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Abstract: Herbicide safeners are a series of agrochemicals that can selectively protect crop plants from
herbicide injury without affecting herbicidal efficacy. Understanding mechanisms by which safeners
act is significant for discovery of novel types. Safeners primarily alleviate herbicide phytotoxicity
to crop plants via several actions: (i) enhancing metabolism of herbicides in crops; (ii) affecting
absorption and transportation of herbicides in crops; (iii) competitively binding to herbicide target
sites; and (iv) affecting activity of target enzymes. This review describes recent advances in the action
mechanisms of safeners, analyzes existing problems, anticipates the future direction of studies of
modes of action of safeners, and prospects potential strategies to design safeners related to their
reported mechanisms. The aim of this paper is to provide insight into mechanisms of safeners and
give tips for development of new safeners.
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1. Introduction

The primary weed species (such as barnyard grass (Echinochloa crus-galli)) infesting
crop fields are a great challenge due to their competition with crop plants, leading to
a significant decrease in yields worldwide [1–3]. Weeds can be managed by herbicide
application, which is more efficient than other physical, mechanical, and cultural control
methods [4,5]. However, use of herbicides might result in phytotoxicity to crops [6]. The
most commonly used strategy for limiting phytotoxicity of herbicides is applying herbicide
safeners [7]. Herbicide safeners, known as antidotes and protectants, are commonly used
in combination with herbicides or can be added to seeds via pre-sowing seed treatments;
they can effectively reduce herbicide-induced toxicity to crops and enhance selectivity of
herbicides in crops without affecting efficacy of the herbicide [8]. Safeners only increase
herbicide resistance to crop plants and have no effect on weeds. Therefore, use of safeners
can broaden the spectrum of herbicide.

To date, over 20 commercial safeners have been developed, and several natural safen-
ers and thousands of safener candidates have been found [9]. However, the exact mech-
anisms by which safeners act still remain obscure, and multiple pathways have been
implicated [10]. Therefore, the current review summarizes recent advances of the main
action mechanisms of safeners, which are divided into the following four categories: (i) en-
hancing metabolism of herbicides in crops; (ii) affecting absorption and transportation of
herbicide in crops; (iii) competitively binding to herbicide target sites; and (iv) affecting
activity of target enzymes. Moreover, potential strategies to design safeners related to their
action mechanisms are also prospected. This will provide some insight into developing
novel safener molecules.

2. Enhancing the Herbicide Metabolism in Crop Plants

At present, one of the most well-known mechanisms by which herbicide safeners act
is enhancing metabolic ability of crops to selectively break down herbicides. Recent studies
have also indicated that safeners might have an influence on metabolic rate of herbicides
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but not change the metabolic pathway of those herbicides. Metabolism of herbicides in
crops is a multi-step process [11]. To better understand safeners’ effects on metabolism of
herbicides in crops, herbicide metabolism in plants should be introduced and can be further
divided into the following stages: (i) hydrolysis or oxidation reactions; (ii) binding; and
(iii) conjugates (Figure 1). New functional groups are formed via hydrolysis or oxidation
reactions in the chemical structure of herbicides to obtain new metabolites that are able
to bind to hydrophilic endogenous substrates in plants. This stage involves metabolic
enzymes such as peroxidase (POD) and cytochrome P450s (P450s). As-obtained products
from hydrolysis or oxidation reactions bind to glutathione (GSH) or glucose; the main
corresponding enzymes involved are glutathione-S-transferases (GSTs) and glycosyl trans-
fer (UGTs). Conjugates produced in stage ii are located in the cell wall or transferred to
the vacuole via the ATP binding cassette transporter (ABC transporter), where they pass
through the protoplasm membrane and vacuole membrane. The resulting exogenous conju-
gates might be further processed. Some of them are metabolized by partial degradation or
secondary binding reaction. Metabolism of herbicides by crops is a multi-step process that
requires the participation of GSH, P450s, GSTs, UGTs, and ABC transporters. As shown
in Figure 1, safeners can induce a series of key factors (e.g., GSTs, P450s, UGTs, and ABC
transporters) throughout the entire detoxification pathway in the plant, thereby enhancing
metabolism, degradation, and isolation of herbicides [11].
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2.1. Induction of GSTs

