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Abstract: Drought stress is one of the most predominant environmental factors hindering soybean
productivity. Therefore, the study of stress-mitigating strategies, such as the use of biostimulants,
is important in order to mitigate this problem. This study investigated the effects of an exogenous
application of biostimulants based on amino acids and macro- and micronutrients in the physio-
logical, biochemical and productive responses of soybean cultivated under drought stress. Treat-
ments consisted of T1—dose 0.0 kg ha−1 (control); T2—dose 0.0 kg ha−1 (with water-deficit stress);
T3—dose 0.25 kg ha−1; T4—dose 0.5 kg ha−1; T5—dose 0.75 kg ha−1; T6—dose 1.0 kg ha−1 of
biostimulant. Application of T4 maintained photosynthetic metabolism, with main action on stomatal
conductance, and increased the activity of antioxidant enzymes superoxide dismutase by 420%,
catalase by 167% and ascorbate peroxidase by 695%. In addition, it increased the levels of proline by
106%, leaf area by 279% and the dry matter mass of the plants by 26%, which was reflected in a 22%
increase in productivity. Therefore, application of the studied biostimulant at a dose of 0.5 kg ha−1 is
recommended to effectively alleviate the adverse effects of drought stress on soybean.

Keywords: Glycine max (L.) Merrill; water stress; biostimulants; photosynthetic metabolism; yield

1. Introduction

Plants are often subjected to adverse environmental conditions, resulting in stresses
that negatively affect their growth, development and/or yield [1–3]. Lack of water is the
main limiting factor for soybean production worldwide [4,5]. Drought hinders the global
production of soybean (Glycine max L. (Merr.)), which provides 71% and 29% of the world’s
protein and oil consumption, respectively [6].

The effects of water deficit on soybean germination, physiological processes [7], seed
development and quality [8,9] and yield [10,11] have been reported. However, to meet the
growing demand for food, it is necessary to increase soybean yield, even in environments
with low water availability [12].

In the photosynthetic process, the lack of water leads to deleterious effects on im-
portant enzymes, such as ribulose-1 5-bisphosphate carboxylase/oxygenase (RUBISCO),
phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxylase, pyruvate phos-
phate dikinase, NADP-malate dehydrogenase and NADP-malic enzyme [7,13,14]. This
is due to imbalances of molecules or ions in cells, particularly in reactive oxygen species
(ROS) [15,16], since these molecules are highly unstable and have a high reaction capacity,
mainly damaging lipids, proteins and nucleic acids and affecting cell physiology [17].

Under drought conditions, there is an increase in ROS levels in the apoplast due to the
activity of the NADPH oxidase enzymes in the respiratory burst of plants [17]. To counter
the deleterious effects of ROS, plants have an antioxidant defense system [18]. Within this
system, the activity of antioxidants enzymes superoxide dismutase (SOD), catalase (CAT),
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peroxidase (POX) and ascorbate peroxidase (APX) stand out, eliminating the ROS and
maintenance of homeostasis redox [14].

An alternative to improve crop yield under water deficiency is the application of
biostimulants that act to protect plants, minimizing the adverse effects caused by en-
vironmental stresses [19,20]. Biostimulants are classified as products containing active
ingredients capable of directly or indirectly enhancing plant development [21], consisting
of macro- and micronutrients, as well as phytohormones and other beneficial substances
for plant metabolism [22]. Their primary characteristic is the supplementation of nutrients
and activation of physiological functions throughout the plant development process, and
may be applied via soil, irrigation systems or foliar spraying [23,24].

Biostimulants are innovative agricultural techniques used to protect plants [12,20].
The use of biostimulants in agriculture has been gradually increasing, showing positive
effects under stress conditions [12,20,25]. These products have been used in soybean crops
to enhance plant response to stress and increase yield by preserving metabolism, nutrient
and water absorption, as well as the activation of antioxidant activity mechanisms.

It is important to understand how biostimulants affect plants under water stress to
understand the specific mechanisms of action. Therefore, the hypothesis of this study is
that the use of biostimulants mitigates the effect of water deficit through improvements in
morphology, maintenance of antioxidant defense and photosynthetic metabolism, which is
reflected mainly in gains in crop productivity. To answer the question, biometric, physio-
logical, biochemical and productive parameters were analyzed to investigate the capacity
of a biostimulant based on essential nutrients and amino acids to mitigate the effects of
water stress in soybean.

