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Abstract: A comprehensive understanding of genetic diversity and the categorization of germplasm
is important to effectively identify appropriate parental candidates for the goal of breeding. It is
necessary to have a technique of tissue culture that is both effective and reproducible to perform
genetic engineering on fodder pea genotypes (Pisum sativum var. arvense L.). In this investigation,
the genetic diversity of forty-two fodder pea genotypes was assessed based on their ability of callus
induction (CI), the percentage of embryogenic callus by explant number (ECNEP), the percentage
of responding embryogenic calluses by explant number (RECNEP), the number of somatic embryo-
genesis (NSE), the number of responding somatic embryogenesis (RSE), the regeneration efficiency
(RE), and the number of regenerated plantlets (NRP). The findings of the ANOVA showed that there
were significant differences (p < 0.001) between the genotypes for all in vitro parameters. The method
of principal component analysis (PCA) was used to study the correlations that exist between the
factors associated with tissue culture. While RE and NRP variables were most strongly associated
with Doğruyol, Ovaçevirme-4, Doşeli-1, Yolgeçmez, and Incili-3 genotypes, RECNEP, NSE, RDE, and
RECNEP variables were strongly associated with Avcılar, Ovaçevirme-3, and Ardahan Merkez-2
genotypes. The in vitro process is a complex multivariate process and more robust analyses are
needed for linear and nonlinear parameters. Within the scope of this study, artificial neural network
(ANN), random forest (RF), and multivariate adaptive regression spline (MARS) algorithms were
used for RE estimation, and these algorithms were also compared. The results that we acquired from
our research led us to the conclusion that the employed ANN-multilayer perceptron (ANN-MLP)
model (R2 = 0.941) performs better than the RF model (R2 = 0.754) and the MARS model (R2 = 0.214).
Despite this, it has been shown that the RF model is capable of accurately predicting RE in the early
stages of the in vitro process. The current work is an inquiry regarding the use of RF, MARS, and
ANN models in plant tissue culture, and it indicates the possibilities of application in a variety of
economically important fodder peas.
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1. Introduction

Legumes play a crucial role in global agriculture, exerting significant influence on the
agricultural, livestock, and human nutritional landscapes. The application of in vitro selec-
tion and the retrieval of valuable genetic diversity can be achieved through plant cell and
tissue culture, representing a pivotal method for enhancing plant improvement [1,2]. The
genetic diversity inherent in plants is a key factor influencing their potential for enhanced
productivity and, consequently, their suitability for inclusion in breeding programs aimed
at bolstering food production. Currently, one of the most promising areas of investigation
within the realm of cell culture is the generation of stable and heritable variations through
the application of somacloning. Factors such as the genotype under consideration, the
nature of the explant, the composition of the culture medium, and the cultural conditions
employed all contribute to influencing the frequency of these variations.

The cultivation of plant cells, tissues, and organs in plant cell and tissue culture is
enabled through the utilization of nutrient-rich culture media, coupled with the mainte-
nance of carefully controlled aseptic conditions [3]. In vitro culture methods have become
indispensable in various facets of plant science, encompassing the production of pathogen-
free plants, the efficient propagation of limited plant genotypes, the genetic modification
of plant genomes, and the synthesis of commercially valuable compounds derived from
plants [4]. The intrinsic totipotency of plant cells enables the rapid proliferation of geneti-
cally identical clones, thereby preserving the fidelity of the genetic information inherited
from the original cells [5]. Therefore, it is feasible to stimulate callus formation from
cotyledon and hypocotyl explants, subsequently establishing a dependable and efficient
technique for in vitro regeneration through callus-mediated organogenesis [6,7].

Tissue culture offers a substantial reduction in the time required for conventional
breeding programs by expediting the production of plant material with well-defined traits.
Additionally, it facilitates the clonal propagation of plants, ensuring the faithful inheritance
of desirable traits in the offspring. This method enables the rapid propagation of elite
genotypes possessing sought-after traits. Moreover, tissue culture serves as a pivotal
tool for plant transformation and genetic modification, allowing the targeted insertion
of specific genes or traits into plant genomes. In some studies, the use of tissue culture
for the production of plant materials has been discussed [8,9], where pathogenicity is
reduced in various crops, which is very important for successful breeding programs;
also, it can be used to subject plant material to controlled stress conditions and helps
breeders to identify genotypes with superior stress tolerance [10,11]. Plant cells that have
undergone differentiation possess the ability to re-enter the cell cycle, undergo proliferation,
regenerate tissues, and organs, and ultimately mature into a fully functional plant organism.
Numerous studies have demonstrated the remarkable totipotent capacity of plant cells,
showcasing their ability to regenerate entire plants. [12].

In the process of in vitro plant regeneration, explants undergo cell division and differ-
entiation, ultimately developing into organs and tissues over the course of their maturation
period [13]. Organogenesis or somatic embryogenesis can serve as methods for in vitro
plant regeneration [14]. Organogenesis is the process by which new organs, and in certain
cases, entire plants, develop in response to injuries inflicted on previous organs. Somatic em-
bryogenesis, on the other hand, entails the formation of a structural cell initially resembling
zygotic embryos, ultimately leading to the regeneration of the entire plant [15].

In conclusion, the observed variation in tissue culture responses has emerged as a
valuable determinant in numerous studies and applications related to breeding. Among its
manifold advantages, tissue culture facilitates the swift multiplication of elite genotypes,
eradication of diseases, introduction of novel traits, and screening for stress tolerance. While
not always the exclusive determinant, tissue culture can play a pivotal role in contemporary
breeding programs, particularly when integrated with other genetic and phenotypic data.