The large GST enzyme family, which can catalyze the binding of GSH and various elec-
trophilic foreign compounds such as herbicides, is found both in animals and plants and
can obtain derivatives that are less toxic than their original compounds or even obtain non-
toxic compounds [12]. GSTs in plants play a role in eliminating herbicide phototoxicity; this
has received extensive attention. Induction of enhancement of GSTs activity might be the
most accepted action mechanism of safeners because all commercial safeners, some safener
candidates, and some natural product safeners are reported to induce improvement of GSTs
activities. Table 1 lists some examples of safeners that enhance activity of GSTs. GSTs in
some crop plants, such as rice, corn, and wheat [13–53], can be induced in different de-
grees by safeners; this enhances the herbicide tolerance of these crops. Deng et al. found
that after treatment with safener fenclorim, GSTs activity in rice plants was enhanced to
1.3~1.9 times that of the control (only treated with pretilachlor) [29]. Zhang et al. synthe-
sized a series of diazabicyclo derivatives as safener candidates. One of them, compound S15
(3-(2′,6′-dichloro-phenyl)-4-(3,3,6-trimethyl-9-oxa-1,5-diazabicyclo[3.4.0] nonanealkyl)-5-methyl-
isoxazolecarboxamide), could enhance GST activity in corn plants by 1.13~1.48 times [44].
Induced GSTs activities of cotton treated with potential safeners (diazabicyclo derivatives) were
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increased to 21~88% in shoots and 33~90% in roots [47]. The study reported by Scarponi
et al. showed that GSTs metabolic activity in wheat plants was increased by 77.4%, 56.4%, and
93.9% after treatments with safeners cloquintocet-mexyl, fenflufen, and fenchlorazole-ethyl,
respectively [53]. In corn seedlings treated with safener MG-191, increased levels of GSH and
GSTs were observed, revealing the possibility that MG-191 protects corn by increasing those
plants’ ability to detoxify herbicides [25]. Tolerance of herbicides in rice was enhanced because
safeners can induce a specific GST isozyme; for example, GST I, II, and III were first found
in corn, which has affinities to herbicides [54]. Safener treatments also induce transcriptional
activation of specific GST genes and enhance expression of respective enzymes of GSTs [55].
For example, OSGSTF3, OSGSTF5, and OSGSTU39 in rice can be enhanced via treatment
of fenclorim derivatives [42], which catalyze conjugation of herbicides with GSH in crops to
detoxify them. For chiral safener, significant differences of GST activities could be observed
from treatments of R-29148 and its two isomers in chloroacetanilide herbicide acetochlor-treated
corn. The R-isomer of R-29148 increased the highest expression level of GSTs, about 1.87 folds
and 13.6 folds, compared with that of the S-isomer and racemic R-29148, respectively [56]. It is
almost certain that GSTs of crop plants, such as rice, corn, and wheat, can be induced by safeners
with various degrees so as to enhance crop tolerances of herbicide. Enhancement of crop-plant
tolerances of herbicide is mainly evidenced by the fact that safeners can induce specific GST
isoenzymes that are compatible with the metabolites of herbicides [26]. In addition, efficiencies
of safeners are closely associated with their ability to induce GST activity.

Table 1. Recent commercial safeners and some safener candidates induced enhancement of GST activity.

Commercial Safeners References Commercial Safeners References

1,8-naphthalic anhydride (NA) [13,14] dichlormid [15,16]

R-28725 [17,18] R-29148 [19]

furilazole [20] AD-67 [21]

benoxacor [22,23] MG-191 [24]

cyometrinil [25] oxabetrinil [26]

fluoxfenim [27] acetamate [28]

fenclorim [29,30] fenchlorazole-ethyl [31]

isoxadifen-ethyl [32] mefenpyr-diethyl [33]

cluquintocet-mexyl [34] cyprosulfamide [35]