2. Materials and Methods
2.1. Experimental Layout

The experiment was conducted in greenhouse of the Department of Crop Production,
School of Agricultural Sciences, São Paulo State University (UNESP), in Botucatu, São
Paulo, Brazil, in summer 2018/19. The location’s geographical coordinates are 22◦50′31” S,
48◦25′29” W at an altitude of 795 m. The experiment used seeds of the soybean cultivar
95R95-IPRO, 2018/19 season crop, sown in 24 pots, obtaining five plants per 14 L pot.
The soil used was classified as Red–Yellow Latosol (RYL), consisting of 61% clay, 18%
silt and 21% sand. Its nutritional characteristics were corrected, and the physicochemical
characteristics are shown in Table 1.

Table 1. Chemical and physical analysis of the Red–Yellow Latosol (0–20 cm) used in the experiment.

pH OM Presin K Ca Mg H + Al SB CEC V Clay Silt Sand

CaCl2 g dm−3 mg dm−3 mmolc dm−3 % g kg−1

5.4 24 15 6.7 36 14 32 57 89 64 614 196 190

OM: Organic matter, SB: sum of bases, CEC: cation exchange capacity, V: base saturation.

Fertilization occurred according to the chemical analysis for fertility purposes (Table 1)
and recommendation for the cultivation of soybean [26]. All tested treatments received a
standard seed treatment with the recommended dose of Bradyrhizobium-based inoculant. In
the sowing, 50 kg ha−1 of single super phosphate and 20 kg ha−1 of potassium chloride
were applied.

Greenhouse climate conditions were logged throughout the experiment using Datalog-
ger (Instrutherm, HT-500: São Paulo, Brazil) (Figure 1). Photosynthetically active radiation
(PAR) within the greenhouse was monitored by a quantometer (QMSS-E Quantum Apogee
PAR Meter: Logan, UT, USA), with an average daily reading of 833.5 µmol m−2 s−1.
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Figure 1. Minimum (Minimum T), maximum (Maximum T) and average (Average T) temperature
and minimum (Minimum H), maximum (Maximum H) and average (Average T) air relative humidity
in the greenhouse during the experiment.

The adopted experimental design was casualized blocks, with six treatments and four
repetitions. During the V4 growth stage of soybean cultivation, all treatments—except
T1—were subjected to a continuous water deficit of 50% of field capacity until the moment
of analysis.

The maintenance of the water requirements of the treatments was performed daily
using the method of the soil water retention curve and weighing of the pots. Thus, water
deficit was imposed by weighing the pots, saturating the sampling of pots with water,
draining for 12 h to reach the field capacity (FC) and weighing again to determine the
mass of water in this situation. From then on, and with the aid of a table of maximum soil
retention capacity and of Equation (1):

W = Wfc −Wd (1)

where W = water to be added to the pot (mL); Wfc = initial pot weight with soil moisture at
field capacity or 50% (g); Wd = daily pot weight (g).

The pots were watered according to the treatment; that is, 100% of the FC for treatments
without water deficiency and 50% of the FC with water deficiency. As a result, daily
weighing and rehydration of the pots were carried out so that they reached the desired
levels again.

Biostimulant based on amino acids and macro- and micronutrients foliar applications
occurred during the R1 growth stage corresponding to the soybean reproductive phase.
Applications were carried out using a high-pressure backpack sprayer (CO2) equipped
with a spraying boom with two nozzles 0.5 m apart, with a spray volume of 200 L ha−1,
constant pressure of 1.5 bar.

The treatments (T) consisted of the application of different doses of biostimulant,
distributed as follows: T1—dose 0.0 kg ha−1 (without water-deficit stress); T2—dose
0.0 kg ha−1 (with water-deficit stress); T3—dose 0.25 kg ha−1; T4—dose 0.5 kg ha−1;
T5—dose 0.75 kg ha−1; T6—dose 1.0 kg ha−1.

The biostimulant was obtained from the company Microquímica Tradecorp® (Mi-
croquímica Tradecorp: Hortolândia, São Paulo, Brazil) and consists of mineral and organic
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components, such as macronutrients and micronutrients chelated with EDTA, and the
amino acid glycine betaine, as shown in Table 2.

Table 2. Description of the characteristics of the biostimulant * used to relieve drought stress
in soybean.