The assessment and classification of genetic diversity, analysis of yield components,
evaluation of yield stability, enhancement of stress tolerance, and the implementation
of hybrid breeding programs are illustrative examples of conventional plant breeding
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techniques. In contrast, in vitro-based biotechnological breeding approaches encompass
methods such as Agrobacterium-mediated gene transformation, induction of artificial
polyploidy, production of doubled haploids, and in vitro micropropagation [16]. In plant
tissue culture research, the impact of input elements (uni or multi) on the potential for
regeneration (outputs) of desired plants is systematically examined. Traditionally, the
output variables are analyzed and interpreted using conventional statistical methods.
In establishing the relationship between input (independent) and output (dependent)
variables, these methods often employ variance analysis and linear regression models.
However, the effectiveness of these widely successful methods poses notable challenges in
plant tissue culture investigations, particularly in dealing with the intricacies of complex
and nonlinear inputs, as well as high probability scenarios [17,18]. Indeed, the in vitro
process is a nonlinear and intricate biological phenomenon. Traditional statistical methods,
such as simple regression, are not well-suited for capturing the complexities inherent in
this process. There is a notable potential for novel nonlinear computational methods to
optimize the in vitro process, potentially streamlining the required treatments [19].

Indeed, it has been demonstrated that machine learning (ML) algorithms have the
capability to accurately predict and enhance the performance of diverse and complex
biological systems [20]. Artificial neural networks (ANNs) are computerized mathematical
models inspired by biological nervous systems. These models are used to perform complex
data processing and pattern recognition tasks [18,21,22]. Recent research indicates that both
artificial neural networks (ANNs) and machine learning (ML) are valuable and reliable
tools for researching and predicting various stages of the plant tissue culture process. These
stages encompass in vitro sterilization, callogenesis, shoot proliferation, and the in vitro
generation of secondary metabolites [17–19,23,24].

Therefore, the application of artificial neural networks (ANN) and machine learning
(ML) techniques can be considered a precise and dependable approach for investigating,
predicting, and enhancing in vitro regeneration efficiency. Moreover, the evaluation and
quantification of morphological attributes of plantlets cultivated in vitro represent laborious
and time-intensive procedures in the context of in vitro research. Thus, there is a need for
the refinement of protocols, a process that may be both time-consuming and costly [25]. In
addressing these challenges, novel methodologies employing machine vision techniques
demonstrate the capability to optimize the workflow [26].

The incorporation of recent findings into the intricate network of in vitro plant tissue
culture techniques is imperative for advancing research across a diverse spectrum of
plant species. Grasping the multifaceted implications of the plant tissue culture paradigm
poses a challenging undertaking. Within this context, making well-informed decisions
based on scientific facts presents a formidable challenge. However, this obstacle can be
overcome through the strategic application of various models and algorithms, ultimately
enhancing the precision and accuracy of predictive assessments. In the specific context of
forage peas, the utilization of mathematical frameworks and AI-based models in in vitro
settings remains remarkably limited. This limitation is attributed to the primary focus
on comprehending the intricate dynamics of callus formation and regeneration efficiency
factors. The objective of this research was threefold: (i) to classify 42 fodder pea genotypes
based on their embryogenesis capacity, (ii) to establish a predictive model for regeneration
efficiency (RE) from hypocotyl explants of fodder pea using artificial neural network (ANN)
and machine learning (ML) algorithms, and (iii) to assess and compare the efficacy of these
models in estimation. These steps were undertaken as a preparatory phase for subsequent
investigations in breeding programs, focusing on the genetic factors and in vitro parameters
influencing regeneration efficiency.
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2. Materials and Methods
2.1. Plant Material, Callus Initiation, Formation of Embryogenic Calluses, and Plant Regeneration
and Rooting Condition

Plant material was sourced from 42 distinct genotypes of fodder pea (Pisum sativum
var. arvense L.), each originating from a unique location in the Eastern Anatolia Region.
The plant materials utilized in this study were derived from forage pea landraces. Forage
pea landraces were collected from cultivated fields in the Turkish provinces of Erzurum,
Bayburt, Ardahan, Kars, and Giresun in the northeastern Anatolia region [27]. The seeds
were initially subjected to surface sterilization using 70% (v/v) ethanol for a duration of
five minutes, followed by two consecutive washes with sterile distilled water. Subsequently,
the seeds were immersed in a solution of commercial bleach (5% sodium hypochlorite)
with the addition of two drops of Tween for a period of thirty-five minutes. Afterward,
the seeds underwent two rinses with sterile distilled water. For germination, the sterilized
seeds were planted in an MS (Murashige and Skoog) medium devoid of any hormones.
Hypocotyl explants obtained from 5-day-old in vitro-grown seedlings were cultured for
a duration of 4 weeks on Murashige and Skoog (MS) medium [28] supplemented with
20 mg/L sucrose, 2 g/L phytagel, 1.95 g/L MES, and 0.5 mg/L picloram. The objective of
this cultivation was to induce callus formation [29]. The pH of the medium was adjusted
to 5.8 by adding 1 N sodium hydroxide. To sterility, solutions containing basal salts
and a solidifying agent were autoclaved for 15 min at 121 ◦C. Filtration and sterilization
methods were applied to vitamins and plant growth regulators in the medium. The optimal
temperature for transplant culture was maintained at 25 ◦C. Following a four-week period,
the assessment of callus induction was conducted. Hypocotyl explants were cultivated in
an MS medium containing 0.05 mg/L NAA, 0.017 mg/L each of BA, kinetin, and TDZ [30];
along with 2 mg/L phytagel and 20 g/L sucrose. The cultivation conditions included a
25% relative humidity and a 16:8 day/night photoperiod, and the duration of cultivation
was four weeks.