Natural safeners References Natural safeners References

melatonin [36] gibberellin [37]

sanshools [38] isopimpinellin [39]

5-methoxypsoralen [39] Z-ligustilide [40]

brassinolide [41]

Safener candidates References Safener candidates References

(E)-4-(2-substituted hydrazinyl)-6-
chloro-2-phenypyrimidines [42] N-alkyl amides [43]

diazabicyclo derivatives [44] 1,3-disubstituted imidazolidine or
hexahydropyrimidine derivatives [45]

phenyl isoxazole analogues [46] diazabicyclo derivatives [47]

ester-substituted pyrazole derivatives [48] substituted phenyl oxazole derivatives [49]

substituted dichloroacetylphenyl
sulfonamide derivatives [50] quinoxaline derivatives [51]

substituted oxazole isoxazole
carboxamides [52] N-tosyloxazolidine-3-carboxamide [53]

2.2. Induction of UGTs

Both UGTs and GSTs are detoxification enzymes in stage ii of the herbicide metabolism
process. UGTs in plants play an important role in detoxification of pathogenic toxins,
hormone balance, and detoxification of pathogenic toxins. In stage i, resulting reaction
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products mediated by carboxylesterase or P450s can be catalyzed by UGTs to bind with
glucose and form O-glucoside, N-glucoside, or glucose esters (glycosylation). At present,
only a few studies have shown that safeners can enhance glycosylation of herbicides,
thereby protecting crops from herbicide injury. For example, Kreuz et al. reported that
cloquintocet mexyl could enhance wheat glycosylation of the metabolite of clonafop propar-
gyl [56]. Brazier et al. found that cloquintocet-mexyl could selectively enhance effects of
O-glucosyltransferase (OGT) on herbicide molecules in wheat plants [34]. Edwards et al.
studied many different types of GSTs and UGTs via treatments of different safeners in
wheat and corn plants [57]. That study showed that activity of GSTs was induced only
by cloquintocet-mexyl in wheat plants, whereas other safeners mainly induced activity of
UGTs. In corn plants, however, several safeners mainly induced activity of GSTs. Therefore,
safener induction of detoxifying enzymes in crops may be species-specific. The role of
UGTs in the present study of function of herbicide metabolism and the influence of safener
on it are still unclear. Therefore, more studies are needed.

2.3. Induction of P450s

In addition to UGTs and GSTs, P450s are widely found in plants and represent the
largest enzyme family. P450s—which can catalyze aryl hydroxylation, cyclomethyl hy-
droxylation, N-demethylation, and O-demethylation of herbicide molecules—play a very
important role in stage i of herbicide metabolism in plants [58,59]. Early research showed
that the relationship between P450s and herbicide metabolism mainly comes from in vitro
experiments of plant microsomes. Related P450 inhibitor experiments on plants supported
this finding [60]. In 1969, Frear et al. found that cotton could metabolize monuron, which
was the first evidence that P450s were involved in herbicide metabolism [61]. At present,
safeners can induce enhancement of metabolism of herbicides—such as oxopropionic acid
esters, sulfonylureas, imidazolinone, sulfonamides, chloroacetamide, and aryloxybenzene—
mediated by P450s (Table 2) [16].

Table 2. Recent commercial safeners and some safener candidates induced enhancement of P450 activities.

Commercial Safeners References Commercial Safeners References

dichlormid [61] NA [62–67]

R-28725 [68] R-29148 [69]

furilazole [20] AD-67 [70]

benoxacor [71] MG-191 [72]

cyometrinil [73] fluoxfenim [74]

fenclorim [69] fenchlorazole-ethyl [75]

isoxadifen-ethy [76] mefenpyr-diethyl [32]

Natural safener References Safener candidates References

melatonin [39] quinoxaline derivatives [51]

diazabicyclo derivatives [47]