Composition (w w−1)

Nitrogen (N) 4.0%
Phosphorous (P2O5) 21.0%

Iron (Fe EDTA) 0.5%
Copper (Cu EDTA) 0.3%

Boron (B) 0.5%
Manganese (Mn EDTA) 3.0%

Zinc (Zn EDTA) 3.0%
Glycine betaine 12.0%

pH (1%) 3.6%
* Biostimulant in solid formulation; no granulometric specification.

2.2. Determination of Physiological Variables

Physiological evaluations were carried out during the phenological growth stage,
referring to the period in which the pod contains green beans that completely fill its cavity,
R6 (plant stress peak) and consisted of the following variables: leaf gas exchanges, based
on the net CO2 assimilation rate (A), stomatal conductance (gs), transpiration rate (E), leaf
temperature (Tl) and intercellular CO2 concentration (Ci), using an Infrared Gas Analyzer
(IRGA) (LI-COR Biosciences Inc., Li-6400xt: Lincoln, NE, USA), with measurements taken
between 9:00 a.m. and 11:30 a.m., using the atmospheric CO2 concentration, with room tem-
perature and humidity, and constant photosynthetically active radiation (PAR) (1500 µmol
photons m−2 s−1). Water-use efficiency (WUE) was calculated based on the A/E ratio, and
carboxylation efficiency (CE) was calculated based on the A/Ci ratio. The SPAD index
was measured through a portable chlorophyll meter (SPAD-502®, Minolta, Konica Minolta
Sensing, Inc.: Osaka, Japan).

2.3. Determination of Antioxidant Compound and Enzymes

To analyze the activity of antioxidant enzymes: SOD (EC 1.15.1.1), CAT (EC 1.11.1.6),
APX (EC 1.11.1.1) and POX (EC 1.11.1), reductase nitrate (RN- EC 1.6.6.1), and the non-
enzymatic compound proline (Prol), samples were collected during the R6 phenological
growth stage.

For the activity of enzymes SOD, CAT, POX and APX, 300 mg samples of expanded
leaves from the apex of soybean plants were milled in liquid nitrogen and added to a
homogenization medium. The medium consisted of a potassium phosphate buffer 0.1 M,
pH 6.8, ethylenediaminetetraacetic acid (EDTA) 0.1 mM, phenylmethylsulfonyl fluoride
(PMSF) 1 mMe polyvinylpyrrolidone (PVPP) 1% (p/v). Next, homogenized samples were
centrifuged in a refrigerated centrifuge (Hettich, Universal 320R: Tuttlingen, Germany) at
12,000× g at 4 ◦C for 15 min and the supernatant was used as crude enzyme extract.

For SOD activity, an aliquot of 50 µL of crude extract was added to 2950 µL of reaction
medium, consisting of sodium phosphate buffer 50 mM (pH 7.8) containing methionine
13 mM, p-nitroblue tetrazolium (NBT) 75 µM, EDTA 0.1 mM and riboflavin 2 µM. The
reaction was performed in a chamber with fluorescent light of 15 W at 25 ◦C for 10 min [27].
Subsequently, lighting was interrupted, and the absorbance of blue formazan resulting
from NBT photoreduction was determined in a spectrophotometer at 560 nm (Shimadzu,
UV-2700: Kyoto, Japan). The reaction blank consisted of a mixture between the plant
sample and the reaction medium kept in the dark, under the same temperature and time
conditions. A SOD unit was defined as the quantity of enzyme required to inhibit NBT
photoreduction by 50%. Results were expressed in U min−1 mg−1 protein.

For CAT activity, in turn, an aliquot of 50 µL of crude extract was added to 950 µL
of reaction medium, consisting of sodium phosphate buffer 50 mM (pH 7.0) and H2O2
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12.5 mM [28]. Absorbance was obtained in a spectrophotometer (Shimadzu, UV-2700:
Kyoto, Japan) at the wavelength of 240 nm after 1 min. Enzymatic activity was determined
by using the absorbance and absorption coefficient of 36 M−1 cm−1, and results were
expressed in µmol of H2O2 min−1 mg−1 protein.