This allowed the embryogenic callus to develop and mature. After 4 weeks, callus
induction (CI) (%), mean embryogenic callus by the number of explants by percentage
(ECNEP) (%), mean responded embryogenic callus by the number of explants by percentage
(RECNEP) (%), mean number of somatic embryos (NSE) (number), mean regeneration
efficiency (RE), and mean regenerated plant number (NRP) was calculated. Plantlets were
then moved to a rooted medium that included MS medium with 0.2 mg/L NAA, 2 mg/L
phytagel, and 20 g/L sucrose. This medium was maintained at a temperature of 25 ◦C with
a photoperiod of 16:8 day/night for 4 weeks.

2.2. Statistical Analysis

This research was conducted using a completely randomized factorial design with
four replicates and 15 explants in each replicate. Each Petri dish was considered as the
experimental unit and 15 hypocotyl explants were cultured in each Petri dish. The approach
known as the general linear model (GLM) was used to carry out an analysis of variance
(ANOVA), and SPSS version 20 was used to do so (SPSS, Chicago, IL, USA). Each Petri
dish was an independent experimental unit, and 15 hypocotyl explants were grown in
each medium. The Fisher’s Duncan test was used to compare the means of the treatments.
The statistical software XLSTAT (Addinsoft, version 2023.1.3) was used to carry out cluster
analysis based on the ward’s approach using squared Euclidian distance [31], and principal
component analysis (PCA) was performed.

2.3. Modeling Using Machine Learning Algorithms

The main data source of this study was in vitro tissue culture data of fodder pea
genotypes. These data included five different input variables, callus induction (CI) (%), per-
centage of embryogenic calluses by explant number (ECNEP) (%), percentage of responding
embryogenic calluses by explant number (RECNEP) (%), number of somatic embryogenesis
(NSE) (number), and number of responding somatic embryogenesis (RSE), and these were
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associated with an output (regeneration efficiency (RE)) variable (Figure 1). The aim was to
estimate the output variable using these input variables. Three different ML algorithms
were used to make predictions on the data set: MLP model based on ANN, random forest
(RF) model, and multivariate adaptive regression spline (MARS) model. The ANN-MLP
model was used to capture the complexity of the data set and learn the patterns [18,23,32].
The RF algorithm, one of the most widely used algorithms, was chosen to capture and
predict patterns in the data set [19,21]. The MARS algorithm was used to capture non-linear
relationships and interactions in the data set [33]. Three main criteria were used to evaluate
the performance of the algorithms: mean squared error (MSE), R-square (R2), and mean
absolute deviation (MAD). R2 refers to the explanatory power of the model (Equation (1)),
MSE measures how close the predictions are to the true values (Equation (2)), and MAD
refers to the overall distribution of prediction errors (Equation (3)) [34].

R2=1−

∑n
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(
yi−yip

)2

∑n
i=1

(
yi−

¯
y
)2

 (1)
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)2
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n

n

∑
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∣∣∣yi−yip

∣∣∣ (3)

where n is the total number of samples used for training and testing, yi is the actual value

that was measured, yip is the value that was predicted, and
¯
y is the mean of the measured

values. The ANN-MLP, RF, and MARS methods and performance metrics were both
computed with the help of the R program [35–37].
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3. Results
3.1. In Vitro Parameters

The results of the analysis of variance showed that there were significant differences
among the 42 genotypes in terms of callus induction (CI) (%), percentage of embryogenic
calluses by explant number (ECNEP) (%), percentage of responding embryogenic calluses
by explant number (RECNEP) (%), number of somatic embryogenesis (NSE) (number),
number of responding somatic embryogenesis (RSE), regeneration efficiency (RE), and
number of regenerated plantlets (NRP) (number) (p < 0.001) (Table 1). The genotypes that
were grown in vitro were a significant factor that had an impact on both the effectiveness of
the process and the features of the variables that were observed. The first signs of calluses
appeared two weeks after the start of culture, and various types of calluses developed
in the following weeks. According to the mean CI values among the genotypes, the
highest mean CI% value was observed in Ardahan Merkez-2, Aşağıcambaz, Camlıçatak-
2, Değirmencik-1, Görele-1, Koyunpınarı, Ovaçevirme-4, Ovaçevirme-5, Paslı, Subatan,
Sulakyurt, Tahtakıran, and Yamçılı genotypes (100.00%), and the lowest mean CI% value
was observed in Doğruyol genotype (60.94%) (Table 1).

Table 1. A total of 42 examined traits of fodder pea genotypes.

Genotype CI% *

%
ECNEP

%
RECNEP

%
NSE

(Number)
RSE

(Number)
RE

(Number)
NRP

(Number)

Ardahan Merkez-1 93.75 a–d ** 82.81 a–f 67.19 e–m 37.75 c–j 37.50 b–i 0.00 c 0.00 d
Ardahan Merkez-2 100.00 a 96.88 ab 85.94 a–f 89.25 a 81.250 a 0.00 c 0.00 d
Ardahan Merkez-3 84.37 c–i 57.81 h–k 65.63 e–m 25.25 g–n 21.00 g.n 0.00 c 0.00 d

Aşağıcambaz 100.00 a 73.44 d–h 84.38 a–g 37.25 d–j 32.75 c–j 0.03 c 0.25 d
Aşağıkırzı 78.13 g–j 73.44 d–h 60.94 f–n 47.50 b–e 41.25 b–h 0.00 c 0.00 d

