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Abstract: Rice lodging is a crucial problem in rice production. Lodging during growing and har-
vesting periods can decrease rice yields. Practical lodging judgment for rice can provide effective
reference information for yield prediction and harvesting. This article proposes a binocular camera-
based lodging judgment method for rice in real-time. As a first step, the binocular camera and Inertial
Measurement Unit (IMU) were calibrated. Secondly, Census and Grayscale Level cost features are
constructed for stereo matching of left and right images. The Cross-Matching Cost Aggregation
method is improved to compute the aggregation space in the LAB color space. Then, the Winner-
Takes-All algorithm is applied to determine the optimal disparity for each pixel. A disparity map is
constructed, and Multi-Step Disparity Refinement is applied to the disparity map to generate the
final one. Finally, coordinate transformation obtains 3D world coordinates corresponding to pixels.
IMU calculates the real-time pose of the binocular camera. A pose transformation is applied to the 3D
world coordinates of the rice to obtain its 3D world coordinates in the horizontal state of the camera
(pitch and roll angles are equal to 0). Based on the distance between the rice and the camera level,
thresholding was used to determine whether the region to be detected belonged to lodging rice. The
disparity map effect of the proposed matching algorithm was tested on the Middlebury Benchmark
v3 dataset. The results show that the proposed algorithm is superior to the widely used Semi-Global
Block Matching (SGBM) stereo-matching algorithm. Field images of rice were analyzed for lodging
judgments. After the threshold judgment, the lodging region results were accurate and could be used
to judge rice lodging. By combining the algorithms with binocular cameras, the research results can
provide practical technical support for yield estimation and intelligent control of rice harvesters.

Keywords: stereo matching; binocular camera; image processing; lodging judgment; rice

1. Introduction

Rice is one of the world’s major food crops, and 1/3 of the world’s population con-
sumes rice as a staple food [1]. The increasing world population places higher demands
on rice yield and quality [2], and rice production should increase by 50% by 2025 to
accommodate the increase in world population [3]. In China, rice production is highly
affected by unfavorable meteorological conditions, such as typhoons, heavy rains, hail-
storms, and improper crop management, which can result in rice losses immediately [4].
The earlier crop lodging occurs, the more serious the impact on crop growth. When rice un-
dergoes severe lodging, the yield reduction rate may be higher than 20% [5]. Therefore, rice
lodging judgment has essential research value for predicting rice yield, disaster analysis,
and mechanical harvesting.

Researchers and producers judge rice lodging as a primary concern. The existing
methods for assessing lodging are usually statistical or traditional ground surveys [6–8]. It
is less automated and more time-consuming to use these methods. Additionally, assessment
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results are subjective since different inspectors conducting evaluations on the same scope
may produce different results. There is a lower level of accuracy and a more significant
influence of human factors.

Besides traditional methods of lodging determination, crop spectral analysis of satellite
images and optical remote sensing based on radar systems have also been used [9,10].
Using Gaofen-2 satellite images with high spatial resolution, Tang et al. proposed a
Pyramid Transposition Convolutional Network (PTCNet) model for large-scale wheat
lodging extraction and detection [11]. Chauhan et al. demonstrated the potential of Sentinel-
1 and Sentinel-2 data for real-time detection of wheat lodging [12]. Sun et al. developed
a remote sensing method for monitoring rice lodging rank based on Sentinel-2A change
vector analysis before and after lodging. A model based on the magnitude of change
in vegetation index can effectively monitor rice lodging rank using remote sensing [13].
Zhao et al. used polarization features of polarized Synthetic Aperture Radar (SAR) data to
characterize lodging wheat and oilseed rape. Their detection results depend on the crop’s
canopy structure [14]. Chauhan et al. estimated crop inclination through SAR remote
sensing data to indicate lodging severity at the lodging stage [15].