For POX activity, an aliquot of 100 µL of crude extract was added to 4900 µL of reaction
medium, consisting of sodium phosphate buffer 25 mM (pH 6.8), pyrogallol 20 mM and H2O2
20 mM [29]. The production of purpurogallin was determined by the measure of spectropho-
tometer absorbance (Shimadzu, UV-2700: Kyoto, Japan) at the wavelength of 420 nm, at 25 ◦C.
Enzymatic activity was calculated using absorbance and the molar extinction coefficient of
2.47 mM−1 cm−1 [30] and expressed in µmol of purpurogallin min−1 mg−1 protein.

For APX activity, an aliquot of 100 µL of crude extract was added to 900 µL of reaction
medium, consisting of sodium phosphate buffer 0.05 M (pH 7.0), ascorbic acid 0.8 Mm and
H2O2 1.0 Mm [31]. Enzymatic activity was determined by the measure of spectrophotome-
ter absorbance (Shimadzu, UV-2700: Kyoto, Japan) at the wavelength of 290 nm, at 25 ◦C,
considering the molar extinction coefficient of 2.8 Mm−1 cm−1. Results were expressed in
µmol of ascorbic acid min−1 mg−1 protein.

For Prol determination, 100 mg of leaf tissue was homogenized in 2 mL of sulfosalicylic
acid 3% (p/v) and placed in the refrigerated centrifuge (Hettich, Universal 320R: Tuttlingen,
Germany) at 6300 g for 10 min. Samples of 100 µL of the extract were added to 200 µL of
acid ninhydrin solution (1.25 g ninhydrin, 30 mL glacial acetic acid and 20 mL of phosphoric
acid 6 M), and the mixture was incubated at 100 ◦C for 1 h. The reaction was paralyzed in
ice bath and supernatant absorbance was measured in a spectrophotometer (Shimadzu,
UV-2700: Kyoto, Japan) at the wavelength of 520 nm. Absorbance results were compared to
the standard curve of proline (0 to 100 µg mL−1) [32], and results were expressed in µmol
proline g−1 fresh matter (FM)−1.

To determine RN activity, 200 mg of leaf sample was placed in a tube with penicillin
and added to 10 mL of the extraction solution; subsequently, plants were vacuum incubated
for 3 cycles of 2 min each. After incubation, samples were placed in a water bath for another
30 ◦C for 1 h. Next, 1 mL of the extracted solution was collected and transferred to tubes,
where 1 mL of the sulfanilamide solution and 1 mL of the N-Naphthyl solution were added;
readings were made through spectrometry at 540 nm, in accordance with the methodology
proposed by [33].

2.4. Determination of Biometric Parameters of Plants

Biometric evaluations were collected during the R6 phenological growth stage (plant
stress peak) and consisted of variables of leaf area (LA) (cm2 plant−1), number of branches
(NB); shoot dry matter mass (SDM) (g plant−1); root dry matter mass (RDM) (g plant−1);
height of plants (PH) (cm); diameter of plant stem (SD) (cm); and number of primary stem
nodes (NN).

LA was quantified using a meter (Li-COR Biosciences Inc., Li-3100C: Lincoln, NE,
USA). The height of plants was calculated using measuring tape from the base to the apex
of plants. NB by direct count. The diameter of the base stem was obtained with a digital
caliper (MeterMall, 150 mm and reading 0.1 mm: Marysville, OH, USA).

SDM and RDM was obtained by collecting a plant sample and inserting it in a forced
air circulation drying incubator (Fanem, 330/5: São Paulo, SP, Brazil) at 65 ◦C until reaching
constant mass, and each sample was later weighed separately in a precision analytical scale
(Shimadzu, BL-3200H: Kyoto, Japan).

NN was counted after washing the roots with water.

2.5. Determination of Production Components

The evaluations of production components were collected during the harvesting stage,
when grains had a humidity of approximately 13%. They consisted of counting the average
number of pods per plant (NPP), average number of pods with 1 grain (NP1), average
number of pods with 2 grains (NP2) and average number of pods with 3 grains (NP3),
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and productivity (P). P (g plant−1) was obtained through the mass of grains measured in a
precision analytical scale (Shimadzu, BL-3200H: Kyoto, Japan), adjusting humidity to 13%.

2.6. Statistical Analysis

Results were submitted to variance analysis, polynomial reduction to assess product
doses under water deficit and Tukey’s test to compare doses with the control without water
deficit and without biostimulant application, at a level of 0.05 of probability. The non-
significance of the regression deviation and/or higher value of the determination coefficient
(R2) express the significance of parameters of the statistical model, using the statistics
software SISVAR® [34]. Pearson’s correlation analysis was performed with normalized
data from the treatments adopted to verify the relationship among analyzed variables.
Pearson’s correlation heatmap was generated with software RStudio® (R Software, R
Development Core Team, Vienna, Austria).