Avcılar 90.63 a–g 84.38 a–e 76.56 a–i 96.75 a 88.25 a 0.02 c 0.25 d
Balçeşme 76.56 h–j 46.88 kl 46.88 k–r 25.25 g–n 20.00 g–n 0.00 c 0.00 d

Camlıçatak-1 98.44 ab 64.06 g–j 35.94 n–r 24.50 g–n 12.75 j–n 0.00 c 0.00 d
Camlıçatak-2 100.00 a 68.75 e–h 34.38 o–r 27.00 f–n 23.00 g–n 0.00 c 0.00 d

Cayağzı 95.31 a–d 26.56 m 21.88 r 11.75 mn 4.00 n 0.00 c 0.00 d
Ciğdemtepe 73.44 ij 67.19 e–i 26.56 qr 23.25 h–n 18.75 I–n 0.05 c 0.25 d
Cumhuriyet 78.13 g–j 73.44 d–h 71.88 b–k 8.25 n 7.75 k–n 0.00 c 0.00 d

Değirmencik-1 100.00 a 89.06 a–d 100.00 a 48.25 b–e 48.25 b–e 0.00 c 0.00 d
Doğruyol 60.94 k 56.25 h–k 51.56 I–q 29.00 e–m 20.25 g–n 1.61 a 15.00 a
Döşeli-1 93.75 a–d 62.50 g–k 48.44 k–q 19.25 I–n 12.75 j–n 0.65 b 4.25 b–d

Giresun Merkez 68.75 jk 56.25 h–k 50.00 I–q 27.25 f–n 21.50 g–n 0.05 c 0.50 d
Görele-1 100.00 a 96.88 ab 98.44 ab 34.25 d–l 24.25 f–n 0.06 c 1.00 cd
Incili-1 79.69 e–j 70.31 e–h 54.69 h–o 39.25 c–i 7.25 l–n 0.00 c 0.00 d
Incili-2 98.44 ab 89.06 a–d 76.56 a–j 56.75 bc 52.00 bc 0.00 c 0.00 d
Incili-3 92.19 a–e 64.06 g–j 79.69 a–h 18.25 j–n 13.25 j–n 0.43 bc 5.25 bc

Kartalpınar 92.19 a–f 73.44 d–h 71.88 c–k 19.75 I–n 14.25 j–n 0.04 c 0.50 d
Kenarbel 85.94 b–i 78.13 c–g 65.63 e–m 39.25 c–i 27.25 e–m 0.13 c 1.25 cd

Koyunpınarı 100.0 a 82.81 a–f 70.31 d–l 35.75 d–k 29.75 d–k 0.00 c 0.00 d
Oburcak 87.50 a–h 87.50 a–d 82.81 a–g 40.00 c–h 39.00 b–i 0.00 c 0.00 d

Ovaçevirme-1 76.56 h–j 71.88 d–h 67.19 e–m 48.25 b–e 45.25 b–f 0.00 c 0.00 d
Ovaçevirme-2 98.44 ab 89.06 a–d 53.13 h–p 29.25 e–m 23.25 g–n 0.00 c 0.00 d
Ovaçevirme-3 96.88 a–c 96.88 ab 96.88 abcd 88.00 a 85.00 a 0.00 c 0.00 d
Ovaçevirme-4 100.00 a 67.19 e–i 89.06 a–e 14.50 l–n 9.00 k–n 0.51 bc 7.00 b
Ovaçevirme-5 100.00 a 70.31 e–h 76.56 a–j 43.75 c–g 29.00 d–l 0.00 c 0.00 d

Paslı 100.00 a 96.88 ab 92.19 a–e 49.75 b–d 49.25 b–d 0.00 c 0.00 d
Sayvan 67.19 jk 56.25 h–k 50.00 j–q 63.50 b 54.75 b 0.00 c 0.00 d

Selamverdi 79.69 f–j 35.94 lm 28.13 p–r 14.25 l–n 7.50 l–n 0.00 c 0.00 d
Senkaya Merkez 96.88 a–c 59.38 h–k 48.44 k–q 22.50 h–n 22.00 g–n 0.15 c 1.00 cd

Serhat 95.31 a–d 93.75 a–c 87.50 a–f 30.00 e–m 24.75 f–n 0.04 c 0.50 d
Seyitören 95.31 a–d 79.69 b–g 40.63 m–r 21.25 h–n 6.50 mn 0.00 c 0.00 d
Subatan 100.00 a 93.75 a–c 92.19 a–e 45.50 b–f 42.00 b–g 0.05 c 0.75 cd

Sulakyurt 100.00 a 65.63 f–j 65.63 e–m 24.50 g–n 20.50 g–n 0.05 c 0.75 cd
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Table 1. Cont.

Genotype CI% *

%
ECNEP

%
RECNEP

%
NSE

(Number)
RSE

(Number)
RE

(Number)
NRP

(Number)

Tahtakıran 100.00 a 84.38 a–e 82.81 a–g 36.75 d–k 31.75 c–j 0.02 c 0.25 d
Tepeköy 82.81 d–i 51.6 I–k 48.44 k–q 17.00 k–n 7.25 l–n 0.00 c 0.00 d
Tepeler 95.31 a–d 64.06 g–j 57.81 g–o 25.25 g–n 19.50 h–n 0.17 c 1.25 cd
Yamçılı 100.00 a 100.00 a 98.44 a–c 29.75 e–m 22.25 g–n 0.02 c 0.25 d

Yolgeçmez 96.88 a–c 50.00 j–l 43.75 l–r 32.00 d–l 21.00 g–n 0.62 b 4.00 b–d
Means 90.67 72.58 65.40 35.63 29.01 0.11 1.05
F value 7.82 *** 11.83 *** 7.62 *** 11.95 *** 10.46 *** 4.03 *** 3.64 ***

* Callus induction (CI) (%), mean embryogenic callus by the number of explants by percentage (ECNEP) (%),
mean responded embryogenic callus by the number of explants by percentage (RECNEP) (%), mean number of
somatic embryos (NSE) (number), mean regeneration efficiency (RE), and mean regenerated plant number (NRP),
** Letters of the same notation indicate important items and *** significant at p ≤ 0.001.

