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Abstract: Fast, accurate, and non-destructive large-scale detection of sweet cherry ripeness is the key
to determining the optimal harvesting period and accurate grading by ripeness. Due to the complexity
and variability of the orchard environment and the multi-scale, obscured, and even overlapping fruit,
there are still problems of low detection accuracy even using the mainstream algorithm YOLOX in
the absence of a large amount of tagging data. In this paper, we proposed an improved YOLOX
target detection algorithm to quickly and accurately detect sweet cherry ripeness categories in
complex environments. Firstly, we took a total of 2400 high-resolution images of immature, semi-ripe,
and ripe sweet cherries in an orchard in Hanyuan County, Sichuan Province, including complex
environments such as sunny days, cloudy days, branch and leaf shading, fruit overlapping, distant
views, and similar colors of green fruits and leaves, and formed a dataset dedicated to sweet cherry
ripeness detection by manually labeling 36068 samples, named SweetCherry. On this basis, an
improved YOLOX target detection algorithm YOLOX-EIoU-CBAM was proposed, which embedded
the Convolutional Block Attention Module (CBAM) between the backbone and neck of the YOLOX
model to improve the model’s attention to different channels, spaces capability, and replaced the
original bounding box loss function of the YOLOX model with Efficient IoU (EIoU) loss to make the
regression of the prediction box more accurate. Finally, we validated the feasibility and reliability of
the YOLOX-EIoU-CBAM network on the SweetCherry dataset. The experimental results showed
that the method in this paper significantly outperforms the traditional Faster R-CNN and SSD300
algorithms in terms of mean Average Precision (mAP), recall, model size, and single-image inference
time. Compared with the YOLOX model, the mAP of this method is improved by 4.12%, recall is
improved by 4.6%, F-score is improved by 2.34%, while model size and single-image inference time
remain basically comparable. The method in this paper can cope well with complex backgrounds
such as fruit overlap, branch and leaf occlusion, and can provide a data base and technical reference
for other similar target detection problems.

Keywords: orchard environment; YOLOX; target detection; dataset; cherry; CBAM; EIoU

1. Introduction

The sweet cherry is a very old cultivated tree, with a history of more than 2000 years of
artificial cultivation, and economic cultivation starting in the 16th century. It has developed
into a worldwide fruit tree, and according to FAO data, sweet cherries were grown in
70 countries and regions worldwide in 2014. The sweet cherry grows in different locations,
with small and tender individual fruits that are easily broken, and is currently usually
picked by hand. Sweet cherries have a short ripening period and need to be picked in a
short period, which can lead to fruit decay if it takes too long. With continuous updates
in the field of agricultural machinery, sweet cherry picking is gradually becoming fully
mechanized. In order to reduce the fragmentation rate during cherry picking and improve
the picking efficiency, the design of a target detection method with high real-time detection
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and high detection accuracy has become a hot and difficult problem of widespread concern
in the current academic and industrial fields.

Early studies on sweet cherry fruit detection focused on hand-extracted features based
on the shape, texture, and color of fruit images. Rabby et al. [1] extracted the color and
shape features of fruits and successfully classified apples and oranges using a Modified
Canny Edge Detection (MCED) algorithm. The results showed that the edge detection
accuracy of the improved method was better than that of the traditional method, especially
in the presence of more noise or dark light conditions. Lu et al. [2] creatively proposed
a method to detect immature citrus fruits using only texture and intensity distributions
with 82.3% accuracy. However, such methods rely on manual feature extraction, which is a
time-consuming and complex process.

With the gradual application of deep learning technology in agriculture, target detec-
tion based on deep learning has become a hot direction for intelligent fruit picking. The
two main popular algorithms in target detection algorithms are two-stage and one-stage [3].
Two-stage refers to the detection algorithm executed in two steps: first, a candidate frame is
selected, and then classification and regression are performed, such as in the Region-CNN
(R-CNN) family. Gené-Mola et al. [4] used Fast Region-based Convolutional Network
(Faster R-CNN) [5] for apple and kiwi fruit detection in a complex orchard context, achiev-
ing 80.8% and 88.4% detection accuracy, respectively. Yu et al. [6] introduced Mask for
improving the performance of deep learning in a strawberry picking robot fruit detection
Region-based Convolutional Neural Network (Mask-RCNN) [7] to achieve visual localiza-
tion of strawberry picking points. In general, the R-CNN series has relatively high detection
accuracy, but is computationally intensive and runs slowly. Both the earlier and current
studies described above are based on RGB images, and thus possess superiorities such as
high resolution, ease of use, and low cost.

