thujene 1.45 ± 0.01
2 α-pinene 2.74 ± 0.05
3 Camphene 1.99 ± 0.07
4 β-pinene 1.75 ± 0.02
5 β-myrcene 1.19 ± 0.01
6 α-phellandrene 1.91 ± 0.03
7 α-terpinene 1.25 ± 0.01
8 p-cymene 11.5 ± 0.11
9 Eucalyptol 2.98 ± 0.08
10 γ-terpinene 7.09 ± 0.15
11 Cis-sabinene hydrate 1.49 ± 0.01
12 Terpinolene 1.18 ± 0.01
13 Linalool 9.53 ± 0.22
14 Camphor 1.79 ± 0.01
15 Borneol 1.37 ± 0.01
16 Terpinen-4-ol 1.89 ± 0.02
17 α-terpineol 1.59 ± 0.01
18 Thymol methyl ether 1.91 ± 0.03
19 Carvacrol methyl ether 1.63 ± 0.01
20 Cuminaldehyde 1.22 ± 0.01
21 Thymol 7.51 ± 0.08
22 Carvacrol 25.4 ± 0.13
23 Aromandrene 1.39 ± 0.01
24 β-bisabolene 1.74 ± 0.01
25 Caryophyllene oxide 4.78 ± 0.09

3.2. Dose–Mortality Relationship

The dose–mortality data were suitable for a model probit fit (p > 0.05), demonstrating
the lethality of O. vulgare EO to S. granarius (3.05 µg insect−1), and allowing toxicological
endpoints to be estimated (Table 2). Mortality remained at 1% in the control.
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Table 2. Lethal doses of Origanum vulgare essential oil on Sitophilus granarius after 48 h exposure,
obtained from probit analysis (df = 5, Slope ± SE = 2.481 ± 0.23, intercept = 1.949). The chi-square
value refers to the goodness of fit test at p > 0.05.

N◦ Insects Lethal Doses Estimated Dose
(µg Insect−1)

95% Confidence Interval
(µg Insect−1)

χ2

(p-Value)

150 LD25 1.632 1.311–1.957 6.89 (0.14)
150 LD50 3.053 2.576–3.645
150 LD75 5.709 4.691–7.331
150 LD90 10.02 7.748–14.27

3.3. Time–Mortality Relationship

The survival rates of S. granarius revealed significant differences between the O. vulgare
EO lethal doses (log-rank test, χ2 = 19.41; df = 4; p < 0.0001) (Figure 1). After 48 h, survival
was 99.9% in the non-EO-exposed (the control) weevils, declining to 58.3% with LD25, 44.9%
with LD50, 30.9% with LD75, and 10.3% with LD90 of this EO.
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Figure 1. Survival curves of Sitophilus granarius exposed to different lethal doses of Origanum vulgare
essential oil, subject to survival analysis using the Kaplan–Meier estimators (log-rank test χ2 = 19.41,
DF = 4, p < 0.001).

3.4. Behavioral Response

Regarding S. granarius exposed to surfaces contaminated with O. vulgare EO, they
gradually reduced the distance walked, their resting time, and the velocity, indicating
repellency. Sitophilus granarius had a shorter walked distance in the half-arenas treated
with O. vulgare EO (LD50 and LD90) than in the control (F2,15 = 26.57, p < 0.001; Figure 2A).
Sitophilus granarius had higher resting periods in the arenas exposed to lethal doses (LD50
and LD90) than those exposed to the control (F2,15 = 51.18; p < 0.001; Figure 2B). The
walking velocity of weevils was higher in the control than in the LD50 and LD90-treated
ones (F2,15 = 12.53; p < 0.001; Figure 2C).
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Figure 2. Behavioral response of Sitophilus granarius caused by Origanum vulgare essential oil.
(A) Distance walked, (B) resting time, and (C) walking velocity of S. granarius subjected to es-
sential oil (control, LD50, and LD90 estimated values) for 10 min. Treatments (mean ± SEM) differ at
p < 0.05 (Tukey’s mean separation test).

3.5. Respiration Rate

The respiration of S. granarius was affected by exposure to O. vulgare EO at LD50
and LD90. The respiration of weevils differed between the control (2.78 µL CO2 h−1),
LD50 (2.36 µL CO2 h−1), and LD90 (1.68 µL CO2 h−1) 1 h after exposure; however, after
3 h, the respiration decreased to 2.53 µL CO2 h−1 in the control group, followed by LD50
with 1.69 µL CO2 h−1, and LD90 with 1.25 µL CO2 h−1 (Figure 3). The significant effect of
treatments (p < 0.0086), time (p < 0.0001), and the interaction between treatments × time
(p < 0.0004) were observed (Table 3).
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Table 3. Two-way ANOVA for respiration rate of Sitophilus granarius upon exposure to lethal doses
(LD50 and LD90) of Origanum vulgare essential oil. DF = degrees of freedom, SS = sum of squares,
MS = mean square, n = numerator, d = denominator, p = probability of significance.