According to the values of ECNEP that were observed, the average of the genotypes
was 72.58%, while the ECNEP value of the Yamçılı genotype was the highest with 100%
and the ECNEP value of the Cayaz genotype was the lowest with 26.56%. The RECNEP
values of the genotypes had a mean value of 65.40%. The Değirmencik-1 genotype had
the greatest RECNEP value, which was seen to be 100%, while the Cayağzı genotype
had the lowest, which was observed to be 21.88%. The NSE value that was averaged
across all the genotypes was 35.63. The Avcılar genotype was seen to have the greatest
NSE value (96.75), whilst the Cumhuriyet genotype was observed to have the lowest NSE
value (8.25). The genotypes had an average RSE value of 29.01. The Avcılar genotype
showed the greatest RSE value, which was found to be 8.25%, while the Cayağzı geno-
type showed the lowest RSE value, which was found to be 4.00%. The mean RE and
NR values of the genotypes were 0.11% and 15.00 (number), respectively. The Doğruyol
genotype was found to have the greatest RE value and NRP value, while the Ardahan
Merkez-1, Ardahan Merkez-2, Ardahan Merkez-3, Aşağıkırzı, Balçeşme, Camlıçatak-1,
Camlıçatak-2, Cayağzı, Cumhuriyet, Değirmencik-1, Incili-1, Incili-2, Koyunpınarı, Obur-
cak, Ovaçevirme-1, Ovaçevirme-2, Ovaçevirme-3, Ovaçevirme-5, Paslı, Sayvan, Selamverdi,
Seyitören, and Tepeköy genotypes all had RE values and NRP values of zero (Table 1).

3.2. Principal Component Analysis

Principal Component Analysis (PCA) was conducted to derive a concise set of linear
combinations that effectively elucidate most variations in the utilized data. In this investi-
gation, five distinct components were identified, and the analysis revealed that the initial
three components possessed Eigen values exceeding one. According to the cumulative
values presented in Table 2, these three components, resulting from PCA using similarity
values, collectively accounted for 87.30% of the total variation. Specifically, the variable
ECNEP (F1) emerged as the most significant contributor, with a value of 0.691, elucidating
43.23% of the overall variance. The second factor (F2) contributed to 70.11% of the overall
variance, with the NRP variable exerting the greatest influence, as indicated by its value
of 0.697. Factor 3 (F3) contributed to the remaining 17.19% of the overall variance, with
the CI variable demonstrating the most substantial impact, reflected in its coefficient value
of 0.484 (see Table 2). A visual representation of the obtained PCA analysis is depicted in
Figure 2 in the form of a biplot.

3.3. Cluster Analysis

Genotypes were divided into four groups in the dendrogram (Figure 3). The first
group included 7.14% of all genotypes, the second group included 52.38% of all genotypes,
the third group included 35.71% of all genotypes, and the fourth group included 4.76% of
all genotypes. The genetic difference between the first group and fourth group was the
highest. Regarding plant breeding operations, the genetic distance between genotypes
is paramount. Because hybrids of genetically different genotypes have a high yield, and
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because a cross between these genotypes can provide the optimum heterosis for use in
breeding programs, hybrids of genetically diverse genotypes are preferred [38].

Table 2. Principal component analysis of genotypes.

In Vitro Traits F1 F2 F3 F4 F5

CI 0.256 0.020 0.484 0.240 0.000

ECNEP 0.691 0.047 0.086 0.063 0.113

RECNEP 0.538 0.138 0.141 0.099 0.084

RE 0.299 0.668 0.008 0.012 0.003

NSE 0.609 0.099 0.242 0.034 0.000

RSE 0.650 0.101 0.203 0.028 0.002

NRP 0.272 0.697 0.020 0.002 0.000

Eigen value 3.03 1.88 1.20 0.50 0.31

Percent of Variance 43.23 26.88 17.88 7.18 4.43

Cumulative
Percentage 43.23 70.11 87.30 94.47 98.90
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3.4. Machine Learning (ML) Analysis

In summary, the results obtained through simple statistical analysis revealed numer-
ous differences between genotypes but fell short in providing comprehensive insights
into the key factors governing the efficiency of callus regeneration from hypocotyls. This
limitation stems from the complex, non-linear, and multifactorial nature of interactions
among various factors. Machine Learning (ML) emerges as a robust and versatile technique,
employed across diverse domains for resolving intricate issues, making predictions, un-
covering patterns, and analyzing data. In this study, ML techniques, specifically Artificial
Neural Networks with Multilayer Perceptron (ANN-MLP) and Random Forest (RF), were
harnessed. Additionally, the Multivariate Adaptive Regression Splines (MARS) technique
was employed to construct multi-part linear regression models. This approach aimed
not only to evaluate prediction performance but also to capture non-linear correlations
inherent in the data. By leveraging these advanced ML methods, the research sought a
more nuanced understanding of the intricate dynamics influencing callus regeneration
efficiency, surpassing the limitations of traditional statistical analyses.