One-stage refers to direct regression without acquiring candidate regions separately [8],
such as the You Only Look Once (YOLO) series [9–13]. The YOLO series significantly
improves the speed of model running inference while keeping the detection accuracy largely
unchanged and is better able to meet the demand for real-time detection. Among them,
YOLOV3 [11] uses Darknet53, which draws on the idea of the residual network [14] as the
backbone network, while improving single-label classification into multi-label classification
and introducing multi-scale features for object detection by drawing on the Feature Pyramid
Network (FPN) [15], which improves the detection accuracy and small object detection.
YOLOV4 [12] changed the backbone network to CSPDarknet53 based on the YOLOV3
network structure, and introduced the Path Aggregation Network (PANet) [16] and Spatial
Pyramid Pooling (SPP) layer [17] into the neck network. Among them, the structure
of the Cross Stage Partial Network (CSPNet) [18] enables richer gradient combinations
while improving accuracy and inference speed. Gai et al. [19] proposed an improved
YOLOV4 [12] deep learning algorithm to detect cherry fruits by replacing the prior box
in the YOLOV4 model with a suitable cherry fruit shape, using DenseNet [20] to replace
the Cross Stage Partial Network (CSPDarknet53) [11] structure, and modifying the loss
function to Leaky Rectified Linear Unit (Leaky ReLU) [21], but the dataset of this study was
not open-source and the model still had a slight misdetection problem for ripe, semi-ripe,
and immature cherry fruits.

The YOLOX network [13] combines the advantages of the YOLO series of networks
and can significantly improve the inference speed of the model while keeping the detection
accuracy basically unchanged to achieve the demand of real-time detection. The backbone
network part of the YOLOX model mainly adopts the residual structure [14] for feature
extraction and feature fusion, and the neck network part mainly uses the Feature Pyramid
Network (FPN) [15] layer for feature fusion of feature maps in three dimensions. How to
focus on the relationship between the three dimensions at the same time and automatically
learn the important dimensions of different channel features and different spatial features
is a problem worth studying [22]. The Convolutional Block Attention Module (CBAM) [22]
is a simple and effective attention module proposed by Woo et al. for feedforward convolu-
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tional neural networks, which focuses on both spatial focus and channel focus and has been
widely used in networks other than YOLOX networks [23,24]. In addition, the YOLOX
model uses Intersection over Union (IoU) [25] as the bounding box loss function, and the
IoU value is 0 when the prediction box and the real box do not intersect, which leads to
a large range of loss functions without gradients. Therefore, the design of the bounding
box loss function is also one of the important directions of current research. Yao et al. [26]
improved the regression accuracy of the bounding box to some extent after modifying
the loss function of YOLOV5 to Complete-IoU (CIoU) [27], but CIoU sometimes prevents
the model from optimizing the similarity effectively. For this problem, Zhang et al. [28]
proposed Efficient IoU (EIoU) by splitting the influence factor of the aspect ratio of the
prediction frame and the real frame based on the penalty term of CIoU.

In view of these limitations, the main objective of this study was to achieve fast,
accurate, and non-destructive detection of sweet cherries and their ripeness. For such a
purpose, we collected and manually labeled sweet cherries in three categories: immature,
semi-ripe, and ripe, and based on this, we proposed a YOLOX-based algorithm for real-
time sweet cherry ripeness detection in a natural environment, YOLOX-EIoU-CBAM.
This method embedded the Convolutional Block Attention Module (CBAM) between the
backbone and the neck of the YOLOX model to improve the attention capability of the
model for different channels and spaces; Efficient IoU (EIoU) loss was used to replace the
original bounding box loss function of the YOLOX model to make the regression of the
prediction box more accurate. Finally, the feasibility and reliability of this paper’s method
were verified on the SweetCherry dataset.

The subsequent sections are structured as follows: Section 2 describes SweetCherry, a
dataset for sweet cherry fruit detection and its ripeness classification, and the details of the
YOLOX-EIoU-CBAM target detection algorithm proposed in this study; Section 3 evaluates
the performance of the YOLOX-EIoU-CBAM network through experiments; Section 4
shows the discussion results; Section 5 summarizes the work of this study, and points out
the shortcomings and prospects of this study.

2. Materials and Methods
2.1. Study Area and Plant Material

Hanyuan County, Ya’an City, Sichuan Province, is one of the areas where sweet cherries
are grown in China, and has the reputation of being the “hometown of sweet cherries in
China”. The planting area of sweet cherries has reached more than 42 square kilometers,
with a production of 20,000 tons, and more than 30 varieties of sweet cherries have been
introduced and promoted from early to late maturity. Hanyuan has become the largest
cultivated area in Sichuan Province and even in the southwest region, and has been listed
by the Sichuan Provincial Department of Agriculture as “Sichuan Province advantageous
characteristic benefit agriculture sweet cherry base”. The map of the location of the sweet
cherry orchard is shown in Figure 1.