From the perspective of enzymology, many studies have demonstrated that activity of
P450s can be induced and enhanced by safeners. In 1979, Robert et al. found that safener
dichlorimid could enhance the safener effect to protect corn from herbicide injury caused
by thiocarbamate herbicide S-ethyl dipropyl thiocarbamate (EPTC) [61]. Persans et al.
reported that NA and its analogues could induce activity of P450s in corn, then stimulate
that corn to tolerant herbicide triasulfuron [62]. Deng et al. found that NA could enhance
the detoxification effect (O-demethylation) in rice by 4.5 times [63], and Liu et al. found
that content of P450s in corn plants after treatment with NA and fenclorim was increased
by 5.63 and 3.30 times, respectively, from that of the control [64,65]; content of internal
P450s was 8.54 and 2.20 times higher than that of the control.
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From the gene transcription level, there is sufficient evidence that suggests safeners
can induce P450 gene expression. For example, NA can induce expression of CYP81C1,
CYP81C2, and CYP71A11 in tobacco plants. Expression of genes was enhanced more than
two times [66]. NA can also induce expression of CYP71C1, CYP71C3, CYP72A5, CYP73A7,
and CYP92A1 genes in wheat [67]. However, little is known about the upstream and
downstream molecular mechanisms of P450 gene transcription induced by safeners. This
is likely due to technical reasons that hinder the identification of coding gene P450.

2.4. Induction of ABC Transporters and Glutathione Transporters

Accumulation of toxins in the cell wall leads to activity of detoxification enzymes in
stage ii. Some GSH conjugates can inhibit activities of GSTs and glutathione reductase
(GR) [77]. Therefore, these conjugates need to be transported further. ABC transporters
are a superfamily in plants. ABC transporter multidrug resistance-associated protein
(MRP) plays an important role in transport of glutathione–herbicide and glucose–herbicide
conjugates to vacuoles [78,79]. Martinoia et al. found that metolachlor in barley, as well as
the conjugate of metolachlor with GSH, could be transferred to vacuoles by ATP-binding
transporters [80]. MRP genes were identified and found in a variety of plants; for instance,
the ZMMRP1 gene, an ABC transporter gene in corn, plays an important role in transport
of alachlor conjugates [81].

Specificity and transport characteristics have not yet been clarified. In Beta vulgaris,
chlorsulfuron occurred after saccharification via the proton’s reverse transport mechanism
to the vacuolar membrane microcapsules [82], while glycosylated products of primisulfuron
were transferred by the ABC transporter that was transferred to the vacuoles [83]. The
mechanism by which plants isolate the conjugates of herbicide glucose may be species-
specific and relate to the chemical properties of glucoside conjugates [78]. Studies have
shown that MRP can be induced by safeners. Gaillard et al. found that cloquintocet-
mexyl treatment could affect vacuolar membrane transporters of glutathione conjugates
and glucose in wheat plants [79]; transportation activity of glucose conjugates was nearly
doubled. Theodoulou et al. found that cloquintocet-mexyl could simultaneously induce
transcription of five GST genes and one MRP transporter gene [84]. Zhang et al. found that
cloquintocet-mexyl could induce expression of the TtMRP1 gene in wheat leaves [85]. The
expression level was enhanced to 13 times that of the control. Cloquintocet-mexyl could
enhance the expression level of the TtMRP1 gene in wheat coleoptile by 9.5 times that of
the control. In addition, it enhanced the expression level of the TtMRP2 gene by 2.3 times
that of the control. Pang et al. also found that enhanced expression of the ZmMRP1 gene
could be significantly induced by dichlorimid [86].

Recent studies have found that the GSH transporter, which is located on the plant
cell membrane, can mediate the transport of GSH and glutathione–herbicide conjugates,
indicating that the GSH transporter is an important component of the plant-detoxification
system for exogenous compounds [86]. Pang et al. found that induction of ZMGT1 genes
in corn was related to alachlor tolerance in corn varieties [87]. In addition, that study
also found that expression of the ZmGT1, ZmGST27, and ZmRP1 genes in corn could
be induced and enhanced by dichlormid, indicating that the GSH transporter might be
involved in the foreign-substance detoxification process related to GSH binding [86]. In
corn and Arabidopsis thaliana, the GSH transporter could be metabolized by flusulfuron
methyl (which is metabolized by glycosylation) [86]. This may mean that GSH transporters
are also involved in other detoxification pathways. In sum, the role of GSH transport in
herbicide metabolism should be studied further.