3. Results
3.1. Physiological Variables

Highest A was observed without water deficit. However, under water-deficit condi-
tions, the dose of 0.5 kg ha−1 of the biostimulant reached a similar net CO2 assimilation
rate (A) compared to 0, 0.75 and 1.00 kg ha−1 doses. Under water-deficit conditions and
biostimulant application conditions, A results were adjusted to the quadratic model and
increased by 34.75% up to a dose of 0.5 kg ha−1 compared to a dose of 0 kg ha−1, with
subsequent reduction in larger doses (Figure 2A).

A dose of 0.25 kg ha−1 of biostimulant reduced the stomatal conductance by 266.38%
in relation to the control. The other doses tested did not differ from each other (Figure 2B).

The use of biostimulant under water-deficit conditions increased intercellular CO2
concentration by 197.96% with the dose of 0.5 kg ha−1 compared to the dose 0 kg ha−1

(Figure 2C). However, there was no significant effect of biostimulant application on transpi-
ration rate (Figure 2D), leaf temperature (Figure 2E) and water-use efficiency (Figure 2F).

Higher carboxylation efficiency (CE) was observed under the application of 0 kg ha−1

of biostimulant under water-deficit conditions, but without significant difference from the
control and at doses 0.25 kg ha−1 and 0.75 kg ha−1. Lower CE was observed under the
effect of the 0.5 kg ha−1 and 1.0 kg ha−1 doses, which were similar to the 0.25 kg ha−1 and
0.75 kg ha−1 doses (Figure 2G).

The relative chlorophyll content increased by 24% following the 0.5 kg ha−1 dose
compared to the 0 kg ha−1 dose of the biostimulant in plants subjected to water-deficit
conditions (Figure 2H).
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Figure 2. Physiological characteristics of soybean plants subjected to the application of different doses
of biostimulant under water deficit. CO2 assimilation—A (A), stomatal conductance—gs (B), internal
CO2 concentration—Ci (C), transpiration—E (D), leaf temperature (E), water-use efficiency—WUE
(F), carboxylation efficiency—CE (G) and SPAD index (H). Means followed by the same letter do not
differ from each other according to the Tukey test at 5% probability. ns = not significant.

3.2. Antioxidant Compound and Enzymes

SOD activity was higher under application of 0.5 kg ha−1 under water-deficit condi-
tions, with an increase of 420% compared to plants that did not receive biostimulant and
86.57% compared to the control (Figure 3A).
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Figure 3. Activity of antioxidant enzymes and compound in soybean plants subjected to the ap-
plication of different doses of biostimulant under water deficit. Superoxide dismutase—SOD (A);
catalase—CAT (B); ascorbate peroxidase—APX (C); peroxidase—POX (D); reductase nitrate (E) and
proline (F). Means followed by the same letter do not differ from each other according to the Tukey
test at 5% probability. ns = not significant.

CAT activity increased by 167.24% under application of 0.5 kg ha−1 of biostimulant
and water deficit compared to 0 kg ha−1, but it did not differ statistically from the control
and doses 0.25, 0.75 and 1.00 kg ha−1 (Figure 3B).

Higher APX activity was observed under the application of 0.75 kg ha−1 of biostimu-
lant, with an increase of 695.04% in relation to the 0 kg ha−1 dose, but with no significant
difference from the 0.5 kg ha−1 dose (Figure 3C). The POX activity was not influenced by
the evaluated treatments (Figure 3D).

Under water deficit, RN activity increased by 134.15% with application of 0.5 kg ha−1

compared to the dose of 0 kg ha−1; however, it did not differ from control and dose
0.25 kg ha−1 (Figure 3E).

Higher accumulation of Prol was observed at the dose of 0.5 kg ha−1, with an in-
crease of 105.79% in relation to the dose of 0 kg ha−1, but it was similar to the dose of
0.75 kg ha−1 (Figure 3F).