Sweet cherries are affected by altitude differences and the ripening cycle can last
from early May to July. The size of sweet cherry fruit is relatively small, with a grain
diameter of about 26–30 mm and few picture-pixel features. This means that the variation
in cherry color and volume poses a challenge for automatic recognition by intelligent
picking robots [19]. As shown in Table 1, immature sweet cherry fruits are greenish-white
and green in color and have a growth cycle from approximately late March to mid-April.
Semi-ripe sweet cherry fruits are yellow-green and light red in color and have a growth
cycle from approximately mid-April to May. Ripe sweet cherries are red and purplish-red
in color and grow from May to June. Most of these immature sweet cherries are greenish in
color, similar to the color of green leaves, and there is some difficulty in target detection.
Secondly, during the earliest batch of fruit harvesting, we could observe not only semi-ripe
cherries but also ripe cherries on one branch, all of which made the picking more difficult
for the robot. In addition, the cherry fruits may also overlap each other or be shaded by the
trunk or leaves.
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Table 1. Information (Category, Label name, Number of pictures, Number of annotations, Number of
cherries, Growth cycle, Sample examples) about the SweetCherry dataset.

Category Label Name Number of
Pictures

Number of
Annotations

Number of
Cherries

Growth
Cycle Sample Examples

Immature unripe_cherry 800 800 12979 late March
to mid-April
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2.2. Image Acquisition and Classification

We collected high-resolution images of immature, semi-ripe, and ripe sweet cherries
of the Red Lantern variety from April 2021 to June 2021 at sweet cherry growing sites
in Hanyuan County. To improve the robustness and generalization of the network, a
5184 × 3456-pixel Canon EOS60D SLR camera, a 12-megapixel Apple phone, and a 12-
megapixel Samsung phone were used to capture the images. All images were taken in
natural light, while some images were taken of sweet cherries in complex environments
such as light changes, fruit shading, fruit overlap, fruit close up, and plant far away, as
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shown in Figure 2. The shooting time was 10–12 a.m. and 1–4 p.m. Ultimately, 800 images
of each of the three types of sweet cherries were collected, totaling 2400 images with a
maximum resolution of 5184 × 3456 pixels, and stored in JPG format.
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Since sweet cherry fruits at different stages of ripeness have different color charac-
teristics (see Section 2.1 for details), inspired by Gai et al. [19], we manually annotated
2400 SweetCherry datasets using fruit color as the basis for determining sweet cherry
ripeness categories. This is an exercise that relies on visual senses and to avoid the influence
of subjective bias, and the annotation of the dataset was carried out by only one person
under an agronomist and a sweet cherry grower. Specifically, this study classified the
ripeness categories of cherry fruit into ripe cherry, semi-ripe cherry, and immature cherry,
and used the image annotation software LabelImg to label the SweetCherry dataset as
ripe_cherry, half_cherry, and unripe_cherry, as shown in Table 1. The annotation file is in
“XML” format, with a total of 2400 annotated images and 36068 sweet cherry fruit labels,
including 18649 samples of ripe cherry, 4395 samples of semi-ripe cherry, and 12979 samples
of immature cherry. The SweetCherry dataset is open-source at https://www.kaggle.com/
datasets/jiangxueqin/sweetcherry (accessed on 9 September 2022).

2.3. Improved YOLOX Network

YOLOX [13] used Darknet-53 [11] as the backbone network, and used the Spatial Pyra-
mid Pooling (SPP) [17] layer used by YOLOV4 and YOLOV5, greatly reduced the number
of parameters with the Anchor-free idea, and solved the optimal transmission problem
with the SimOTA dynamic matching positive sample algorithm. In addition, YOLOX has
made effective improvements to YOLOV5 by creating different model structures such as
YOLOX-S, YOLOX-M, YOLOX-L, and YOLOX-X. After considering the object of study, as
well as the detection accuracy and lightweight requirements of the network, we chose to
use the YOLOX-S network as the initial detection model.

2.3.1. The YOLOX-EIoU-CBAM Network

First, we modified the bounding box loss function IoU of the base YOLOX network to
Efficient IoU (EIoU) [27] to improve the prediction accuracy of the model, which was named

https://www.kaggle.com/datasets/jiangxueqin/sweetcherry
https://www.kaggle.com/datasets/jiangxueqin/sweetcherry
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YOLOX-EIoU. Second, we added a mechanism to focus on spatially important features and
important channel features in YOLOX-S, which was named YOLOX-CBAM. As can be seen
from Figure 3, we embedded the Convolutional Block Attention Module (CBAM) between
the backbone network and the neck network of the initial YOLOX, with the embedding
positions on the branch of the second Cross Stage Partial_1 (CSP_1) block leading to the
neck network, the branch of the third CSP_1 block leading to the neck network, and the first
Cross Stage Partial_2 (CSP_2) block (the structure of CSP_1 and CSP_2 blocks is detailed in
the lower left corner of Figure 3) leading to the branch of the neck network.