3. Effect of Safeners on Herbicide Absorption and Transport

Evidence supported that safeners might work by inhibiting absorption and transport of
herbicides. Han et al. found that fenclorim reduced rice-root absorption of pretilachlor [88],
which was thought to be a potential mechanism by which pretilachlor acts. However,
other studies have indicated that safeners have no effect on absorption of herbicides. Wu
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et al. recognized that the protective effect of fenclorim on rice is mainly due to enhanced
metabolism of alachlor in rice rather than a change in absorption or transport of pretilachlor
in rice [30]. Scarponi et al. found that fenclorim did not affect absorption or accumulation
of pretilachlor by rice, but retention of pretilachlor in rice seedlings was accelerated [89];
the detoxification metabolic rate of rice seedlings with alachlor was increased. Bunting
et al. studied the isoxadifen ethyl using inhalation of formamide sulfuron, a 14C tracing
technology [90]. Those results showed that absorption of formamide sulfuron methyl was
not directly related to the safener. Kö Cher et al. also found that mefenpyr diethyl has
been widely used in treatment of sulfonylureas mesosulfuron and iodosulfuron sodium
salt (iodosulfuron methyl sodium) [90]. However, it is unknown whether that safener will
interfere with absorption of herbicides by crops. In addition, information is lacking about
whether safeners directly interfere with transport of herbicides in crops.

4. Target Site Competition (Structure–Activity Theory)

Owing to the structural similarity of some herbicides and their safeners, some scholars
have proposed that safeners may compete for the same binding sites as pesticides, allowing
them to play a protective role against herbicides (structure–activity theory) [91]. This
means safeners can compete with herbicide molecules. Yenne et al. [92] used a computer-
aided molecular model program. The chemical structures of several groups of commonly
used safeners and herbicides were compared, and results showed that the most successful
safener–herbicide pairs were those in which both components were highly similar at the
molecular level. Ezra et al. showed that eradicane (EPTC) and its structurally similar
safener [93], dichloramide, presented competitive action at target sites. Walton et al.
reported that safener R-29148 and herbicide alachlor competed for a protein binding site in
corn [94], supporting the structure–activity theory. With development of computer-aided
drug molecular design (CADD) methods, numerous studies of molecular docking results
of safeners bound to related herbicide targets suggested that safeners could compete with
herbicides at the action sites of herbicide targets [44–46,48,49,52]. However, some research
indicated that safeners do not directly affect the interaction between herbicide and target
site. In vivo experiments showed that NA treatments did not affect the inhibition effect
of chlorsulfuron on acetolactate synthase synthetase (ALS); in addition, fenchlorazole-
ethyl did not reduce inhibition of fenoxaprop-ethyl on acetyl CoA carboxylase (ACCase)
in wheat [93]. This might be due to the reason that these safeners did not have similar
structures to those of the combined herbicides.

5. Effecting the Target Enzyme Activity

Some studies have indicated that safeners can improve enzyme activities of herbicide
targets inhibited by herbicides. ALS is an important herbicide target enzyme in plants,
involved as the first enzyme in the synthetic process of branched chain amino acids such as
valine, leucine, and isoleucine. Some herbicides (for example, sulfonylureas herbicides) are
thought to act via inhibition to produce ALS in weeds, indirectly blocking the production
of branched-chain amino acids, which in turn affects protein synthesis and ultimately
causes weeds to die [94]. It has been reported that safeners can improve activity of ALS
in crops, thus protecting crops from injury caused by herbicides. Rubin et al. found
that activity of ALS in root and stem tissues after treatment with allyl chloride increased
by 30% and 24%, respectively [95]. Milhomme et al. found that activity of ALS in the
corn plant increased by more than 40% and by about 20% after treatment with NA and
oxabetrinil, respectively [19]. Research conducted by Zhao et al. on corn showed that
safener R-28727 could alleviate injuries caused by chlorimuron ethyl [20]. Differences in
mechanisms of chiral safeners could also be found in the aspect of affecting target enzyme
activity. Chiral R-28727 analogue (R)-3-dichloroacétyl-2,2-diméthyl-4-éthyl-1,3-oxazolidine
(R-enantiomer) increased ALS activity inhibited by chlorimuron-ethyl from 45 to 97%
compared with the control (only treated with chlorimuron ethyl), exhibiting better activity
than that of S-enantiomer [18]. In addition, R-28725 can significantly improve ALS activity
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in corn plants inhibited by imazethapyr in vivo [96,97]. Natural safeners showed similar
mechanisms of action [41]. However, opposed to the results above, Barrett found that
treatments of NA, acetonitrile, flurazole, and dichlorimid in corn and sorghum seedlings
did not cause significant enhancement of ALS activity [98]. Therefore, safener effect on
ALS activity is still not clearly understood, and further research should be carried out to
clarify why safeners can enhance the ALS activity of herbicide-treated crop plants.

