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Abstract: The agricultural sector plays a key role in supplying quality food and makes the greatest 

contribution to growing economies and populations. Plant disease may cause significant losses in 

food production and eradicate diversity in species. Early diagnosis of plant diseases using accurate 

or automatic detection techniques can enhance the quality of food production and minimize eco-

nomic losses. In recent years, deep learning has brought tremendous improvements in the recogni-

tion accuracy of image classification and object detection systems. Hence, in this paper, we utilized 

convolutional neural network (CNN)-based pre-trained models for efficient plant disease identifi-

cation. We focused on fine tuning the hyperparameters of popular pre-trained models, such as 

DenseNet-121, ResNet-50, VGG-16, and Inception V4. The experiments were carried out using the 

popular PlantVillage dataset, which has 54,305 image samples of different plant disease species in 

38 classes. The performance of the model was evaluated through classification accuracy, sensitivity, 

specificity, and F1 score. A comparative analysis was also performed with similar state-of-the-art 

studies. The experiments proved that DenseNet-121 achieved 99.81% higher classification accuracy, 

which was superior to state-of-the-art models. 
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1. Introduction 

Agriculture, being a substantial contributor to the world’s economy, is the key source 

of food, income, and employment. In India, as in other low- and middle-income countries, 

where an enormous number of farmers exist, agriculture contributes 18% of the nation’s 

income and boosts the employment rate to 53% [1]. For the past 3 years, the gross value 

added (GVA) by agriculture to the country’s total economy has increased from 17.6% to 

20.2% [2,3]. This sector provides the highest share of economic growth. Hence, the impact 

of plant disease and infections from pests on agriculture may affect the world’s economy 

by reducing the production quality of food. Prophylactic treatments are not effective for 

the prevention of epidemics and endemics. Early monitoring and proper diagnosis of crop 

disease using a proper crop protection system may prevent losses in production quality. 

Identifying types of plant disease is extremely important and is considered a crucial 

issue. Early diagnosis of plant disease may pave the way for better decision-making in 

managing agricultural production. Infected plants generally have obvious marks or spots 

on the stems, fruits, leaves, or flowers. Most specifically, each infection and pest condition 

leaves unique patterns that can be used to diagnose abnormalities. Identifying a plant dis-

ease requires expertise and manpower. Furthermore, manual examination when 
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identifying the type of infection of plants is subjective and time-consuming, and, some-

times, the disease identified by farmers or experts may be misleading [4]. This may lead 

to the usage of an unsuitable drug during the process of evaluating the plant disease, 

which may deteriorate the quality of the crops and end up polluting nature. 

With the evolution of computer vision, there are numerous ways to resolve the de-

tection issues for plants, since the infection spots are initially seen as spots and patterns 

on leaves [5]. Researchers have proposed several techniques to accurately detect and clas-

sify plant infections. Some use traditional image processing techniques that incorporate 

hand-crafted—that is, manual—feature extraction and segmentation [6]. Dubey et al. [7] 

proposed a K-means clustering algorithm to segment the infected portion of leaves, with 

the final classification achieved using a multi-class support vector machine (SVM). Yun et 

al. [8] used probabilistic neural network to extract meteorological and statistical features. 

The experiments were carried out in cucumber plants infected with cucumber downy mil-

dew, anthracnose, and blights. Further, many models using traditional methods have 

been proposed for disease recognition in plants, such as in the work of Liu et al. [9], who 

used SVM and K-means clustering techniques, along with a backpropagation neural net-

work. Although the image processing methods achieved promising results, the process 

involved in disease recognition is still tedious and time-consuming. Furthermore, the 

models rely on hand-crafted featuring techniques, classification, and spot segmentation. 

In the computer vision era, following the emergence of artificial intelligence, much re-

search has utilizes machine learning [10] and deep learning [11] models to achieve better 

recognition accuracy. 

With the advent of machine learning and deep learning techniques, the progress 

made in plant disease recognition has been enormous and represents a massive break-

through in research. This has made it easy for automatic classification and feature extrac-

tion to express the original characteristics of an image. Furthermore, the availability of 

datasets, GPU machines, and software supporting complex deep-learning architectures 

with lower complexity has made it feasible to switch from traditional methods to the deep-

learning platform. In recent times, convolution neural networks (CNNs) have gained wide 

attention for their recognition and classification abilities, which work by extracting low-

level complex features from images. Hence, CNNs are preferred for the replacement of 

traditional methods in automated plant disease recognition as they achieve better out-

comes [12]. A CNN-based predictive model has been proposed by Sharma et al. [13] for 

classification and image processing in paddy plants. Further, Asritha et al. [14] used a 

CNN for disease detection in paddy fields. In general, researchers use four- to six-layer 

convolutional neural networks for the classification of different plant species. Mohanty et 

al. [15] also used a CNN with a transfer learning approach for the classification, recogni-

tion, and segmentation of different diseases in plants. Although many kinds of research 

have been carried out using CNNs and better outcomes have been reported, there is little 

diversity in the datasets used [16]. The best outcome is likely to be achieved by training 

the deep-learning model using a large dataset. Although very good outcomes have been 

attained in the previous studies, improvement in the diversity of the image databases is 

still required. The models trained with the existing datasets lack diversity in the data and 

backgrounds compared to realistic photographed materials obtained from real agricul-

tural fields. 