Generally, lodging judgment can be realized through spectral analysis of lodging
and non-lodging regions using satellite images, but lodging assessment is still limited by
spectral band characteristics [9,10]. It is difficult to determine the lodging region when
there is little spectral difference between lodging and non-lodging crops [16]. Additionally,
the spectral characteristics of the rice region can be affected by changes in soil conditions or
other crop stresses [17]. The SAR provides data for all weather conditions and is sensitive
to changes in crop structure. Optical remote sensing based on radar systems suits large
and relatively homogeneous areas. The subsequent analysis of images in small collocated
regions will be complex and inaccurate when the spatial resolution of the image and scanner
is relatively small [18,19].

Using unmanned aerial vehicles (UAV) in lodging judgments has also been extensively
studied [20]. Varela et al. analyzed sorghum lodging by using 3D-CNNs with an accuracy
of 0.88, suggesting that spatiotemporal convolutional neural network (CNN) architectures
based on UAV time series images are promising for lodging judgments [21]. Su et al. pro-
posed an end-to-end, pixel-to-pixel semantic segmentation method to identify rice lodging,
which can process input multi-band images, and the accuracy of the proposed lodging
detection model on rice lodging images is 97.30% [22]. Based on UAV and CNN, Zhao et al.
developed a method for wheat lodging detection, and the average accuracy of the model
was 89.23% [23]. A study by Zhang et al. evaluated and compared the performance of
traditional machine learning and deep learning methods in detecting lodgings and found
that the Random Forest algorithm performed the best in detecting lodgings [24]. However,
given the additional cost of UAVs, farmers may not be willing to bear the extra expense.
In addition, UAVs, satellites, and radars cannot provide real-time and practical lodging
information for the ground machine, and UAV lodging information is not synchronous or
real-time. It is tough to synchronize and cooperate with information from field management
and harvesting machinery.

With the advancement of machine vision technology, more and more ground-working
machines are equipped with vision sensors. The visual sensor can capture images of the
environment surrounding the working machine and detect the state and information of
the operating object. Haridasan et al. developed a rice disease detection network using
ReLU and softmax functions and achieved the highest verification accuracy of 0.9415 [25].
He et al. proposed a MobileV2-UNet deep learning model, which enables automatic
detection and navigation of rice fields [26]. Ma et al. developed an algorithm based on linear
clustering and supervised learning to detect rice root rows. In the experiments, the accuracy
rates of root-row detection during day 6, day 20, and day 35 after transplantation were
96.79%, 90.82%, and 84.15%, respectively [27]. Machine vision has many applications in
rice production, but studies have yet to be conducted on lodging judgments. Wen et al.
developed a binocular vision-based method to detect wheat lodging positions, contours,
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and areas in the harvesting region of a combined harvester [28]. Wen’s study shows that
binocular vision can be used in rice lodging research. It provides real-time and reliable
information about rice lodging for ground machines such as rice harvesters. The rice
harvester controls the cutting table to complete the harvest of lodging rice, thus reducing
the yield reduction caused by lodging.

Satellites, radars, and UAVs cannot transmit lodging information in real-time to
ground vehicles. Machine vision provides high accuracy and real-time synchronization and
is more cost-effective than the three common methods of lodging determination. Machine
vision technologies include deep learning [29,30] and image processing [31]. Lodging can
be detected through a monocular camera combined with deep learning [32]. Data collection
costs and deployment difficulties must be considered. Binocular cameras combined with
deep learning are mainly used in large outdoor objects [33]. Obtaining standard disparity
maps of small moving objects for training neural networks is difficult. According to
Wen et al. study [28], binocular cameras with image processing can be used to detect
lodgings. In this study, Wen et al. [28] used the SGBM stereo-matching algorithm and
assumed that the camera’s pose remained constant. In the actual process, the camera’s pose
will change due to bumps on the road. The SGBM algorithm’s processing accuracy is also
easily affected by external conditions such as repetitive textures and light changes [34].