6. Induction of Signaling Pathway

Safeners can induce expressions of defense and detoxification genes in monocotyle-
donous crops to protect crops from herbicides, rendering them non-toxic to crop plants,
which indicates that those safeners might open detoxification signal pathways for foreign
or endogenous substances in the form of herbicides that have not been identified. However,
the main target of safener signaling remains unknown. Currently proposed mechanisms for
safener detoxification are described as follows: (i) Safeners might be able to regulate activity
and abundance of transcriptional activators (or repressors) that interact with regulatory ele-
ments of the defense gene promoter, regulating expressions of herbicide metabolism-related
genes [5]. (ii) Safeners might adopt a mechanism similar to that of auxin to regulate gene
expressions [5]. For example, Xu et al. found that in wheat, pheromone response element
gene TTGSTU1 could be promoted simultaneously by safener and auxin induction [81],
indicating that safener and plant auxin could regulate GSTs expression with a similar mech-
anism. The results of a study by Zhang et al. also supported this finding [86]. (iii) Safeners
might take advantage of the signal pathways mediated by oxylipins or cyclopentenone,
thus enhancing expressions of plant detoxification and defense-related proteins [1]. Gene
expression assays on Arabidopsis thaliana confirmed that when combined with oxidative
stress, there were similarities between the related lipoxygenase pathway and the safener
signal [1]. In response to oxidative stress, plants accumulate α-oxidized lipids of linolenic
acid, including oxidized lipids, cyclopentenone, and phytoprostanes [11]. Jasmonic acid is
the most important plant oxylipin, so safeners may use jasmonic-acid signaling pathways
to induce detoxification and defense enzymes [27]. Loeffler et al. found a substance with
a structure similar to that of jasmonic acid; it triggered plant defense and detoxification
reactions in research of Arabidopsis thaliana cell cultures [82]. (iv) Safeners can be induced by
salicylic-acid signaling-pathway detoxification and defense enzymes [5,25]. Increased gene
expression induced by safeners may overlap with salicylic-acid-related plant stress-defense
signaling pathways, and there is evidence that many genes regulated by safeners can be
induced by salicylic acid [25]. Therefore, multiple signaling pathways could be related to
the reaction of safeners in plants. However, further studies are needed to identify the main
targets of the safener signaling pathways.

7. Effects of Safeners on Weeds

Current research indicates that safeners hardly enhance metabolic capacity of weeds
to detoxify herbicides. Yun et al. treated rice and Juncellus serotinus with NA respectively,
finding that O-dealkylation activity of P450s in Juncellus serotinus was not effectively in-
duced, but its activity in rice plants was doubled [99]. Brazier et al. also found that activity
of O-glucosyltransferase in black grass (Alopecurus myocuroids) was not affected after treat-
ments with cloquintocet-mexyl and dichlormid, but its activity in wheat was significantly
induced [34]. Hu et al. studied differences in physiology, biochemistry, and gene tran-
scription when rice and barnyard grass responses to safener fenclorim were compared.
Fenclorim reduced oxidative damage in rice but not in barnyard grass. Transcriptome
analysis also revealed that fenclorim induced more genes related to herbicide metabolism
in rice than in barnyard grass, especially GSTs genes [100]. After study of black grasses
with different levels of non-target resistance, obvious changes in the weed herbicide dose–
response curve was not seen. This proved that mefenpyr-diethyl has no significant effect
on enhancement of non-target resistance of black grass [101]. Cummins et al. also revealed
that mefenpyr-diethyl could slightly enhance fenoxaprop-ethyl detoxification ability of
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black grass [102]. However, this research also indicated that enhancement of metabolic
detoxification ability induced by mefenpyr-diethyl black grass was insufficient to explain
enhancement of weed resistance. Significantly, this was the only report that safeners could
induce and enhance metabolism of herbicides in weeds.