Pennsylvania State University published a plant disease dataset named PlantVillage 

[17]. PlantVillage consists of 54,305 RGB images in 38 plant disease classes. It contains the 

images of 14 different plants. Each plant has at least two classes of images showing healthy 

leaves and diseased leaves with dimensions of 256 × 256. Sample images from the dataset 

are shown in Figure 1. Since the release of this dataset, several plant disease identification 

studies have been carried out [18–21]. 
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Figure 1. Sample images from PlantVillage dataset for 38 types of leaf diseases. 

CNN deep-learning models are popular for image-based research. They are efficient 

in learning low-level complex features from images. However, deep CNN layers are dif-

ficult to train as this process is computationally expensive. To solve such issues, transfer 

learning-based models have been proposed by various researchers [22–26]. Popular trans-

fer learning models include VGG-16, ResNet, DenseNet, and Inception [27]. These models 

are trained with the ImageNet dataset, which consists of multiple classes. Such models 

can be used for training with any dataset as the features of the images, such as edges and 

contours, are common among the datasets. Hence, the transfer learning approach has been 

found to be the most suitable and robust model for image classification [28]. Further, 

transfer learning can improve learning even when there is a smaller dataset. Figure 2 

shows the basic idea behind transfer learning. 
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Figure 2. Basic idea behind transfer learning. 

With transfer learning [22], tasks are more precise, as the model can be trained by 

freezing the last or the first layers. Thus, by freezing the layers, the model parameters cane 

be retained and tuned for feature extraction and classification [29]. In this study, we per-

formed a comparative performance analysis of different transfer learning models with 

deep CNNs in order to enhance recognition and classification accuracy and attenuate time 

complexity. Our workflow architecture is depicted in Figure 3. The experiments were car-

ried out using the PlantVillage dataset with pre-trained CNN models, such as VGG-16, 

DenseNet-121, ResNet-50, and Inception V4. The major contributions of this manuscript 

can be summarized as follows: 

 Development of a deep learning model for the diagnosis of various plant diseases; 

 Determination of the best transfer learning technique to achieve the most accurate 

classification and optimal recognition accuracy for multi-class plant diseases; 

 Resolution of distinct labeling and class issues in plant disease recognition by pro-

posing a multi-class, multi-label transfer learning-based CNN model; 

 Resolution of the overfitting problem through data augmentation techniques; 

The rest of the article is arranged as follows. Section 2 provides a literature survey. The 

methodology used in this work is presented in Section 3. Section 4 discusses the various 

experiments conducted. The results and discussion are presented in Section 5. Finally, 

Section 6 concludes the paper with future directions. 
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Figure 3. Overall workflow diagram. 

2. Related Work 

In the field of agricultural production, ignoring the early signs of plant disease may 

lead to losses in food crops, which could eventually destroy the world’s economy [30]. 

This section presents an in-depth survey of state-of-the-art research in the field of leaf 

disease identification. 

A CNN-based deep learning model was proposed for the accurate classification of 

plant disease in [31], and the model was trained using a publicly available dataset with 

87,000 RGB images. Initially, preprocessing was undertaken, followed by segmentation. 

For classification, a CNN was used. Although this model attained a recognition accuracy 

of 93.5%, it failed to classify some classes, leading to confusion with the classes in subse-

quent stages. Further, the performance of the model deteriorated due to limited availabil-

ity of data. However to improve recognition accuracy, Narayanan et al.[32] proposed a 

hybrid convolutional neural network to classify banana plant disease. In their approach, 

the raw input image was preprocessed without altering any default information, and the 

standard image dimensions were maintained using a median filter. This approach used a 

fusion SVM along with a CNN. A multiclass SVM was used in the testing phase to identify 

the type of infection or disease in infected banana leaves, whereas the SVM was used in 

phase 1 to classify whether the banana leaves were healthy or infected. The classified CNN 

output was fetched as an input to the support vector machine, attaining a classification 

accuracy of 99%. The previous work stated that the CNN had better accuracy outcomes 

than traditional methods but this approach lacked diversity. 

Jadhav et al. [33] proposed a CNN for the identification of plant disease. In this ap-

proach, they used pre-trained CNN models to identify diseases in soybean plants. The 

experiments were carried out using pre-trained transfer learning approaches, such as 

AlexNet and GoogleNet, and attained better outcomes, but the model fell behind in the 
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diversity of classification. Many existing models focus on identifying single classes of 

plant disease rather than building a model to classify various plant diseases. This is mainly 

due to the limited databases for training deep learning models with diversified plant spe-

cies. 