We named the model replacing the bounding box loss function and resulting from
adding the CBAM to YOLOX as YOLOX-EIoU-CBAM. Structurally, the CBAM consists of
space and channel attention, both of which mainly use global average pooling to abstract
features to a series of point attention weights, and then establish associations of these
weights and attach them to the original space or channel features (see Section 2.3.4). In
terms of extraction location, extraction at the beginning of the network is too large for
the spatial feature map and too small for the number of channels. The extracted channel
weights are too generalized without falling to some specific features, the extracted spatial
attention is not generalized enough due to the small number of channels, and the spatial
attention is sensitive and difficult to learn, which is more likely to cause negative effects.
Layers that are too far back with too many channels easily cause overfitting; feature maps
are too small to use convolution, and improper operation will instead introduce a large
proportion of non-pixel information.

The YOLOX-EIoU-CBAM network consists of five main parts.
Input: Mosaic data enhancement (see Section 2.3.2).
Backbone: The backbone side mainly includes Focus, CSP_1, and Spatial Pyramid

Pooling (SPP) structures, and the SiLU function is used in the activation function. Among
them, there are two branches of the CSP_1 module, the input features will enter into
two branches separately and perform different operations, then the features inputted
from two branches will be Concat and the results will be sent to the Convolution + Batch
Normalization + SiLU (CBS) block.

Between the backbone network and the neck network: Three Convolutional Block
Attention Modules (CBAMs).

Neck: The neck end consists of Feature Pyramid Network (FPN), Path Aggregation
Network (PANet), and Cross Stage Partial_2 (CSP_2) structures, which significantly im-
prove the extraction of large cherry features, and the activation function also uses the SiLU
function. One of the FPN structures can effectively fuse the feature map, which takes
the high-level feature information in a top-down manner and passes the fusion through
upsampling to obtain the feature map for making predictions. The PANet takes the output
features of the CBAM as input and fuses the deep features with the shallow features after
upsampling, and the fused shallow features are then downsampled and then fused with
the deep features to further enhance the feature extraction capability of the network.

Head: Decoupled Head is used for the detection head, and Anchor-free, Multi-
positives, and SimOTA algorithms are introduced. Decoupled Head can improve the
model accuracy and speed up the convergence of the network, and Multi-positives can
reduce the neglect of other high-quality predictions.

Compared with the base YOLOX model, YOLOX-EIoU-CBAM can extract features
better and obtain better recognition accuracy, which is verified in the experiments in
Section 3.



Agronomy 2022, 12, 2482 7 of 17

Agronomy 2022, 12, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 3. The architecture of YOLOX-EIoU-CBAM. 

 

Figure 3. The architecture of YOLOX-EIoU-CBAM.



Agronomy 2022, 12, 2482 8 of 17

2.3.2. Data Augmentation

The detection algorithm used in this paper is based on a modified model of YOLOX.
For the benchmark model YOLOX, it uses the Mosaic data enhancement [19].

For the Mosaic data enhancement method, the object detection context can be en-
riched and the dataset can be effectively augmented. Since four images from the Batch
Normalization (BN) layer are fed into each training session, the batch size value need not
be too large.

The Mosaic data enhancement is shown in Figure 4. The detailed implementation
process is as follows:

• read four random images from the dataset at a time;
• perform operations such as flip (flip the original image left and right), zoom (scale the

size of the original image), and gamut change (change the hue, brightness, saturation
of the original image), etc.;

• make combinations of pictures and boxes.
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2.3.3. The Efficient IoU Loss Function

The principle of the Efficient IoU (EIoU) loss [28] bounding box regression loss function
is as follows:

LEIoU = LIoU + Ldis + Lasp = 1 − IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

c2
w

+
ρ2(h, hgt)

c2
h

. (1)

As can be seen from Equation (1), the EIoU loss function consists of three components:
LIoU represents the loss of overlap between the prediction frame and the real frame, Ldis
represents the loss of center distance between the prediction frame and the real frame, Lasp
represents the loss of width and height of the predicted box and the real box. cw and ch are
the width and height of the smallest enclosing box that covers both boxes. In fact, the EIoU
continues the Complete-IoU (CIoU) [27] approach, but it is more in line with the regression
mechanism of the bounding box, leading to faster convergence of the model and improved
regression accuracy of the prediction frame.