The evaluation of algorithm efficacy in this study employed Mean Squared Error
(MSE) and Mean Absolute Deviation (MAD) as metrics. Additionally, the determination
of how well the trained regression models align with the data involved the calculation
of R2, as illustrated in Figure 4. The examination of test performance metrics, MSE, and
MAD, revealed a notable trend wherein the Artificial Neural Network (ANN) model
demonstrated the highest level of performance, followed by the Random Forest (RF) model
and the Multivariate Adaptive Regression Spline (MARS) model, respectively. Specifically,
the ANN model exhibited the highest R2 value among the three models, registering at
94.1%. In comparison, the RF model achieved an R2 value of 75.4%, while the MARS
model lagged with a value of 21.4%. Notably, the research findings indicate that the MARS
model performed significantly poorer than both the ANN and RF models, underscoring
the superior performance of the ANN model in capturing the complexities of the data and
making accurate predictions.
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Consequently, the Artificial Neural Network (ANN) algorithm emerged as the most
accurate model for predicting the Regeneration Efficiency (RE) values of in vitro-grown
fodder peas. The structure of the ANN model is depicted in Figure 5. The initial layer,
known as the Input Layer, acts as the entry point for the data, with each input characteristic
assigned to a respective input neuron. The model incorporates a Hidden Layer, functioning
as an intermediate layer to enhance complexity and effectively capture intricate patterns
within the dataset. Neurons within each hidden layer are intricately interconnected by
specific weights and activation functions. The final layer of the ANN, the Output Layer,
is responsible for generating predictions or classification outcomes, with neurons in this
layer representing the model’s output. The error value, expressing the extent to which the
model’s predictions deviate from real values, was determined to be 0.206338. The model
underwent 6348 steps, representing iterations in which the model processes a dataset and
updates its weights. A model with a smaller error and a greater number of steps signifies
superior performance in prediction. In this context, the ANN model demonstrated notable
accuracy and efficiency in predicting the RE values for in vitro-cultivated fodder peas.

In Figure 6, the ranking of variable importance for estimating the output variable using
the input variables in the ANN model is presented, while Figure 7 depicts the importance
ranking for the same estimation process in the RF model. The analysis unveiled that, in
the ANN model, the most influential factor determining Regeneration Efficiency (RE) was
RSE, closely followed by ECNEP. On the other hand, in the RF model, it was observed that
the variable with the highest significance in predicting RE was CI, followed by RECNEP.
Despite the ANN model demonstrating superior accuracy in predictive modeling based on
performance criteria (Figure 4), a nuanced analysis of the relative significance of variables
indicated that the RF model outperformed the ANN model in forecasting data related to
the final stage of the in vitro experimental procedure. This was particularly evident in
the context of the variables CI and ECNEP, which were identified at the earliest stage of
the process. Nevertheless, it is worth noting that, considering performance standards, a
combined approach involving both the RF and ANN models might offer advantages. The
integration of these models could potentially leverage the strengths of each, resulting in a
more comprehensive and robust predictive framework.
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4. Discussion

In this study, hypocotyl explants from 42 distinct fodder pea plants underwent in vitro
cultivation. At specified time intervals outlined in the methodology, various characteristics
such as callus induction (CI), percentage of embryogenic calluses per explant (ECNEP),
percentage of responding embryogenic calluses per explant (RECNEP), number of somatic
embryogenesis (NSE), number of responding somatic embryogenesis (RSE), regeneration
efficiency (RE), and number of regenerated plantlets (NRP) were observed for each geno-
type. One of the primary objectives was to investigate the relationships between the genetic
variants of these genotypes by analyzing their embryogenetic capabilities. The analysis
of variance revealed a statistically significant difference (p < 0.001) between genotypes
for each of the in vitro parameters measured. This suggests that the observed hetero-
geneity in tissue culture performance among fodder peas is largely influenced by genetic
factors. Similar findings were reported in studies involving wheat (Triticum aestivum L.),
rice (Oryza sativa L.), and pea plants cultivated in callus culture, emphasizing the substan-
tial impact of genotype on tissue culture outcomes [4,39–42].

Efficient regeneration is a prerequisite for polyploidy induction in plants. Hypocotyls
are often used as explants for polyploid induction and organogenesis [43].

Another investigation focused on the regeneration potential of epicotyl and hypocotyl
explants in the genotype Caesalpinia bonduc L., a traditional medicinal plant of the
Fabaceae/Caesalpinaceae family. The study reported a remarkable 92% success rate for
explants, along with a high shoot regeneration frequency. Maximum shoot production
(3.6 ± 0.3) was observed in epicotyl explants supplemented with Murashige and Skoog
(MS) medium. In a study on tetraploid black locust (Robinia pseudoacacia L.) plants, the
highest induction efficiency, reaching 53.33%, was achieved by treating hypocotyl explants
with 70 mg L−1 of colchicine for 2 days [44]. Another investigation focused on the regener-
ation potential of epicotyl and hypocotyl explants in the genotype Caesalpinia bonduc L., a
traditional medicinal plant of the Fabaceae/Caesalpinaceae family. The study reported a
remarkable 92% success rate for explants, along with a high shoot regeneration frequency.
Maximum shoot production (3.6 ± 0.3) was observed in epicotyl explants supplemented
with Murashige and Skoog (MS) medium.

Previous reports on fodder pea genotypes indicated varying responses to callus induc-
tion. For instance, the callus induction frequency was higher in epicotyl and leaf explants
compared to root explants [45]. In contrast, a study conducted by Bolouri et al. [46] using
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root explants of pea (Pisum arvense L.) reported lower in vitro values (for CI, ECNEP, REC-
NEP, NSE, RSE, RE, and NRP) than the observations in your research. The results of your
research suggest that the root explants used by Bolouri et al. were less effective compared
to the hypocotyl explants employed in your study. Indeed, the choice of explant is a critical
factor influencing the success of in vitro culture [47,48].