Based on this research background, this article proposes an algorithm for rice lodging
judgment based on binocular vision. The work has three main objectives: (1) The stereo-
matching binocular vision algorithm is studied and improved. (2) Compare our improved
matching algorithm with the commonly used matching algorithm regarding disparity maps
and metrics. (3) A feasibility test was conducted with field images using the algorithm for
rice lodging judgment.

2. Materials and Methods
2.1. Algorithm Flow

The rice lodging judgment algorithm proposed in this article consists of four steps:
camera and IMU calibration, matching cost calculation, cost aggregation, disparity calcula-
tion, and lodging judgment. A flow chart of the proposed rice lodging judgment is shown
in Figure 1.

Figure 1. Algorithm flow.

The detailed steps are as follows: (1) Binocular calibration. Calibrate the binocular
camera to obtain internal and external parameters. (2) Matching cost calculation. Based on
Census matching costs, a Grayscale Level matching cost is proposed. For subsequent cost
aggregation, Census and Grayscale Level matching costs are merged. (3) Cost aggregation.
Optimize the Cross-Matching Cost Aggregation method, determine the aggregation range
based on the LAB color space of pixels, and calculate all disparity aggregation costs for
pixels within the disparity range one by one. (4) Judgment of rice lodging. With the
Winner-Takes-All algorithm, the optimal disparity is obtained at the lowest aggregation
cost within the pixel’s disparity range. The disparity map optimization eliminates the
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wrong matching points and fills in part of the weak texture area. The IMU determines the
camera’s three-axis pose angle. A coordinate transformation determines the distance from
the rice to the camera level. A threshold judgment of the distance between the rice and
the camera level determines whether the acquisition region belongs to the lodging region.
Figure 2 shows the relative positions of the camera and the rice. The distance from the rice
to the camera level is y.

Figure 2. Schematic diagram of coordinate transformation.

2.2. Binocular Calibration

When the binocular camera is calibrated, the internal parameters of the camera, dis-
tortion parameters, and spatial position parameters of the two cameras can be obtained,
which is of great importance for the subsequent correction of distortion and coordinate
conversion [35]. In this study, a ZED 2 binocular camera is used. The collected left and right
tessellated images are calibrated using MATLAB’s Stereo Camera Calibrator Binocular
Calibration Toolbox. To ensure calibration accuracy, a glass substrate checkerboard grid
is selected. Image pairs with significant calibration errors are removed. The calibration
results are output to obtain the internal and external parameter matrices and the right
camera’s translation and rotation matrices. The images captured by the left and right cam-
eras are preprocessed using Gaussian filters. OpenCV library performs line and distortion
correction on the left and right images. The images processed in the subsequent steps
are polar-corrected. The polar corrected images ensure that the sliding window search is
conducted on a polar line, improving the algorithm’s efficiency and accuracy.

2.3. Traditional Census Transform

A Census transform [36] compares the gray values of all pixels within a window
with the gray value of the center pixel p. When the gray value of a pixel point is greater
than the gray value of the center pixel p, the position of the pixel point is recorded as 0,
and vice versa. The formula is shown below:

σ(I(p), I(q)) =

{
0 I(p) ≤ I(q)
1 I(p) > I(q)

(1)

where σ(I(p), I(q)) is the comparison function, and the result of the completed comparison
is a bit string, which is used as the Census feature of the window centered on center pixel p.
The following formula calculates the Census feature:

Census(p) =
⊗
q∈N

σ(I(p), I(q)) (2)

where
⊗

represents the connection by bit, and N represents the total number of pixels in the
window centered on pixel p. Census features are computed for the window corresponding
to the left and right images captured by the binocular camera. A dissimilarity operation is
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performed on the computed left and right bit strings. Census feature matching costs can be
calculated using the Hamming distance similarity metric as follows:

Costcensus(PL, PR) = Hamming(Census(PL), Census(PR)) (3)

where Census(PL) and Census(PR) denote the Census bit-string features computed in the
left and right windows, respectively.