Jadhav et al. [34] were the first to propose a novel histogram transformation ap-

proach, which enhanced the recognition accuracy of deep learning models by generating 

synthetic image samples from low-quality test set images. The motive behind this work 

was to enhance the images in the cassava leaf disease dataset using Gaussian blurring, 

motion blurring, resolution down-sampling, and over-exposure with a modified Mo-

bileNetV2 neural network model. In their approach, synthetic images using modified 

color value distributions were generated to address the data shortage that a data-hungry 

deep-learning model faces during its training phase and achieve better outcomes. 

Following Olusola et al., Abbas et al. [35], in their work proposed, a conditional gen-

erative adversarial network to generate a database of synthetic images of tomato plant 

leaves. With the advent of generative networks, previously expensive, time-consuming 

and laborious real-time data acquisition or data collection have become possible. Anh et 

al. [36] proposed a benchmark dataset-based multi-leaf classification model using a pre-

trained MobileNet CNN model and found it efficient in classification, attaining a reliable 

accuracy of 96.58%. Further, a multi-label CNN was put forward in [20] for the classifica-

tion of multiple plant diseases using transfer learning approaches, such as DenseNet, In-

ception, Xception, ResNet, VGG, and MobileNet, and the authors claim that theirs’ is the 

first research work that classifies 28 classes of plant disease using a multi-label CNN. Clas-

sification of plant diseases using the Ensemble Classifier was proposed in [37]. The best 

ensemble classifier was evaluated with two datasets; namely, PlantVillage and Taiwan 

Tomato Leaves. Pradeep et al. [21] proposed the EfficientNet model using a convolutional 

neural network for multi-label and multi-class classification. The secret layer network in 

the CNN had a better impact on the identification of  plant diseases. However, the model 

underperformed when validated with benchmark datasets. An effective, loss-fused, resil-

ient convolutional neural network (CNN) was proposed in [38] using the publicly availa-

ble benchmark dataset PlantVillage and achieved a classification accuracy of 98.93%. 

Though this method improved the classification accuracy, the model lagged in its perfor-

mance when using real-time images under different environmental conditions. Later, 

Enkvetchakul and Surinta [39] proposed a CNN network with a transfer learning ap-

proach for two plant diseases. NASMobileNet and MobileNetV2 were the two pre-trained 

network models used for the classification of plant diseases, among which the most accu-

rate prediction outcome was that based on the NASMobileNet algorithm. Overfitting in 

deep learning can be resolved using the data augmentation approach. The data augmen-

tation technique was implemented in an experimental setup that included cut-out, rota-

tion, zoom, shift, brightness, and mix-up. Leaf disease datasets and iCassava 2019 were 

the two kinds of dataset used. The maximum test accuracy attained after the evaluation 

was 84.51%. Table 1 shows the different convolutional neural network models that have 

been proposed to improve accuracy. 

Table 1. Detailed summary of the CNN models used in the recognition and classification of plant 

disease. 

Reference 
Crop Fo-

cus 
Disease Addressed Dataset Classes Model 

Model  

Performance 

[29] Several 

Citrus canker, black 

mould, bacterial 

blight, etc. 

Plant disease  

symptoms database 

12  

56 diseases  

under 12 classes 

CNN GoogLeNet 

with tenfold cross-

validation 

Accuracy: 

84% 

[40] Several  
Black rot, late 

blight, early blight 

Self-collected data-

base 

527 species  

of diseases under 

5 classes 

CNN 
Accuracy: 

96.5% 
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[41] 
Tomato 

plant  

Various diseases 

and pests in tomato 

plant 

Self-generated data-

base 
9 

Faster Region-

based CNN with 

SSD 1 

and Region-based 

Fully Convolu-

tional Network  

Precision: 

85.98% 

[42] Several 

Powdery mildew, 

early and late 

blights, cucumber 

mosaic, downy mil-

dew, etc. 

Open dataset 58  

CNN with pre-

trained VGG net-

work 

Accuracy: 

99.53% 

[27] Several 
Black rot, late 

blight, early blight  
PlantVillage 38 

VGG-16, Inception 

V4, ResNet with 

50, 101, and 152 

layers, and Dense-

Net with 121 lay-

ers 

Accuracy: 

99.75% 

[43] Several 

Pepper bell bacterial 

spot, tomato early 

and late blight 

PlantVillage 38 

Pre-trained with 

ImageNet, Goog-

LeNet, and VGG-

16 models 

Accuracy: 

99.09% 

[44] Apple 

Apple scab, apple 

grey spot, general 

and serious cedar 

apple rust, serious 

apple scab 

AI-Challenger plant 

disease recognition  
6  

DenseNet-121  

 

Accuracy: 

93.71% 

[45] Tomato 

ToMV, leaf mould 

fungus, powdery 

mildew, blight 

AI-Challenger plant 

disease recognition  
4 

Faster regional 

CNN  

Accuracy: 