Principal components analysis is employed to generate a concise set of linear combina-
tions that effectively encapsulate the predominant variation within the dataset [31,49]. The
coefficients of variation for the distribution around the primary components were computed
individually for each component. This metric is commonly referred to as the eigenvalue.
Following the principal component analysis, five distinct independent principal component
axes were derived for the observed characteristics. These five principal component axes
accounted for 98.90% of the total variation across 42 fodder pea genotypes. The eigenval-
ues associated with the first three principal components ranged from 1.20 to 3.03, with
the third principal component axis contributing significantly by explaining 87.30% of the
overall variation. The application of principal component analysis (PCA) allows for the
characterization of variations observed among experimental materials, thereby aiding in
the identification of noteworthy plant traits [49,50]. In the biplot diagram, genotypes are
deemed to have substantial contribution coefficients when their F values surpass 0. In the
stability context, F values closer to zero are interpreted as indicative of greater stability,
in contrast to values farther away [51]. The selection of specific fodder pea genotypes
was determined based on the obtained data, which uncovered a notable correlation be-
tween the variables RE and NRP in our study, particularly within the genotypes Doğruyol,
Ovaçevirme-4, Döşeli-1, Yolgeçmez, and Incili-3. Additionally, the genotypes Avcılar,
Ovaçevirme-3, and Ardahan Merkez-2 exhibited the strongest associations with variations
in RECNEP, NSE, RDE, and RECNEP.

Cluster analysis, utilizing tissue culture characteristics, resulted in the classification of
genotypes into four groups. The greatest genetic distance was observed between the first
and fourth groups. The genetic diversity of plants is a crucial factor that determines their
potential for enhanced productivity and, consequently, their suitability for applications in
plant breeding [52]. Hybrids resulting from genetically distinct genotypes demonstrate a
significant boost in productivity, rendering them highly desirable for inclusion in breeding
programs. This preference is rooted in the fact that the crossing of such diverse genotypes
leads to an optimal level of heterosis, thereby augmenting the overall efficiency of breeding
initiatives [38]. An evaluation of genetic diversity among the offspring designated for
the development of pure line varieties can be attained by examining the levels of genetic
diversity within the adapted elite germplasm. In fodder pea hybridization systems, a viable
strategy for parent selection involves estimating the genetic distance between potential
parents [53].

The optimization of in vitro culturing, being a nonlinear, multivariable, and complex
system, is characterized by its challenging nature, substantial costs, and time-intensive
demands [18,22,23]. Hence, there is a substantial requirement for the adoption of innova-
tive computational methodologies, such as machine learning algorithms, to systematically
analyze and improve the efficiency of this specific system by reducing the number of treat-
ments applied [16,54]. In their study, Aasim et al. [21] explored the potential influence of
varying concentrations of hydrogen peroxide (H2O2) on the germination and morphologi-
cal characteristics of cannabis seedlings cultivated in vitro. For data analysis, the researchers
utilized four distinct machine learning algorithms, namely the support vector classifier
(SVC), Gaussian process (GP), extreme gradient boosting (XGBoost), and random forest
(RF) algorithms. The findings of the study indicated that the RF model exhibited superior
performance in predicting the output variable. In recent studies, researchers have explored
the reliability and accuracy of various types of Artificial Neural Networks (ANNs) across
different stages of plant tissue growth [18,23,55]. For example, Zhang et al. [56] employed
the MLP model for modeling and forecasting organogenic callus development based on
four input variables (agar concentration, humidity, light duration, and culture temperature).
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They found that the MLP was able to properly model and predict the system (R2 > 0.96).
Aasim et al. (2022) [19] found that comparing artificial neural network algorithms with
machine learning algorithms made it easier to forecast and verify in vitro organogenesis
in sorghum for shoot count and shoot length. In addition to this, the researchers demon-
strated that the MLP (R2 = 0.799 for shoot count and R2 = 0.831 for shoot length) model
was superior to the ML methods of random forest (RF) (R2 = 0.779 for shoot count and
R2 = 0.786 for shoot length) and extreme gradient boost (XGBoost) (R2 = 0.768 for shoot
count and R2 = 0.781 for shoot length) in terms of its overall performance efficiency. The
results that we acquired from our research led us to the conclusion that the ANN-MLP
model (R2 = 0.941) performs better than the RF model (R2 = 0.754) and the MARS model
(R2 = 0.214) (Figure 4). Despite this, it has been demonstrated that the Random Forest
(RF) model is proficient in accurately predicting Regeneration Efficiency (RE) in the early
stages of the in vitro process (Figure 7). This revelation was made by considering the
order of significance of the input variables in the estimation process (Figures 6 and 7).
The Multivariate Adaptive Regression Splines (MARS) model is occasionally positioned
between statistical modeling and machine learning (ML). Due to its capability to capture
more intricate patterns in the data, it is quite comparable to machine learning techniques,
even though it is fundamentally grounded in the principles of regression analysis [33,57].
Consequently, MARS is apt for inclusion in both the Machine Learning (ML) and statistical
modeling categories. In various studies, comparisons between the MARS model and Artifi-
cial Neural Network (ANN) algorithms have been conducted, and contrary to our findings,
it has been observed that the MARS model yielded superior results [58]. In modeling and
estimation studies, diverse findings across various case studies and research may arise due
to multiple factors at play. MARS, ANN, and RF algorithms employ different approaches
and possess distinct learning capacities. The performance of an algorithm can vary based
on the characteristics of the dataset and the nature of the problem at hand.