8. Conclusions and Perspectives

The molecular mechanism by which safeners act may involve complex interactions
between multiple signals and detoxification pathways, which can protect plants from
herbicide damage. In recent years, researchers have focused on mechanisms of action of
herbicide safeners, and a great deal of research has been carried out regarding safeners’
efficacy of protecting crops from some detoxification enzymes involved in damage from
herbicides, such as P450s. Some consensus has been reached on the role of GSTs and
UGTs, but exact mechanisms of action of safeners are still unclear and need further study.
However, many studies have shown that at various stages of herbicide detoxification in
crops, all enzymes may be induced by safeners (limited by technical conditions). Because
studies conducted on detoxification enzymes of safeners have been conducted on different
plants, some results are difficult to compare; therefore, more studies should focus on
detoxification of herbicides using one or a few plant species. Expression of stage-related
genes at the protein level and the transcription level changes whether safeners can enhance
weed control metabolism of herbicides and evolution of non-target resistance of safeners
in weeds. In addition, although it is known that many signaling pathways are involved
in mechanisms of action of safeners, details of action and those pathways are still unclear.
Finally, few studies have been conducted on detoxification and metabolism of safeners for
herbicides in plants in stage iii.

Clarifying mechanisms of action of safeners is important for developing new high-
efficiency and selective safeners. In the future, it is urgent to make full use of molecular
biology and biochemistry methods in order to study mechanisms of action of herbicides at
the molecular level and explore interaction mechanisms of herbicides and safeners in crop
systems. In view of deficiencies in the current research of mechanisms of action of herbicide
safeners, future research should focus on the following: (i) utilizing gene-transcription
technologies, such as genomics and proteomics, to study types and functions of enzymes
involved in herbicide metabolism in plants, as well as effects of safeners on various enzymes
involved in herbicide metabolism; (ii) furthering study of the effect of safeners on herbicide
metabolism in weeds and clarifying the relationship between safeners and evolution of
non-target herbicide resistance; (iii) conducting in-depth research of signaling pathways
of safeners and clarifying how safeners regulate expression of detoxification genes; and
(iv) determining concentration of herbicide metabolites in plants.

From the perspective of safener design, all commercial safeners and as-prepared
safener candidates used in this experiment were discovered by a random-screening strategy,
which occupied large amounts of time, manpower, and funding resources; due to this,
reasons for actions of those safeners are unclear and targets of those safeners are still
uncertain. However, according to the summarized mechanisms in our paper, several novel
safener design approaches could be applied. Easy-to-obtain structures or compounds with
simple structures (for instance, salicylic acid), which can enhance metabolism of herbicides
in crops, could be used as active fragments in discovery of new safeners to enhance the
success rate of random screening. As safeners might compete with herbicides to bind to
targets in crops, protein-crystallization techniques such as cryoelectron microscopy could
be used to obtain crystal structures of targets in crop plants or crystal complexes of safener
and herbicide targets. On this basis, research of virtual screening and structure-based
safener design can be carried out. When crystal structure is difficult to obtain, software
such as Alpha Fold could be used to predict it. Deep learning algorithms could also be
applied to improve efficiency and accuracy of kinetic optimization of structure models and
corresponding virtual screening. We believe that with deepening research of mechanisms of
safeners, novel safeners could be designed in a more efficient and quicker way in the future.
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