98.54% 

[46] Several 

Rice leaf smut, 

maize common rust, 

maize eyespot, rice 

bacterial leaf streak 

Public database 7 
Pre-trained  

models 

Accuracy: 

92% 

[47] 
Rice 

plant  

Sheath blight, rice 

blast, bacterial 

blight  

Self-generated data-

base 
4 

Pre-trained CNN 

with SVM 

classifier 

Accuracy: 

91.37% 

1 Single shot detector. 

3. Methodology 

CNN models are best suited for object recognition and classification with image da-

tabases. Despite the advantages of CNNs, challenges still exist, such as the long duration 

of training and the requirement for large datasets. To extract the low-level and complex 

features from the images, deep CNN models are required; this increases the complexity 

of the model training. Transfer learning approaches are capable of addressing the afore-

mentioned challenges. Transfer learning uses pre-trained networks, in which model pa-

rameters learned on a particular dataset can be used for other problems. In this section, 

we discuss the methodologies used in this work. 

3.1. Multi-Class Classification 

Plant disease datasets hold multiple images infected and healthy plant samples, with 

each sample mapped to a particular class. For instance, if we consider the banana plant as 

a class, then all the images of healthy and infected samples of banana plants will be 
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mapped to that specific class. Now, the classification of the target image is purely based 

on the features extracted from the source image. Considering the same example of the 

banana plant, the banana class has four sets of diseases; namely, xanthomonas wilt, 

fusarium wilt, bunchy top virus, and black sigatoka [32]. When a sample of one particular 

disease is fetched as input after training with all four sets of disease samples under the 

banana class, the testing phase output will classify the exact label of the disease from 

among the four categories mapped under that particular class. Thus, multi-class classifi-

cation is mutually exclusive, whereas, in multi-label classification, each category inside a 

class is itself considered a different class. Suppose we have N classes, then we can refer to 

N multi-classes, and if the N classes have M categories, then each category inside each of 

the N classes is itself considered a class. 

3.2. Transfer Learning Approach 

In general, it takes several days or weeks to train and tune most state-of-art models, 

even if the model is trained on high-end GPU machines. Training and building a model 

from scratch is time-consuming. A CNN model built from scratch with a publicly availa-

ble plant disease dataset seemed to attain 25% accuracy in 200 epochs, whereas using a 

pre-trained CNN model using a transfer learning approach attained 63% accuracy in al-

most half the number of iterations (over 100 epochs). Transfer learning methods include 

several approaches, the choice of which depends on the choice of the pre-trained network 

model for classification and the particular nature of the dataset. 

3.3. ResNe- 50 

ResNet-50 is a convolutional neural network that has 50 deep layers. The model has 

five stages, with convolution and identity blocks. These residual networks act as a back-

bone for computer vision tasks. ResNet [48] introduced the concept of stacking convolu-

tion layers one above the other. Besides stacking the convolution layers, they also have 

several skip connections, which bypass the original input to reach the output of the con-

volutional neural network. Furthermore, the skip connection can be placed before the ac-

tivation function to mitigate the vanishing gradient issue. Thus, deeper models end up 

with more errors, and to resolve these issues, skip connections in the residual neural net-

work were introduced. These shortcut connections are simply based on identity mapping. 

Let us consider x as the input image, F(x) as the nonlinear layers fitting mappings, 

and H(x) as the residual mapping. Thus, the function for residual mapping becomes: 

�(�) = �(�) + � (1)

ResNet-50 has convolution as an identity block. Each identity block has three convo-

lutional layers and over 23 M trainable parameters. Input x and shortcut x are the two 

matrices, and they can only be added if the output dimension from a shortcut and the 

convolution layer after the convolution and batch normalization are the same. Otherwise, 

shortcut x must go through a convolution layer and batch normalization to match the 

dimension. 

3.4. VGG-16 

The VGG-16 [49] network model, also known as the Very Deep Convolutional Net-

work for Large-Scale Image Recognition, was built by the Visual Geometry Group from 

Oxford University. The depth is pushed to 16–19 weight layers and 138 M trainable pa-

rameters. The depth of the model is also expanded by reducing the convolution filter size 

to 3 × 3. This model requires more training time and occupies more disk space. 

3.5. DenseNet-121 

DenseNet-121 [50] is a deep CNN model designed for image classification using 

dense layers with shorter connections between them. In this network, each layer receives 
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additional inputs from its preceding layers and passes its generated feature maps to the 

succeeding layer. Concatenation is performed between each layer, through which the next 

successive layer receives collective knowledge from all the preceding layers. Further, the 

network is thin and small since the preceding layers’ feature maps are mapped to the 

subsequent layers. In this manner, the number of channels in a dense block is reduced, 

and the growth rate of a channel is denoted by k. Figure 4 shows the working principle of 

a dense block in DenseNet. For each composition layer, regularization, activation, and 

convolution operations are carried out for the output feature maps of k channels. Batch 

normalization, ReLu activation and convolution, and pooling are performed to transform 

the outcome of subsequent layers: 

� = ��{�, ℎ�(�), ℎ�(�), ℎ�(�)} (2)

 

Figure 4. Working principle of a dense block. 