3.3. Biometric Components

The highest PH was seen in the control without water deficiency. Under water-deficit
conditions, the highest plant height was observed in the biostimulant dose of 0.5 kg ha−1,
which did not differ from the doses of 0 kg ha−1 and 0.75 kg ha−1 (Figure 4A).
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(C), leaf area (D), number of nodules in the main root (E), shoot dry matter weight (F) and root dry
matter weight (G). Means followed by the same letter do not differ from each other by the Tukey test
at 5% probability. ns = not significant.

SD was not affected by treatments (Figure 4B). However, NB reduced as the biostim-
ulant dose increased. The highest NB was observed in the sample with no water deficit,
which did not differ from samples under water deficit and biostimulant application from
dose 0 to dose 0.75 kg ha−1. The smallest NB was observed in the dose of 1.0 kg ha−1

(Figure 4C).
The largest LA was observed under a dose of 0.5 kg ha−1, with an increase of 278.75%

compared to the dose of 0 kg ha−1 (Figure 4D). The NN was highest under the application
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of 0.5 kg ha−1, with an increase of 90% compared to dose 0 kg ha−1 and 73% compared to
the control (Figure 4E).

SDM under a dose of 0.5 kg ha−1 under water deficit conditions showed an increase
of 66.35% compared to plants that did not receive biostimulant, with subsequent reduction
at higher doses, and an increase of 44.74% compared to the control (Figure 4F). This
performance was also observed in RDM; however, the increase in this case was 26.33% in
the dose of 0.5 kg ha−1 compared to plants that did not receive biostimulant, and 12.00%
compared to the control (Figure 4G).

3.4. Production Components

NPP was negatively impacted by water deficit conditions even with the application of
the biostimulants; thus, the control treatment presented higher NPP (Figure 5A). The NP1
was not affected by treatments, resulting in an average of 2.11 pods plant−1 (Figure 5B).
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NP2 increased 105.18% with the dose of 0.5 kg ha−1 compared to the dose of 0 kg ha−1;
however, it did not differ in the control and dose 0.25 (Figure 5C). This tendency was also
observed in NP3, with an increase of 65.09% compared to the dose of 0 kg ha−1, but without
significant difference in relation to control, doses 0.25 and 0.75 kg ha−1 (Figure 5D).
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P increased 22.15% under 0.5 kg ha−1 of biostimulant, compared to dose 0 kg ha−1, in
addition to 19.55% compared to the control (Figure 5E).

There was a greater correlation between productivity and LA, NN, SOD, SDM, RDM,
SPAD index, Ci and CAT (Figure 6).
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Figure 6. Pearson’s correlation between CO2 assimilation rate (A), stomatal conductance (gs), tran-
spiration rate (E), leaf temperature (Tl), intercellular CO2 concentration (Ci), Water-use efficiency
(WUE), carboxylation efficiency (CE), SPAD index (SPAD), superoxide dismutase (SOD), ascorbate
peroxidase (APX), catalase (CAT), peroxidases (POX), nitrate reductase (RN), proline (Prol), leaf area
(LA), number of branches (NB), shoot dry matter mass (SDM), root dry matter mass (RDM), height
of plants (PH), diameter of plant stem (SD), number of primary stem nodes (NN), number of pods
per plant (NPP), average number of pods with 1 grain (NP1), average number of pods with 2 grains
(NP2), and average number of pods with 3 grains (NP3), and productivity (P). ** Significant at 5%
* Significant at 1%.

4. Discussion

Photosynthesis is one of the processes most impacted by drought stress [35,36]. The
ability of plants to adapt to stress conditions is an important factor used to mitigate the
effects of drought stress [12,37]. Such adaptation can influence the maintenance or increase
in productivity and biological processes, such as photosynthesis and, as a result, the
growth and development of plants. In this study, under water-deficit conditions, the use
of biostimulant in the dose of 0.5 kg ha−1 increased the assimilation of CO2 compared
to the sample not treated with biostimulant, possibly due to the maintenance of partially
open stomata, and favored the entry of CO2 in the leaves. This was converted into energy
for the plant with greater water savings. In fact, the correct biostimulant dosage directly
contributes to enhancing the efficiency of the physiological process [20,25].
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The relief of water deficiency effects in soybean plants promoted by the biostimulant
was also seen in stomatal conductance. The increase in stomatal conductance based on
biostimulant dose resulted in keeping stomata open, which enabled the continuous addition
of CO2 in the Calvin cycle, contributing to a higher flow of Ca2+ and K+ at stomatal level,
essential ions to protect ionic and osmotic stress, in addition to the improvement of the water
rate and photosynthesis through photosynthetic efficiency [38]. On the other hand, under
conditions of scarce water supply, abscisic acid quickly accumulates and closes the stomata,
reducing mesophyll conductance, CO2 assimilation and the electron transport rate [13,39].