Consider a 3 × 3 window as an example (shown in Figure 3). Census feature calcu-
lation results for the left and right windows are shown in Figure 3. 00001011 for the left
window and 10010100 for the right window represent Census features in bit-string format.
The bit-string Hamming distance of the left and right windows is calculated as the Census
feature matching cost value under the center pixel. The Hamming distance calculation for
this left and right window is 6.

Figure 3. Schematic diagram of Census cost calculation (* represents the center pixel).

2.4. Grayscale Level

The Census transform is robust to luminance changes and image noise. However,
Census feature costs can be easily miscalculated in similar localized windows. Figure 4
shows the field rice image with four windows, including soil, leaf, tassel, and road. In the
four windows, the gray value of the center pixel is similar to the gray value of the sur-
rounding pixels. The Census transform does not produce significant differences in Census
matching feature costs, resulting in matching errors if the objects within the four windows
are considered identical. We introduce a Grayscale Level feature and the corresponding
cost to address this issue to compensate for the lack of Census matching costs.

Figure 4. Image of rice in the field.

The Grayscale Level divides the grayscale values of pixel points in the left and right
images into five ranges. The cost function is constructed by determining whether the
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Grayscale Level values of the same pixel points within the left and right image windows
are the same. For a single pixel point, the Grayscale Level feature is calculated as follows:

Grayscale Level(q) =



1 when Pixel (q) ∈ [0, 51)
2 when Pixel (q) ∈ [51, 102)
3 when Pixel (q) ∈ [102, 153)
4 when Pixel (q) ∈ [153, 204)
5 when Pixel (q) ∈ [204, 255]

(4)

where pixel (q) denotes the gray value at any pixel point q, and Grayscale Level(q) denotes
the Grayscale Level feature value at pixel point q. A cost value is calculated for each
unequal Grayscale Level value within the left and right image windows, and the formula
is as follows:

CostGranscale Level (PL, PR) = ∑(Grayscale Level(PL) 6= Grayscale Level(PR)) (5)

where CostGranscale Level(PL, PR) denotes the cost of the Grayscale Level, Grayscale Level
(PL) and Grayscale Level (PR) denote the Grayscale level feature value at the same location
within the left and right image windows, respectively.

Consider the Grayscale Level cost calculation for a 3 × 3 window. In Figure 5, the left
and right windows of 3 × 3 size are filled with random grayscale values. The Grayscale
Level values for the pixel points in the left and right windows are calculated based on
Equation (4). The Grayscale Level values at the same pixel points in the left and right
windows are compared using Equation (5). The number of unequal Grayscale Level values
is used as a cost value for the center pixel of the window. The Grayscale Level feature cost
value was calculated for the left and right windows as 6.

Figure 5. Schematic diagram of Grayscale Level cost calculation.

2.5. Cost Aggregation

A single-pixel window has a limited neighborhood range, and its matching cost can
easily be disturbed by noise. It is necessary to aggregate neighboring pixels’ matching costs
to achieve more accurate matching results. In this article, we optimize the Cross-Matching
Cost Aggregation method proposed by Ke Zhang et al. [37]. The cost aggregation space is
based on a simple but valid assumption that neighboring pixels with similar colors should
belong to the same region. However, RGB colors in the outdoors are highly affected by
lighting. Therefore, we implement cost aggregation in LAB color space.
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For a given pixel, the cost aggregation space is calculated as follows:

Dc(pl , p) < τ1 and Dc(pl , pl + (1, 0)) < τ1

Ds(pl , p) < L1

Dc(pl , p) < τ2, if L2 < Ds(pl , p) < L1

(6)

where p is the center of the cost space, pl is the extension point of the cost space, Ds(pl ,p) is
the straight line distance between pixels pl and p, τ1, and τ2 are the LAB color thresholds
(τ1 > τ2), L1 and L2 are the distance thresholds of the adaptive window (L1 > L2), pl + (1,0)
is the neighboring pixel of pl , and Dc(pl ,p) is the maximal difference between pixels pl and
p in the LAB color space, which is calculated as shown in the formula below:

Dc(pl , p) = maxi=L,A,B|Ii(pl)− Ii(p)| (7)

where Ii denotes the intensity value of this pixel under component i. Equation (6) restricts
the color difference between pl and p at a distance less than L2 by τ1 and the color differ-
ence between pl and the neighboring pixel, effectively ensuring the aggregation space’s
boundary stability. When the distance exceeds L2, a more stringent color threshold τ2 is
given to ensure the effects of similar colors and lighting.

Figure 6 illustrates the steps involved in cost aggregation in this article. In the first
step, the practical length information is calculated for the four horizontal and vertical
directions at pixel center A and saved. Once the length information for the four directions
has been determined, the second step calculates the horizontal direction lengths of all pixels
based on the vertical direction lengths. This calculation is completed and saved to get
the adaptive cost aggregation region for pixel center A. The third step involves adding all
pixels in the vertical direction of pixel A, along with their corresponding horizontal arms.
The horizontal cost aggregation is completed. The fourth step consists of summating the
costs of pixel center A after aggregation in the horizontal direction along the vertical path.
The final aggregated cost of this pixel A is obtained after the operation is completed.

Figure 6. Schematic diagram of the cost aggregation step.

Cost aggregation will be performed on all pixels within a given disparity range.
After the cost aggregation is completed, the Winner-Takes-All algorithm is applied to
find the disparity with the lowest aggregation cost within the disparity range as the final
disparity for each pixel. For the disparity optimization stage, we use the Multi-Step
Disparity Refinement proposed by Xing Mei et al. [38] to eliminate false matches and fill
some regions with weak textures.

After the disparity calculation is completed, a disparity map corresponding to the left
camera image can be obtained. Furthermore, the disparity information of each pixel can
be used to determine the scale information corresponding to its space. Comparatively to
the coordinate transformation of a monocular camera, the disparity allows us to determine
the distance between the object and the camera. The world coordinates of the object in the
binocular camera can be obtained. Based on the disparity map, the following formula can
be used to calculate the transformation of an image pixel into the world coordinate system:

[X, Y, Z, W]T = Q∗[x, y, d, 1]T (8)



Agronomy 2023, 13, 2852 8 of 14

where X, Y, and Z are the spatial 3D coordinates corresponding to the image pixels, Q is
the reprojection matrix obtained through stereo correction, x and y are the pixel position
coordinates on the disparity map, and d represents the disparity value associated with the
pixel coordinates. The reprojection matrix formula is shown below:

Q =


1 0 0 −cx
0 1 0 −cy
0 0 0 f
0 0 −1

Tx

cx−c′x
Tx

 (9)

where cx and cy denote the coordinates of the left camera’s principal point in the image,
f denotes the focal length, Tx denotes the translation between the projection centers of
the two cameras (negative), and c′x is the coordinates of the right camera’s principal
point. The reprojection matrix parameters in Equation (9) are all obtained from binocular
calibration. When Equation (9) is substituted for Equation (8), the concrete expression for
(X, Y, Z) is obtained.

Q


x
y
d
1

 =


x− Cx
y− Cy

f
−d+Cx−C

′
x

T

 =


X
Y
Z
W

 (10)

As shown in Equation (11), the corresponding 3D coordinates of pixels under the
left camera coordinate system are calculated. This article establishes the world coordinate
system for the left camera. At this time, the 3D coordinates of the object in space are the 3D
world coordinates (XW , YW , ZW) under the left camera coordinate system.