2.3.4. Convolutional Block Attention Module

As shown in Figure 5 below, the Convolutional Block Attention Module (CBAM) [22]
consists of two independent sub-modules: the Channel Attention Module (CAM) and the
Spatial Attention Module (SAM), which pay attention to the relationships between channels
and spaces, respectively. It automatically learns the importance of different channel features
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and different spatial features. In addition, as a lightweight general-purpose module, the
CBAM can be easily integrated into Convolutional Neural Network (CNN) architecture
without additional overhead.
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2.4. Training Environment and Evaluation Indicators
2.4.1. Transfer Learning

Transfer learning [29] is a popular method in computing that helps us to build more
accurate models in less time. In this experiment, we chose transfer learning to initialize
the parameters of the YOLOX network to give the model the ability to learn quickly
and reduce overfitting to a certain extent. This allows the model to have significant
generalization capabilities even in complex environments and to improve it in this paper,
a widely used ImageNet dataset [30] was chosen to pretrain the network and obtain the
initialization weights.

2.4.2. Cosine Annealing

The cosine annealing learning rate [31] enables the learning rate to be adjusted during
the training of the model. As the epoch increases, the learning rate decreases rapidly until
the model finds a local optimum and saves the model at that point. After the model is
saved, the learning rate reverts to a larger value, escaping the current local optimum and
finding a new local optimum. The process is repeated, adjusting the learning rate according
to the cycle until the training is complete. The principle of the cosine annealing algorithm
is shown in Equation (2).

ηt = ηmin +
1
2
(ηmax − ηmin)(1 + cos(

Tcur

Ti
π)), (2)

where ηmax, ηmin denote the maximum and minimum learning rates, respectively. Tcur
refers to the number of iterations after restart and Ti denotes the number of iterations in
round i.

2.4.3. Experimental Environment

The framework for deep learning was PyTorch 1.8.1. The experiments were per-
formed using Windows 10 with an Intel Xeon Gold 5218 CPU with a base frequency of
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2.30 GHz, 128 GB of RAM, NVIDIA Quadro RTX 5000 graphics, and Compute Unified
Device Architecture (CUDA) 10.2.

In this study, the original YOLOX and the modified YOLOX-EIoU-CBAM were trained
separately. The hyperparameters were set as follows: the input image size of the model
was set to 640 × 640, the maximum learning rate of the model was set to 0.01 and the
momentum of the learning rate was set to 0.937, the IoU threshold for mean Average
Precision (mAP) was set to 0.5. To improve the training speed, the batch size of the freezing
and thawing phases of the backbone network was set to 16 and 8 times, respectively, and
the number of iterations was set to 200.

2.4.4. Evaluation Indicators

The evaluation metrics of the model are: precision, recall, mean Average Precision
(mAP), and F-score. The expressions are as follows:

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

mAP =
∑N

1 AP
N

=
∑N

1
∫ 1

0 P(R)dR
N

, (5)

F-score =
2 × Precision × Recall

Precision + Recall
, (6)

where True Positive (TP) is the number of positively categorized samples, False Positive
(FP) is the number of negatively categorized samples, and False Negative (FN) is the
number of positive samples incorrectly categorized. AP is the area under the accuracy
recall curve (P-R curve) and represents the average accuracy. mAP is the average of AP for
different categories. N is the number of categories of samples tested. In this experiment,
the category of sweet cherries needed to be detected, so N is 3. F-score can balance the
impact of precision and recall.

3. Results

In this section, we evaluate the performance of the YOLOX-EIoU-CBAM using the
SweetCherry dataset. Firstly, the SweetCherry dataset was divided into a training set,
validation set, and test set according to 8:1:1. Secondly, SSD300, Faster R-CNN, YOLOX,
YOLOX-EIoU, YOLOX-CBAM, and YOLOX-EIoU-CBAM networks were used to conduct
comparative analysis studies.

3.1. Multi-Indicator Performance Evaluation

Table 2 shows the mean Average Precision (mAP), precision, recall, model size, and
inference time of a single image for the six networks on the SweetCherry dataset. From
Table 2, it can be seen that the YOLOX-EIoU-CBAM model’s mAP, precision, recall, and
F-score were almost all significantly better than the other five networks (although SSD300
achieves the best performance on precision). Among them, YOLOX-EIoU-CBAM improves
mAP by 4.12%, recall by 4.6%, and F-score by 2.34%, compared to the base YOLOX model.
This is because YOLOX-EIoU-CBAM used a more accurate bounding box loss function,
EIoU, and added a mechanism to the YOLOX network that focuses on both channel and
spatial information of the image, resulting in better extraction of image features and better
detection results. When YOLOX-EIoU-CBAM was compared to the Faster R-CNN and
SSD model, the mAP is improved by 19.89% and 41.69%, respectively, which proved the
effectiveness and feasibility of the YOLOX-EIoU-CBAM network.
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Table 2. Multi-metric performance evaluation (mAP, precision, recall, F-score, model size, and
inference time) of six models (SSD300, Faster R-CNN, YOLOX, YOLOX-EIoU, YOLOX-CBAM, and
YOLOX-EIoU-CBAM) on 240 test samples.