5. Conclusions

In traditional statistical approaches, reliance on basic statistical measures and a limited
set of key variables is common for evaluating the biological characteristics of plants. In our
research, we took a different approach by classifying genotypes into groups to establish
genetic relationships among fodder pea genotypes. We specifically identified genotypes
with the greatest genetic distance, such as those in the first and fourth groups. Utilizing
Principal Component Analysis (PCA)-based biplot analysis, we established relationships
between observed variables and genotypes, facilitating genotype selection based on spe-
cific characteristics. The in vitro procedure poses challenges due to its time-consuming
nature in experimental investigations. Moreover, the inclusion of multiple variables adds
complexity to the analysis and understanding. In the stressful in vitro environment, the
developmental patterns of plant cells and tissues exhibit non-deterministic and non-linear
characteristics. Therefore, robust prediction analyses are essential to account for these
nonlinear factors. In this study, the Artificial Neural Network (ANN), Random Forest (RF),
and Multivariate Adaptive Regression Splines (MARS) models were effectively employed
to address these challenges. The ANN model demonstrated superior performance com-
pared to the RF and MARS models. However, the Random Forest (RF) model exhibited
superior performance, especially in predicting Regeneration Efficiency (RE), when utilizing
data collected at the initial stages of the in vitro process. Utilizing a machine learning
and artificial neural network-based technique, as demonstrated in our study, accelerates
evaluations of regeneration efficiency for various cultivars.
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E. Innovation in the breeding of common bean through a combined approach of in vitro regeneration and machine learning
algorithms. Front. Genet. 2022, 13, 897696. [CrossRef]

23. Hesami, M.; Jones, A.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture.
Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [CrossRef] [PubMed]

24. Salehi, M.; Farhadi, S.; Moieni, A.; Safaie, N.; Ahmadi, H. Mathematical modeling of growth and paclitaxel biosynthesis in Corylus
avellana cell culture responding to fungal elicitors using multilayer perceptron-genetic algorithm. Front. Plant Sci. 2020, 11, 1148.
[CrossRef] [PubMed]

https://doi.org/10.3390/plants10010077
https://www.ncbi.nlm.nih.gov/pubmed/33401697
https://doi.org/10.1007/s00425-018-2910-1
https://doi.org/10.1105/tpc.16.00196
https://www.ncbi.nlm.nih.gov/pubmed/27335450
https://doi.org/10.1016/j.tplants.2007.04.002
https://www.ncbi.nlm.nih.gov/pubmed/17499544
https://doi.org/10.1016/j.eng.2018.11.006
https://doi.org/10.1038/s41598-020-61612-z
https://www.ncbi.nlm.nih.gov/pubmed/32165694
https://doi.org/10.3390/ijms22041878
https://doi.org/10.1038/hortres.2017.67
https://doi.org/10.1111/pbi.12662
https://www.ncbi.nlm.nih.gov/pubmed/27862876
https://doi.org/10.1007/s10341-023-00908-6
https://doi.org/10.1016/j.cell.2008.02.001
https://www.ncbi.nlm.nih.gov/pubmed/18295573
https://doi.org/10.3390/agriculture10100436
https://doi.org/10.1371/journal.pone.0237478
https://doi.org/10.3390/app10155370
https://doi.org/10.1007/s11240-022-02255-y
https://doi.org/10.1134/S1064229322602128
https://doi.org/10.1016/j.indcrop.2022.114801
https://doi.org/10.3389/fgene.2022.897696
https://doi.org/10.1007/s00253-020-10888-2
https://www.ncbi.nlm.nih.gov/pubmed/32984921
https://doi.org/10.3389/fpls.2020.01148
https://www.ncbi.nlm.nih.gov/pubmed/32849706


Agronomy 2023, 13, 2835 16 of 17

25. Niazian, M.; Shariatpanahi, M.E.; Abdipour, M.; Oroojloo, M. Modeling callus induction and regeneration in an anther culture of
tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma 2019, 256, 1317–1332.
[CrossRef] [PubMed]

26. Genze, N.; Bharti, R.; Grieb, M.; Schultheiss, S.J.; Grimm, D.G. Accurate machine learning-based germination detection, prediction,
and quality assessment of three grain crops. Plant Methods 2020, 16, 157. [CrossRef] [PubMed]

27. Haliloglu, K.; Turkoglu, A.; Tan, M.; Poczai, P. SSR-based molecular identification and population structure analysis for forage
pea (Pisum sativum var. arvense L.) landraces. Genes 2022, 13, 1086. [CrossRef]

28. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant.
1962, 15, 473–497. [CrossRef]

29. Bencheikh, M.; Gallais, A. Somatic embryogenesis in pea (Pisum sativum L. and Pisum arvense L.): Diallel analysis and genetic
control. Euphytica 1996, 90, 257–264. [CrossRef]

30. Lazzeri, P.A.; Hildebrand, D.F.; Collins, G.B. Soybean somatic embryogenesis: Effects of hormones and culture manipulations.
Plant Cell Tissue Organ Cult. PCTOC 1987, 10, 197–208. [CrossRef]

31. Demirel, F.; Gurcan, K.; Akar, T. Clustering analysis of morphological and phenological data in einkorn and emmer wheats
collected from Kastamonu region. Int. J. Sci. Technol. Res. 2019, 5, 25–36.

32. Gago, J.; Martínez-Núñez, L.; Landín, M.; Gallego, P. Artificial neural networks as an alternative to the traditional statistical
methodology in plant research. J. Plant Physiol. 2010, 167, 23–27. [CrossRef] [PubMed]
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