Despite the maintenance of A and gs under water-deficit conditions and with bios-
timulant application at the dose of 0.5 kg ha−1, there was an increase in Ci and reduction
of CE. Lower CE values associated with higher Ci reflect biochemical alterations in the
photosynthesis machinery of soybean, and lower activity of the RUBISCO enzyme [40].
Therefore, despite the potential damage to the photosystem, the biostimulant used in this
study helped to maintain the stomatal control of plants and gas exchange, mainly under the
effect of the 0.5 kg ha−1 dose. The action of biostimulants varies according to the species,
growth stage and doses [41].

The similar effect on plant transpiration in the different treatments may be related to
the maintenance of photosynthetic efficiency and, consequently, to the production of sugars
that play an important role in the osmotic balance in conditions of water deficit. In fact,
under water deficit, plants promote changes in the accumulation of soluble sugars, in order
to maintain the hydric potential, mitigate oxidative damage and other functions to help
maintain plasma membrane stability during extended stress periods [42].

However, the application of biostimulant had a beneficial effect on plants under
water stress, which showed WUE values similar the control sample without stress [43].
This effect could be associated with the maintenance of gs, without prejudice to E, by
maintaining the osmotic potential due to the biostimulant’s application. [44] demonstrated
that the leaf hydric conductance is regulated by the osmotic permeability coefficient of cell
membranes. In addition, applying the biostimulant could reduce the concentration of ABA
and help prevent ABA production from resulting in stoma closure, under stress conditions,
ultimately reducing gs, directly influencing water use efficiency [45].

The reduction in the chlorophyll level in plants under water-deficit conditions is
broadly known [2,46]. The biostimulant’s mitigating effect in the dose of 0.5 kg ha−1 in
plants submitted to water-deficit stress can be seen by the increase in the SPAD index. This
increase may be related to the composition of the biostimulant, which consists of N, Mn,
Fe, Zn, Cu and glycine betaine, which provide substrates for metabolic syntheses, such as
chlorophyll molecules, which may be related to the increase in the activity of antioxidant
complex enzymes [38].

According to [47], plants use different mechanisms, such as antioxidant enzymes
and protein, simultaneously to keep the photosynthetic machinery active even during
drought stress conditions. In this study, the biostimulant induced an increase in antioxidant
enzymes SOD, CAT and APX in soybean plants submitted to water deficit. SOD acts in the
dismutation of O2

•− into O2 and H2O2, as one of the first enzymes in ROS elimination in
plants under stress conditions [18]. This increase is possibly related to a higher availability
of ions in the biostimulant’s composition, since SODs are categorized by a connection with
ions in different cell compartments.

The use of biostimulant improved the activity of antioxidant enzymes, especially
when using 0.5 kg ha−1. SOD is the first line of defense against accumulation of ROS
resulting from stresses. It acts in the dismutation of the superoxide anion (O2

−) to form
H2O2 in order to reduce the level of ROS generated by oxidative stress [48]. Meanwhile,
CAT is responsible for removing H2O2, reducing it to two molecules of H2O, and its activity
is associated with increased levels of photorespiration [48,49]. APX breaks down this
ROS using ascorbic acid + H2O as a reducing agent and is part of the glutathione cycle
pathway which, together with NAPDH, forms redox pairs that are essential for maintaining
homeostasis and combating oxidative damage [18,50].
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Our results demonstrate that the use of biostimulant similarly influenced the activity
of POX in all tested treatments, suggesting a greater effect of the product on the other
enzymes of the antioxidant complex mentioned above. In fact, POX was more correlated
with Prol (Figure 6).

Biostimulants improve plant metabolism by increasing the activity of antioxidant
compounds and enzymes. Therefore, plants show greater tolerance to stress throughout
their life cycle, as well as improved growth. The authors of [19,51] reported a considerable
increase in soy antioxidant activity and productivity following the foliar application of a
biostimulant based on amino acids and micronutrients.