Models mAP (%) Precision (%) Recall (%) F-Score (%) Model Size (MB) Inference Time (S)

SSD300 39.41 86.52 26.29 31.33 100.27 1.41
Faster R-CNN 61.21 43.74 71.35 54.33 522.99 2.21

YOLOX 76.98 86.50 68.70 76.33 34.10 0.59
YOLOX-EIoU 78.20 83.89 70.80 76.33 34.10 0.60

YOLOX-CBAM 79.16 84.52 71.25 77.67 34.75 0.62
YOLOX-EIoU-CBAM 81.10 84.96 73.30 78.67 34.87 0.64

Table 2 also shows the experimental results of YOLOX versus YOLOX-EIoU, with the
latter outperforming the former, proving that EIoU is more suitable for the detection of the
ripeness category of sweet cherry fruits than the IoU bounding box loss function originally
used by YOLOX. In addition, the experimental results of YOLOX and YOLOX-CBAM
in Table 2 also showed us that embedding the Convolutional Block Attention Module
(CBAM) with excellent performance between the backbone and neck networks of YOLOX
can indeed significantly improve the detection accuracy of the existing method.

Finally, the model size and single-image inference time of the proposed method in
this paper are comparable to the basic YOLOX, but significantly better than SSD300 and
Faster R-CNN, ensuring the real-time detection. Overall, Table 2 effectively verifies that
the overall performance of the YOLOX-EIoU-CBAM network outperforms Faster R-CNN,
SSD300, YOLOX, YOLOX-EIoU, and YOLOX-CBAM on the SweetCherry dataset, and is a
more suitable algorithm for sweet cherry fruit category detection.

3.2. Performance Evaluation of Different Maturity Categories

To compare the detection performance of this paper’s model for different categories
of sweet cherries in detail, the Average Precision (AP) and F-score of the six network
models for different categories of sweet cherries are given in Table 3. It can be seen that
the proposed model significantly outperforms the other five networks in terms of AP and
F-score for different ripeness categories of sweet cherries. Among them, the YOLOX-EIoU-
CBAM model improved the AP values by 2.61%, 5.02%, and 4.74%, and F-score by 1%,
1%, and 5%, respectively, on the unripe, semi-ripe, and ripe categories relative to the base
YOLOX model. This is because YOLOX-EIoU-CBAM uses a more accurate bounding box
EIoU loss function and can focus on effective information from both spatial and channel
dimensions, which leads to better extraction of image features and better detection results.

Table 3. Multi-metric performance evaluation (AP and F-score) of six models (SSD300, Faster R-CNN,
YOLOX, YOLOX-EIoU, YOLOX-CBAM, and YOLOX-EIoU-CBAM) on 240 test samples at different
stages of maturity (immature, semi-ripe, and ripe).

Models
Average Precision (AP) (%) F-Score (%)

Immature Semi-Ripe Ripe Immature Semi-Ripe Ripe

SSD300 44.06 42.86 42.86 33 40 21
Faster R-CNN 70.21 70.21 50.71 57 57 49

YOLOX 81.57 71.64 77.73 81 73 75
YOLOX-EIoU 82.25 71.46 80.89 80 71 78

YOLOX-CBAM 82.87 73.40 81.22 81 73 79
YOLOX-EIoU-CBAM 84.18 76.66 82.47 82 74 80

YOLOX-EIoU showed a certain degree of improvement in AP and F-score on the
immature and ripe sweet cherry relative to the base YOLOX model, but a slight decrease in
the detection of semi-ripe sweet cherries was observed. We analyzed that this may be due
to the detection difficulty of this class of data samples itself, as its fruit color features are
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between the other two classes, and EIoU ignored part of the feature information, affecting
the classification in the fast convergence process and thus affecting the detection accuracy
of semi-ripe sweet cherries. This problem was effectively solved by our embedding the
Convolutional Block Attention Module (CBAM), and the AP and F-score of YOLOX-EIoU-
CBAM are improved by 5.2% and 3%, respectively, on semi-ripe sweet cherries compared
to YOLOX-EIoU. It can also be seen that after embedding the CBAM between the backbone
and neck networks of YOLOX alone, YOLOX-CBAM showed significant improvements in
AP and F-score for sweet cherries in all three ripeness categories, further verifying that the
CBAM is more likely to focus on important features of small target samples and effectively
improves the detection effectiveness of the model. Overall, Table 3 effectively verifies that
the YOLOX-EIoU-CBAM network outperforms Faster R-CNN, SSD300, YOLOX, YOLOX-
EIoU, and YOLOX-CBAM for the detection of sweet cherry samples in the three ripeness
categories, and is a more suitable target detection algorithm for the classification of sweet
cherries and their ripeness.