The layers have a strong gradient flow and more diversified features. DenseNet is 

small compared to ResNet. Further, the classifiers in the standard ConvNet model process 

complex features, whereas DenseNet uses all features, even with different complexities, 

and provides smooth decision boundaries. 

3.6. Inception V4 

Images contain lots of details and salient features and may vary in size. With these 

variations in size, choosing the right filter size for feature extraction is challenging. For 

local information extraction, a smaller kernel size should be chosen, whereas, for global 

information, the kernel size should be large. Stacking up the convolution layers may result 

in overfitting and vanishing gradient problems. To solve this, the Inception modules in-

corporate different kernel sizes in each block, such that the network model becomes wider 

instead of deeper [51]. For instance, the naïve Inception module can use 3 × 3, 1 × 1, or 5 × 

5 sizes for the filter after three different stages of convolution. Max-pooling is then per-

formed and the outcome is concatenated and passed to the next layer. The stem of the 

Inception layer is meant for setting up an initial set of operations to be performed before 

the Inception module. Further, Inception V4 has reduction blocks to alter the height and 

width of the grids. 

4. Experiments 

The baseline system for evaluation of our experiments was a GPU NVIDIA GeForce 

GTX workstation. The operating environment was Windows 10, GDDR5 graphic memory 

type, Core i5 9th generation, 8 GB RAM. Software implementation was undertaken using 

the Anaconda3, Keras, OpenCV, Numpy CuDNN, and Theano libraries. CUDNN and 

CUMeM are simple libraries specially designed to carry out deep learning implementa-

tions with less memory and faster execution. Both these libraries were designed by 

NVIDIA to work in the Theano backend. OpenCV supports both academic and 
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commercial project development and supports Linux, Windows, Mac OS, iOS, Python, 

Java, and Android interfaces. In this work, for each experiment, the training accuracy and 

the testing accuracy were evaluated. The losses obtained during the testing and training 

phases were calculated for each model. The models were trained using the PlantVillage 

dataset with the aim of accelerating the learning speed of the CNN with transfer learning 

models. The pre-trained models chosen for our study included ResNet-50, Inception V4, 

VGG-16, and DenseNet-121, which had been previously trained using the ImageNet da-

taset with 1.2 M images and 1000 image categories. 

4.1. Description of Dataset 

The PlantVillage [17] dataset is a publicly available dataset with different categories 

of plant diseases. This dataset comprises 38 classes with 54,305 images. For our experi-

mental analysis, we split the dataset into training samples, testing samples, and validation 

samples. The pre-trained models were trained with 80% of the PlantVillage dataset, and 

20% was used for validation and testing. Further, the total number of samples available 

for the plant classes was 54,305, out of which 43,955 samples were used for training, 4902 

for validation, and 5488 for testing. All these train, test and validation sets include all the 

38 classes of the different plant diseases. The details of the dataset split are presented in 

Table 2. 

Table 2. Details of PlantVillage dataset split for training, validation, and testing. 

Plant Type Diseases Classes 
Total 

Samples 

Training 

Samples 

Test  

Samples 

Validation  

Samples 

Apple 

Apple_scab 573 510 63 57 

Apple_black_rot 565 502 63 56 

Apple_cedar_apple_rust 250 222 28 25 

Apple_healthy 1497 1332 165 148 

Blueberry Blueberry_healthy 1366 1215 151 136 

Cherry 
Cherry_powdery_mildew 957 851 106 95 

Cherry_healthy 777 691 86 77 

Corn 

Corn_gray_leaf_spot 466 414 52 47 

Corn_common_rust 1084 964 120 108 

Corn_northern_leaf_blight 896 797 99 89 

Corn_healthy 1057 940 117 105 

Grape 

Grape_black_rot 1073 955 118 107 

Grape_black_measles 1258 1119 139 125 

Grape_leaf_blight 979 871 108 97 

Grape_healthy 385 342 43 38 

Orange Orange_haunglongbing 5011 4460 551 496 

Peach 
Peach_bacterial_spot 2090 1860 230 207 

Peach_healthy 327 291 36 33 

Pepper 
Pepper bell_bacterial_spot 997 807 100 90 

Pepper Bell_healthy 1478 1197 148 133 

Potato 

Potato_early_blight 1000 810 100 90 

Potato_healthy 1000 810 100 90 

Potato_late_blight 152 122 16 14 

Raspberry Raspberry_healthy 664 299 38 34 

Soybean Soybean_healthy 5295 4122 509 459 

Squash Squash_powdery_mildew 1669 1485 184 166 

Strawberry 
Strawberry_healthy 1009 898 111 100 

Strawberry_leaf_scorch 415 369 46 41 
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Tomato 