(XW , YW , ZW ) = (X/W, Y/W, Z/W) (11)

2.6. Judgment of Rice Lodging

The difference between lodging and non-lodging is posture. By comparing the height
values of rice in the region, we can determine if the rice region is lodging or not. However,
it is not easy to directly measure rice height using a binocular camera due to the density
and occlusion of the rice region. Furthermore, the camera’s field of view is insufficient
to capture rice’s entirety. At the same time, the ability to acquire ground height is also
limited. Based on this, an IMU and binocular camera method for rice lodging judgment
was proposed in this article. By converting the rice canopy height relative to the ground,
the camera plane was used as the “ground” to measure the rice height indirectly, and the
lodging of the rice was assessed.

By calculating the disparity map and the reprojection matrix, the 3D coordinates under
the world coordinate system correspond to the pixels in the image coordinate system.
The 3D world coordinate corresponds to the camera’s tilted pose. We calculate the distance
between the canopy and the camera plane by acquiring the image while obtaining the
camera pose information. Camera coordinates in the tilted state are converted into camera
coordinates in the horizontal attitude (no pitch or roll angle). At this time, the y-coordinate
value indicates the distance between the target and the camera’s horizontal plane. Figure 2
illustrates the schematic.

An IMU module is pre-installed on the selected ZED 2 camera. This IMU module has
no relative rotation or displacement to the binocular camera. Binocular cameras and IMU
modules are considered rigid bodies. The IMU’s three-axis orientation was calibrated and
rotated through matrix variation to align with the left camera. The IMU’s three-axis pose
angle is used as the camera’s three-axis pose angle. Camera pose measurements by IMU
are retrieved using the API and expressed as quaternions. Scipy converts the quaternions
into a rotation matrix. The rotation matrix corresponds to the camera’s three-axis pose.
The inverse of this rotation matrix is obtained and left-multiplied to the target’s 3D world
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coordinates. The result is the 3D world coordinates of the target in the camera’s horizontal
pose. The calculation formula is shown below:

[x, y, z]T = R@[Xw, Yw, Zw]
T (12)

where x, y, z are the 3D world coordinates of the camera in the horizontal pose, R is the
rotation matrix corresponding to the current camera pose measured by the IMU, @ denotes
matrix multiplication, and (Xw, Yw, Zw) denote the 3D world coordinates of the camera in
the current pose.

An image of a rice field collected for lodging judgment is easily interfered with by
noise, such as rice movement or shadows. To minimize noise interference, the rice region to
be detected was divided into equally spaced regions of interest (ROI). Calculate the average
distance between all targets in the ROI and the camera level. A distance threshold TH
(0 < TH) is given. Define the ROI as an un-lodging region when ȳ ∈ (0, TH), and define
the ROI as a lodging region when ȳ > TH. Figure 7 illustrates the judgment schematic
for one of the rice field images collected. The middle and lower parts of the image were
divided into ROIs with equal spacing. The distance between the rice in each ROI and the
camera level can be determined. Given the distance threshold TH, the lodging regions are
ROI 4, and ROI 3 can be obtained by threshold judgment.

Figure 7. Schematic diagram of lodging judgment.

3. Results and Analysis
3.1. Disparity Map Acquisition Effect

Five standard test images from Middlebury Benchmark v3 were selected for testing
to verify the improved algorithm’s effectiveness. These images included Adiron, MotorE,
PianoL, PlaytP, and Vintage. This laptop runs on Intel Core i7-12700H, GPU NVIDIA
GeForce RTX 3050, RAM 16 G, Windows 11 (64-bit), program development software
PyCharm 2023, and the algorithm is written in Python.

We compare the proposed algorithm with the ADSM algorithm [39] and the SGBM
algorithm integrated with the OpenCV library to verify its accuracy and effectiveness.
Among them, ADSM is a more advanced stereo-matching algorithm improved upon Cen-
sus. SGBM is a more mature stereo-matching algorithm. The root-mean-square disparity
error in pixels (RMS) and average absolute disparity error in pixels (Avgerr) are used as
effect measures. The results of the three algorithms are shown in Table 1. Table 1 shows
that the algorithm proposed in this article are better than the SGBM algorithm.
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Table 1. Algorithm test results.