ANOVA Table SS DF MS F (DFn, DFd) p-Value

Treatments 46.52 2 23.26 F (2,48) = 2.57 <0.0086
Time 138.1 1 138.1 F (1,48) = 15.2 <0.0001

Treatments × time 108.6 2 54.28 F (2,48) = 6.01 <0.0004
Residual 433.7 48 9.036

Total 727 53

4. Discussion

This work investigated the O. vulgare EO composition and evaluated the insectici-
dal properties caused of this EO on S. granarius. Twenty-five compounds were found:
p-cymene, carvacrol, linalool, thymol, γ-terpinene, caryophyllene oxide, α-pinene, and
eucalyptol were the principal compounds, in accordance with previous analytical chemical
investigations on terpenoids of this EO [39–41]. Carvacrol, p-cymene, and thymol are
highly toxic to insects and this action is due to the noncompetitive inhibition of acetyl-
cholinesterase by interaction with nicotinic acetylcholine receptors [44]; meanwhile, linalool
and γ-terpinene act upon the nervous system of insects by the reversible inhibition of
acetylcholinesterase [45]. Specifically, a majority of O. vulgare EO compounds are ter-
penoids and can mediate herbivore–plant chemical communication, acting as allomones or
kairomones [46]. Terpenoids are metabolites with various biochemical mechanisms [47],
and they depict a crucial role in inducing defense responses against insects [48]. With
respect to the mode of action, the evidence action of target proteins responsible for the
bioactivity of O. vulgare EO is small, but it is probably its effect on the nervous system of
S. granarius, owing to existence of terpenoids, which results in rapid mortality, as researched
in other insects after EO exposure [17,31,49].

The lethality of the O. vulgare EO to S. granarius was assessed from the dose–mortality
bioassay on topical application. This EO was lethal to adult S. granarius (LD50 = 3.05 µg insect−1)
and had an effect on cuticle contact. The O. vulgare EO induced dose–dependent lethality in
S. granarius, as found in other insects after EO application [50–52]. Weevils treated to several
doses of this EO showed altered locomotor and feeding activities. Some gradually lost mobility,
followed by paralysis and death. These symptoms were consistent with the identifiable effect
on the nervous system [19–21]. Different pest species, such as Alphitobius diaperinus Panzer
(Coleoptera: Tenebrionidae) [37], Nezara viridula Linnaeus (Hemiptera: Pentatomidae) [53], and
Plutella xylostella Linnaeus (Lepidoptera: Pyralidae), [54] were susceptible to EOs by contact
exposure or fumigation, which caused irreversible effects in the neurons. This result demon-
strated the strong neurotoxicity of O. vulgare EO in S. granarius when topically exposed, which
can impair its populations.

High variability in S. granarius survival can be promoted when the O. vulgare EO
interacts by contact exposure and penetration via the trachea, conducive to the suppression
of nerve conduction. The reduced time exposures to the O. vulgare EO (24 to 48 h) were
needed to induce lethality in this insect and were attributed with the quick action of this
bioinsecticide. In this research, the comparative survival of weevils between lethal doses
of this EO take place at various periods. These time differences were due to the ability
of the EO to ingress via the insect’s spiracles during respiration [23] and penetrate the
integument cuticle layers [18], exerting its effect by acting as neurotoxin in insects [19].
EOs have been demonstrated to interrupt ion channel shutdown in neuronal axons and
cause paralytic activity on Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae) [55],
Anagasta khueniella Zeller (Lepidoptera: Pyralidae) [50], and Rhyzopertha dominica Fabricius
(Coleoptera: Bostrichidae) [56]. Low S. granarius survival prompts that this EO causes
prejudicial effects on adults with quick exposure. Thus, O. vulgare EO may offer much
protection against this insect in the management of stored products.
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Alterations in the locomotion of S. granarius caused by O. vulgare EO are a result of
the toxicant action of this biopesticide on the insect’s neuronal receptors. Modifications
in behavioral patterns have been observed in various insects after EO exposure [24,57,58],
with serious consequences on orientation and olfactory responses [59–61]. In S. granarius,
surfaces treated with the O. vulgare EO gradually reduced the walked distance of weevils
and, subsequently, the resting time, suggesting repellency. Modifications in mobility
with doses of this EO may be a result of its shutdown effect on neuron transmission
during channel modulation, exerting a variation of action potentials along nerve axons
and synapses [19,47,62]. The findings show that variations in the locomotor ability of
S. granarius were dose-dependent on the O. vulgare EO, leading to repellency.

The O. vulgare EO compromises the S. granarius respiration, indicating physiological
stress. In insects, inhaled EOs move into the respiratory system and can affect the gas exchange
patterns [14,23,58]. The reduced respiration rate occurs during contact and EO exposure; con-
sequently, this toxic event requires an energetic demand to lead the detoxification process [62].
An imbalance in respiration promotes a high fitness cost, and the energy utilized can be reused
in other metabolic mechanisms [59]. A comparable reaction occurs in coleopteran pests, such
as Demotispa neivai Bondar (Chrysomelidae) treated with neem EOs [30], Ulomoides dermestoides
Fairmaire treated with lemongrass EOs [63], and Tenebrio molitor Linnaeus (Tenebrionidae)
treated with cinnamon EOs [17], decreasing oxygen consumption and disrupting oxidative
phosphorylation in respiration [24,31]. The findings obtained here show that S. granarius
had a reduced respiration when exposed to the O. vulgare EO, with likely fitness costs and
reallocated energy in other physiological processes.

5. Conclusions

Overall, the results indicate that O. vulgare EO has a significant range of prejudicial
effects on S. granarius. This EO inflicts toxicity, low survival, altered behavioral response,
and reduced respiration rate upon adults of this insect. The composition of this EO
proves to be a blend that is abundant in terpenoids, actuating by contact or inhalation to
exert neurotoxicity on S. granarius. Furthermore, this research provides data supporting
O. vulgare EO as a potential source of natural insecticides, which might also be utilized as
an innovative tool for the effective management of S. granarius populations.
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