Tomato_bacterial_spot 2127 1722 213 192 

Tomato_early_blight 1000 810 100 90 

Tomato_healthy 1591 1546 191 172 

Tomato_late_blight 1909 770 96 86 

Tomato_leaf_mold 952 1433 178 160 

Tomato_septoria_leaf_spot 1771 1357 168 151 

Tomato_spider_mites_two-

spotted_spider_mite 
1676 1136 141 127 

Tomato_target_spot 1404 4338 536 483 

Tomato_mosaic_virus 373 301 38 34 

Tomato_yel-

low_leaf_curl_virus 
3209 1287 160 144 

Total 54,305 43,955 5448 4902 

4.2. Preprocessing and Data Augmentation 

The dataset held 38 classes with 26 diseases and 14 species of crops. For our experi-

mental purpose, we used the colour images from the PlantVillage dataset, as they fit well 

with the transfer learning models. The images were downscaled to 256 × 256 pixels as a 

standardized format since we used different pre-trained network models that require dif-

ferent input sizes. For VGG-16, DenseNet-121 and ResNet-50, the input size is 224 × 224 × 

3 (height, width, and channel width), whereas, for Inception V4, the input shape of images 

is 299 × 299 × 3 (height, width, and channel width). Though the dataset is huge, with 

around 54,000 images of different crop diseases, the images match the real-life images 

captured by farmers using different image acquisition techniques, such as Kinect sensors, 

high-definition cameras, and smart phones. Further, a dataset of such a size is prone to 

overfitting. Therefore, to overcome this, overfitting regularization techniques, such as 

data augmentation after preprocessing, were introduced. The augmentation processes 

used with the preprocessed images included clockwise and anticlockwise rotation, hori-

zontal and vertical flipping, zoom intensity, and rescaling. The images were not dupli-

cated but augmented during the training process, so the physical copies of the augmented 

images were not stored but were temporarily used in the process. This augmentation tech-

nique not only prevents the model from overfitting and model loss but also increases the 

robustness of the model so that, when the model is used to classify real-life plant disease 

images, it can classify them with better accuracy. 

4.3. Fine-Tuning of Hyperparameters in Pre-Trained Models 

The advantages of the transfer learning model are that it learns faster compared to 

models built from the scratch and that layers of the model can be frozen and the last layers 

trained for more accurate classification. Initially, certain standardizations of the hyperpa-

rameters for different pre-trained models were performed. The details of the hyperparam-

eter tuning are listed in Table 3. 

Table 3. Hyperparameter specifications. 

Hyperparameters Epochs 

Dropout 0.5 

Epochs 30 

Activation ReLu 

Regularization Batch normalization 

Optimizer Stochastic gradient descent (SGD) 

Learning rate 0.001 

Output classes 38 
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The models were optimized using stochastic gradient descent. The initial learning 

rates of the DenseNet-121, ResNet-50, VGG-16, and Inception V4 models were set to 0.001. 

Each model was run for 30 epochs and the dropout value was fixed as 0.5. In our experi-

ment, the output graph started to converge after a few iterations (i.e., from 30 epochs the 

graph started to converge); thus, our experiment overcame overfitting and degradation 

issues. 

4.4. Network Arcxhitecture Model 

The pre-trained network models where chosen based on their applicability for the 

plant disease classification task. The details of the model architecture are given in Table 4. 

Each network has different filter sizes for extracting specific features from feature maps. 

Filters play a key role in feature extraction. Further, each filter, when convolved with the 

input, will extract different features from it, and the specific feature extraction from the 

feature maps depends on the specific values of the filters. In our experiments, we used the 

actual pre-trained network models with the actual combinations of convolution layers and 

actual filter sizes used for each network model. 

Table 4. Pre-trained network architecture model. 

Network Model VGG-16 Inception V4 ResNet-50 DenseNet-121 

Total layers 16 22 50 121 

Max pool layers 5 5 1 4 

Dense layers 3 - 3 4 

Drop-out layers 2 - 2 - 

Flatten layers 1 - 1 - 

Filter size  3 × 3 1 × 1, 3 × 3, 5 × 5 3 × 3 3 × 3, 1 × 1 

Stride 2 × 2 2 × 2 2 × 2 2 × 2 

Trainable parameters 41.2 M 119.6 M 23.6 M 7.05 M 

4.4.1. VGG-16 Tuning Details 

The input image dimensions for the network are 224 × 224 × 3, and it has 64 channels 

in the first two layers with a filter size of 3 × 3 and stride of 2. The next two layers in the 

VGG-16 have 256 channels with 3 × 3 filters; followed by this is a max-pooling layer with 

stride of 2. After the pooling layer, there are two convolution layers with 256 channels 

with a 3 × 3 filter size. Following the two convolution layers, there are two sets of three 

convolution layers, along with a pooling layer, with 3 × 3 filters. The network includes one 

flatten layer, five max pool layers, and two dense layers. 