Figure 6 shows the confusion matrix for the three ripeness categories of sweet cherries,
where each row of the matrix represents the actual category, each column represents the
predicted category, and the diagonal line represents the number of each category that was
correctly predicted. From this, we can see that the number of sweet cherries predicted
is higher for the ripe and unripe categories, while the number of semi-ripe categories
predicted accurately is relatively small. The confusion matrix showed that, firstly, more
cherries in the immature category were judged to be ripe, and by looking at the images
where such false inferences occurred, we found that most of the targets were heavily
shaded or in dark light conditions with “black” fruits and were therefore misjudged as
ripe. Secondly, more cherries in the semi-ripe category were incorrectly predicted as unripe,
which we suggest may be due to the similarity of color characteristics of unripe sweet
cherries and semi-ripe sweet cherries, which further increases the difficulty of recognition
and classification under variable light. Finally, some ripe cherries were predicted as the
semi-ripe category, which we suggest may also be because some light red ripe sweet cherries
showed similar color and shape features to the slightly red semi-ripe cherries under bright
light. Overall, the three ripeness categories of cherries were correctly predicted with
relatively high accuracy, which showed that our model is suitable for detecting sweet
cherries and their ripeness categories in complex environments.
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3.3. Loss Function Evaluation

Since the loss function can accurately reflect the convergence of the model during the
training process of the network, in this paper, the loss function curves of six network models
are compared and analyzed, as shown in Figure 7. Figure 7a shows the loss curve of the



Agronomy 2022, 12, 2482 13 of 17

training set, and Figure 7b shows the loss curve of the validation set. It can be seen that the
training loss curve and validation loss curve of the improved YOLOX-EIoU-CBAM model
both showed a decreasing trend as the number of iterations increases and the training and
validation losses were close to each other when the model iterated 192 times. When the
model reached 197 iterations, the training loss showed a slightly decreasing trend, while
the validation loss remained stable, but overall, they were close to each other, indicating
a slight degree of overfitting in the proposed method. In general, compared with Faster
R-CNN, SSD, YOLOX, YOLOX-EIoU, YOLOX-CBAM, and the base YOLOX model, the
YOLOX-EIoU-CBAM model had a faster and more accurate reduction in loss values during
training and validation.
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3.4. Image Detection Effect Demonstration

The results of the base YOLOX and the improved YOLOX-EIoU-CBAM for the detec-
tion of sweet cherry fruit are shown in Figure 8. As can be seen from the figure, the original
YOLOX model had certain problems of missing and misdetection for sample pictures in
complex orchard backgrounds. For example, in the first picture in Figure 8a below, the
YOLOX model identified the leaves as fruits. In the second image in Figure 8a, the YOLOX
model did not identify the sweet cherry ripeness category obscured by the leaves in the
lower left corner of the image. In the third image of Figure 8a, the YOLOX model did not
identify the fruit obscured by the leaves in the middle of the picture. In the last picture of
Figure 8a, the YOLOX model did not accurately identify the overlapped fruit in the upper
left corner of the picture and missed the fruit located at the lower edge position in the
middle of the picture. In contrast, the improved YOLOX-EIoU-CBAM effectively improves
the model’s ability to detect the ripeness of sweet cherry fruits by modifying the bounding
box loss function and embedding CBAM layers in the backbone and neck networks of the
YOLO model (see the first and second pictures of Figure 8b), and is able to accurately detect
fruits in the case of overlapping fruits (see the fourth picture of Figure 8b), and shows
friendly detection ability for fruits in the corners of the pictures (see the fourth panel of
Figure 8b).
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results of YOLOX. (b) The detection results of YOLOX-EIoU-CBAM.

Figure 9 shows the recognition effect of YOLOX and YOLOX-EIoU-CBAM models for
sweet cherry ripeness categories under sunny days, cloudy days, branch and leaf shading,
fruit overlapping, distant view, and similar color of green fruit and leaves, respectively. It
can be seen that the YOLOX-EIoU-CBAM model can detect the sweet cherry category in
complex environments in real time and accurately, and the detection time is only 0.64 s (list
in Table 2), which can be applied to real agricultural production environments.
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Figure 9. Effectiveness of YOLOX-EIoU-CBAM for the detection of sweet cherry fruit ripeness
categories in complex orchard environments ((a) sunny day. (b) Cloudy day. (c) Overlapping fruits.
(d) Branch and leaf shading. (e) Distant views. (f) Similar colors).