The application of biostimulant at the dose of 0.5 kg ha−1 promoted nitrogen use under
water-deficit conditions, similar to the samples with no drought stress conditions, due to the
maintenance of the nitrate reductase enzyme’s activity. Prolonged water-deficit periods can
be harmful to plants, since they reduce the absorption and transport of water and nutrients,
altering the concentration of several metabolic processes, such as the production of amino
acids and carbohydrates [52]. The maintenance of CO2 assimilation under water-deficit
conditions promoted by the dose of 0.5 kg ha−1 of the biostimulant may be related to
the exogenous application of nutrients and amino acids [53]. Therefore, plants showed a
reduction in the stress effects and, as a result, improved growth conditions.

During a drought, the accumulation of osmoprotective molecules helps maintain cell
osmotic balance and reduces the plant water potential, maintaining soil water absorption
and therefore assuring the continuity of metabolic and growth processes [16]. The increased
proline concentration in soy plants that received the biostimulant dose of 0.5 kg ha−1 indi-
cates increased tolerance to drought and may be associated with the number of compounds
of the proline biosynthesis metabolic pathway, based on the use of the biostimulant.

Proline biosynthesis generally occurs based on the phosphorylation of glutamate,
which is dependent upon nitrogen [54], a nutrient present in the composition of the bios-
timulant analyzed in this research. Proline maintains turgidity under stress, enhances the
activities of antioxidant enzymes and allows stomata to remain partially open, allowing
photosynthesis to continue under water-deficit conditions [16,54,55].

Water-deficit conditions change the physiological and biochemical processes of plants,
reducing plant growth and, as a result, the productive capacity of crops [12,36]. Stem
diameter did not show any significant difference compared to the control sample, cor-
roborating the preventive effect of the biostimulant under drought conditions. On the
other hand, the lower plant height resulted in a greater leaf area under drought conditions
and with biostimulant application (i.e., there was a biomass partition with investment in
photosynthesizing tissues, evidenced by the greater leaf area). In general, plants presented
a reduction in leaf area under drought conditions. However, the use of biostimulant at
the dose of 0.5 kg ha−1 induced the increase in leaf area, potentially assisting in the stress
adaptation process, reducing energy demand, despite the increase in leaf area.

The number of pods per plant was significantly affected without the application of
biostimulant, presenting values below the control condition. The mitigating effect of the
biostimulant resulted in a production increase under drought stress conditions, related
to the increase in tolerance mechanisms due to the modulation of ROS concentration and
regulation of the concentration of phytohormones and lipids [56].

The use of biostimulant at the dose of 0.5 kg ha−1 contributed to an increase in
productivity, also exceeding the conditions with no drought stress, as it provided an
increase in leaf area to increase the surface available to absorb sunlight and transform
it into energy chemical, the SPAD index and the number of nodules for better use in N
assimilation, increasing the activity of antioxidant enzymes and dry matter mass.

The effect on production components was most expressive in the number of pods
with two and three grains, indicating that the product maintained the pod formation
period similar to that of the control sample with no drought stress, contributing to plant
productivity. Final plant productivity depends on the remobilization of photosynthetic
products to form pods and fill grains [10], evidenced by the increased antioxidant activity
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and accumulation of the metabolic osmoprotective agent proline [57]. Therefore, the use
of biostimulant helps increase drought tolerance in a more sustainable and economically
feasible manner compared to genetic enhancement [25].

Our results agree with [12], who observed induction of soybean plants to recovery after
water deficit under the action of a biostimulant based on Ascophyllum nodosum (L.) seaweed
extract and fulvic acids, through improvements in the physiological and biochemical
aspects of the plants, which was reflected in income gains.

Soybean plants can enhance the efficiency of physiological, biochemical and yield
characteristics when treated with a biostimulant based on macro- and micronutrients and
amino acids under drought conditions.

5. Conclusions

Soybean plants showed inhibition of photosynthetic metabolism during drought stress,
and the response to this condition was dependent on applications of a biostimulant based
on amino acids and macro- and micronutrients. The decline in physiological processes was
due to cellular damage caused by the drought condition. The application of 0.5 kg ha−1 of
the studied biostimulant improved photosynthesis and increased the antioxidant defense
in drought-stressed plants, as was reflected in the higher soybean yield. Therefore, our
findings shed new light onto the processing of biostimulants based on macro- and micronu-
trients and amino acid in soybean crop and provides guidance for further investigations
into different soybean varieties and water regimes under field conditions, considering the
current climate change scenario.
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