4.4.2. Inception V4 Tuning Details 

The Inception V4 block has two phases: one is for feature extraction and the other 

uses fully connected layers. Inception V4 includes a stem block and the Inception A, B, 

and C blocks, which are followed by the reduction blocks A and B and an auxiliary clas-

sifier block. 

4.4.3. ResNet-50 Tuning Details 

This residual CNN network has 50 layers, and the first layer is a convolutional layer 

with kernel size 7 × 7, a stride of 2, and 64 channels. The next three stages are convolution 

layers with filter sizes of 1 × 1, 3 × 3, and 1 × 1 and 64, 64, 256 channels. These are repeated 

three times. Similarly, the next convolution layers are repeated four times and the subse-

quent convolutional blocks are repeated six times. 
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4.4.4. DenseNet-121 Tuning Details 

DenseNet-121 increases the depth of the convolutional neural network by solving the 

vanishing gradient issues. It has four dense blocks. In the first dense block, convolution is 

performed with 1 × 1 and 3 × 3 filter sizes, and this is repeated six times. Similarly, in the 

second dense block, convolution is performed using the filter sizes 3 × 3 and 1 × 1 and the 

steps are repeated 12 times. In the third dense block, convolution operations with the same 

filter size are repeated 24 times, and in the fourth dense block, the steps are repeated 16 

times. In between the dense blocks are transition blocks with convolution and pooling 

layers. 

5. Results and Discussion 

This part of the study employed state-of-the art deep learning models using the trans-

fer learning approach for the diagnosis of plant diseases. PlantVillage, a publicly available 

dataset, was used to further train the pre-trained deep CNN networks, which were previ-

ously trained with the ImageNet dataset. For our experiment, each model was standard-

ized with a learning rate of 0.01, a dropout of 0.5, and 38 output classes. 

The dataset was split into training, test, and validation samples. A total of 80% of the 

samples from PlantVillage were used for training the pre-trained Inception V4, VGG-16, 

ResNet, and DenseNet-121 models. Each model was run for 30 epochs and it was found 

that our model started to converge after 10 epochs with high accuracy. The graph in Figure 

5a depicts the recognition accuracy of the Inception V4 model. The training accuracy 

achieved using the inception V4 model was 99.78, and Figure 5b shows the log loss of the 

Inception V4 model. 

  
(a) (b) 

Figure 5. Performance analysis of Inception V4 model using PlantVillage dataset. (a) Model recog-

nition accuracy; (b) train and test loss. 

The second experiment evaluated the VGG-16 model using the same dataset. After 

standardization of the hyperparameters, the model was trained with 80% of the same da-

taset, with 10% used for testing and the remaining 10% of the image samples used for 

testing and validation. It can be observed from Figure 6a that the model recognition accu-

racy reached around 78% in the initial 10 epochs, after which is steadily increased to attain 

the maximum recognition accuracy of 84.27%, which was lower than the Inception V4 

model. The training loss and the validation model were found to be 0.52% and 0.64%, 

respectively, as seen in Figure 6b. 
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(a) (b) 

Figure 6. Recognition accuracy of VGG-16. (a) Training and testing accuracy; (b) training and vali-

dation loss in VGG-16 using PlantVillage dataset. 

The third experiment was undertaken with the ResNet-50 model. The same method 

was applied in the evaluation of model loss and recognition accuracy, and the graphs for 

recognition accuracy and validation and training loss are plotted in Figure 7a,b. This 

model achieved an accuracy of 99.83 and a model loss of 0.027. It outperformed the Incep-

tion V4 and VGG-16 models. 

  
(a) (b) 

Figure 7. Recognition accuracy of ResNet-50. (a) Training and testing accuracy; (b) training and 

validation loss in ResNet-50 using PlantVillage dataset. 

After hyperparameter standardization, the final experiment was executed with 

DenseNet-121, which has 121 layers with four dense blocks and a transition layer between 

each dense block. Figure 8a,b show the graphs plotted for the training and validation ac-

curacy/loss for 30 epochs. In the testing phase after training, the maximum accuracy 

achieved was 99.81% and the maximum validation loss calculated was 0.0154%. A com-

parative performance analysis is shown in Table 5 for the pre-trained network model ex-

periments. 
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(a) (b) 

Figure 8. Recognition accuracy of DenseNet-121. (a) Training and testing accuracy; (b) training and 

validation loss in DenseNet-121 using PlantVillage dataset. 

Table 5. Comparative performance analysis of various network models. 

Network Models 
Training Accuracy 

(%) 

Training Loss 

(%) 

Test Accuracy 

(%) 

Test Loss 

(%) 

Inception V4 99.78 0.01 97.59 0.0586 

VGG-16 84.27 0.52 82.75 0.64 

ResNet-50 99.82 6.12 98.73 0.027 

DenseNet-121 99.87 0.016 99.81 0.0154 

In agricultural production, early diagnosis of crop disease is essential for high yields. 