4. Discussion

For the complex orchard environment, factors such as strong light, backlight, branch
and leaf shading, fruit overlap, and distant view all affect the detection effect of the
model [19]. To improve the model’s ability to cope with the above problems, we specifi-
cally collected pictures of sweet cherries in complex environments such as light changes,
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fruit occlusion, fruit overlap, fruit close up, and plant distant view, and adjusted the
model structure of YOLOX to improve the model’s detection of sweet cherry fruits with
complex backgrounds.

The current advanced deep learning target detection algorithm, YOLOX, has assem-
bled a large number of tricks, but it is still prone to the problem of wrong and missed
detection when dealing with some complex backgrounds, as shown in Figure 8a. In target
detection, Bounding Box Regression (BBR) is a key step in determining the performance
of object localization [32]. However, we found that the BBR loss function of YOLOX has
two main drawbacks: (1) the Intersection over Union (IoU) loss function cannot effectively
describe the target of BBR, which leads to slow convergence and inaccurate regression
results [33]. (2) The IoU ignores the imbalance problem in BBR, and a large number of
anchor frames with less overlap with the target frame plays the largest role in the optimiza-
tion of BBR [27]. To mitigate the resulting adverse effects, we tried to directly replace the
original loss function in the YOLOX detection network by using EIoU which had excellent
convergence speed and focused on the problem of imbalance between difficult and easy
samples. The experimental results showed that YOLOX-EIoU can achieve better results
compared to YOLOX using IoU as the loss function, with an improvement of 1.22% and
2.1% in the mAP and recall metrics, respectively. Compared with IoU loss, EIoU can have
significant advantages in both convergence speed and localization accuracy. The above
results confirm the feasibility and reliability of using EIoU to directly replace the original
loss function in the YOLOX detection network.

The neck network of YOLOX is constructed between the backbone and the head for
bringing together different feature maps [12]. How to focus on the relationship between
different features at the same time here and the importance of automatically learning differ-
ent channel features and different spatial features is another problem to be solved in this
study [24]. Therefore, in this study, we try to add the lightweight general-purpose module
CBAM between the YOLOX backbone network and the neck network. The experimental
results showed that YOLOX-CBAM can achieve better results compared to YOLOX which
only focuses on channel features [13]. YOLOX-EIoU-CBAM can also achieve better results
compared to YOLOX-EIoU. This is mainly because, given the intermediate feature map of
the trunk output, the CBAM sequentially infers the attention map along two independent
dimensions (channel and space) and then multiplies the attention map with the input
feature map to perform adaptive feature optimization [23,24]. The above results confirm
the feasibility and reliability of adding the lightweight CBAM to the YOLOX backbone
network and the neck network. In addition, there is still room for improvement in the
lightweighting of the YOLOX-EIoU-CBAM model.

5. Conclusions

In this paper, we proposed an algorithm based on improved YOLOX sweet cherry fruit
ripeness detection in real time in a natural environment. Firstly, we manually photographed
and labeled a dataset, SweetCherry, containing three categories of immature sweet cherries,
semi-ripe sweet cherries, and ripe sweet cherries from April to June 2021 in a sweet cherry
orchard in Hanyuan County, Sichuan Province. The dataset consisted of 2400 images and
labeled files and 36,068 cherry samples. Secondly, in order to solve the problem of missed
and false detection of YOLOX on the SweetCherry dataset, we made improvements to the
YOLOX model: first, the IoU loss function was modified to EIoU to improve the regression
accuracy of the prediction frame. Second, we added a Convolutional Block Attention
Module (CBAM) between the backbone network and neck network of the YOLOX model
to improve the sensitivity of the network to spatially important features and important
channel features, to cope with the detection difficulties such as green fruit and leaf color
similarity, color features of semi-ripe sweet cherries between immature and ripe sweet
cherries, and optimize the complex orchard environment such as fruit overlap, fruit shading,
distant view, cloudy sky, and strong light. Considering the same target detection task,
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the YOLOX-based real-time sweet cherry fruit ripeness detection algorithm in the natural
environment can be extended to a variety of fruits, such as green dates and lychees.

Since this study mainly dealt with the detection and ripeness classification of one
variety of sweet cherries, in the future, we will consider extending the method of this paper
to other varieties of sweet cherries with different colors and different appearance charac-
teristics. In addition, we will use more informative sensors for image acquisition, such as
multi-spectral cameras. Additionally, RGB image processing techniques are considered for
3D modeling of sweet cherries.
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