To maintain a high production rate, the latest technologies should be implemented in the 

early diagnosis of plant disease. It was observed from the literature study that deep learn-

ing models are efficient in image classification, and transfer learning based models are 

efficient in eliminating training complexity and huge dataset requirements. Hence, in this 

work, we evaluated four pre-trained models—VGG-16, ResNet-50, Inception V4, and 

DenseNet-121—to determine the model that was best capable of classifying various plant 

diseases. The results for the pre-trained models were evaluated with evaluation metrics, 

such as specificity, sensitivity, and F1 score values. The validation accuracy in terms of 

the F1 score was calculated and a graphical representation the validation accuracy for the 

pre-trained models is depicted in Figure 9. It was inferred that DenseNet-121 (Figure 9d) 

outperformed the other network models (Figure 9a–c) and attained the highest validation 

peak with 0.998, which is very close to an F1 score of 1. In general, the value of an F1 score 

ranges from 0 to 1. A model’s performance is relatively better when it is closer to 1. In our 

analysis, after repeating the same experiments for all the pre-trained models, we found 

that the highest validation accuracy in terms of the F1 score was achieved by DenseNet-

121 at 0.998, whereas it was 0.887 for Inception V4, 0.901 for VGG-16, and 0.935 for ResNet-

50. 
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(a) (b) 

  
(c) (d) 

Figure 9. F1 score vs. validation scores using PlantVillage dataset for (a) Inception V4; (b) VGG-16; 

(c) ResNet-50; (d) DenseNet-121. 

A statistical representation of the pre-trained network models based on the evalua-

tion metrics is shown in Figure 10. The vanishing gradient issues resulting from skip con-

nections were eliminated using regularization techniques, such as batch normalization. 

With deeper models, various challenges, such as overfitting, covariant shifts, and training 

time complexity, occurred. To overcome these challenges in our experiments, we fine-

tuned the hyperparameters. The experiments used sensitivity to predict the proportion of 

actually healthy plants classed as healthy (true positive) and actually healthy plants 

classed as unhealthy (false negative). From the evaluation, it was observed that ResNet-

50 and DenseNet-121 performed better than the VGG-16 and Inception V4 models. A per-

formance analysis of the different pre-trained models based on the specificity, sensitivity, 

and F1 score is shown in Figure 10. 

����������� (������) =
���� ��������

 (���� �������� + ����� ��������)
 (3)

Specificity is a measure of the proportion of actually unhealthy plants predicted to 

be unhealthy (true negative) and the actually unhealthy leaves predicted to be healthy 

(false positive) 

����������� =
���� ��������

(���� �������� + ����� ��������)
 (4)
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Figure 10. Performance analysis of pre-trained models based on different evaluation metrics. 

Table 6 presents a comparison of the obtained results with those from state-of-the-art 

studies from the literature that used transfer learning models. We considered state-of-the-

art studies from the literature that experimented on the PlantVillage dataset. It was ob-

served from the analysis that our work considered more plant disease classes. Further, 

our fine-tuned, pre-trained model achieved the best accuracy of 99.81%. 

Table 6. Comparison with state-of-the-art transfer learning models. 

References Dataset Used Pre-Trained Model 
Multi-Clas-

ses 
Recognition Accuracy (%) 

[52] PlantVillage VGG-16 10 91.2 

[53] PlantVillage ResNet-50 6 97.1 

[54] PlantVillage AlexNet 7 98.8 

Our Work 

PlantVillage Inception V4 38 97.59 

 VGG-16 38 82.75 

 ResNet-50 38 98.73 

  DenseNet-121 38 99.81 

6. Conclusions 

In this work, we successfully analysed the different transfer learning models suitable 

for the accurate classification of 38 different classes of plant disease. Standardization and 

evaluation of state-of-the-art convolutional neural networks using transfer learning tech-

niques were undertaken based on the classification accuracy, sensitivity, specificity, and 

F1 score. From the performance analysis of the various pre-trained architectures, it was 

found that DenseNet-121 outperformed ResNet-50, VGG-16, and Inception V4. Training 

the DenseNet-121 model seemed to be easy, as it had a smaller number of trainable pa-

rameters with reduced computational complexity. Hence, DenseNet-121 is more suitable 

for plant disease identification when there is a new plant disease that needs to be included 

in the model, demonstrating reduced training complexity. The proposed model achieved 

a classification accuracy of 99.81% and F1 score of 99.8%. 

In future work, we will address the problems in real-time data collection and develop 

a multi-object deep learning model that can even detect plant diseases from a bunch of 

leaves rather than a single leaf. Furthermore, we are working towards implementing a 
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mobile application with the trained model from this work. It will help farmers and the 

agricultural sector in real-time leaf disease identification. 
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