Algorithm
Adiron MotorE PianoL PlaytP Vintage

RMS Avgerr RMS Avgerr RMS Avgerr RMS Avgerr RMS Avgerr

ADSM 38.1 14.3 26.6 8 41.9 20.4 18.7 5.84 34 11.1

SGBM 23.3 7.07 52.5 21.3 55.2 29 31.5 9.97 42.3 16.1

OURS 20.6 6.94 23.6 8.7 33.7 15.7 19.3 8.77 25.1 14.3

Regarding index parameters, ADSM has similar results to the algorithm presented in
this article. However, the index parameters of some ADSM images are substantially lower
than our algorithm. Table 1 indicates that the algorithms of this article are more robust
on different images. Figure 8 illustrates the disparity map generation results of the three
algorithms. Overall, the disparity map results are more satisfactory. It is worth noting that
on the MotorE and PianoL images, both SGBM and ADSM exhibit a significant degree of
disparity mismatch. In addition, they show large void regions. This article’s algorithm
can better match weak and repeated texture regions. The disparity map indicates that
Grayscale Level cost can improve image matching effectiveness.

Figure 8. Results of different algorithms for disparity map generation.

3.2. Lodging Judgment Test

The algorithm presented in this article was used for the rice lodging judgment test.
A tripod is used to fix the binocular camera in the rice field. Binocular cameras are
connected via USB to a laptop computer that serves as the host computer. Figure 9 illustrates
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the field. The right and left images were 1920 × 1080 (width × height). A red box
indicates the lodging rice region in Figure 10a. There were five equal-spaced regions to
be detected. The five regions were kept the same width. The height ranges of the five
regions are [300, 400], [400, 500], [500, 600], [600, 700], and [700, 800], respectively. Calculate
the 3D world coordinates of all pixels in the five regions in the current camera pose.
By transforming the rotation matrix coordinates of the IMU, the 3D world coordinates of
the camera in horizontal posture can be obtained. In Figure 10b,d,f, the X-axis represents the
width of the image, the Y-axis represents the height of the image, and the Z-axis indicates
the distance between each pixel target in the five regions and the horizontal plane of the
camera (which corresponds to the distance y in the schematic of Figure 2).

Figure 9. Image acquisition.

Figure 10. Rice field image and rice to camera horizontal height map.



Agronomy 2023, 13, 2852 12 of 14

The demarcation line between the lodging and un-lodging regions on the Z-axis can
be seen in Figure 10b. A larger Z-value indicates that the object is farther from the camera
level. Each of the five regions calculates the average distance from all pixel points to
the camera level. Given the distance threshold TH, the ROI is defined as an un-lodging
region when ȳ ∈ (0, TH). Define the ROI as a lodging region when ȳ > TH. The lodging
regions in Figure 10 are [300, 400], [400, 500], and [500, 600] for a 100 distance threshold.
The non-lodging regions are [600, 700] and [700, 800]. Figure 10a shows that the heights
around 600 correspond to the dividing line between lodging and non-lodging regions on
the image.

Figure 10c shows that another scene of lodging images has been collected. A red box
indicates the spatial extent of the lodging region. The difference between Figure 10a and
this scene is that the degree of rice lodging gradually increases, which is not the case for all
rice lodging. Figure 10d shows the distance from the rice to the camera level. Figure 10d
shows that as the rice’s lodging degree increases, the distance to the camera level also
increases. In this case, selecting an appropriate threshold value also determines the lodging
location. Using the same distance threshold of 100, we can determine that [700, 800] is part
of the lodging region.

It should be noted that based on the results of the red box labeling of the lodging
range in Figure 10c, the two regions of [500, 600] and [600, 700] also have mild lodging
but are considered non-lodging regions by the threshold value. Consequently, threshold
selection should be analyzed and selected based on the specific task. It is possible to use a
larger distance threshold when the only goal is to determine whether lodging is complete.
A smaller distance threshold can be chosen when judging moderate or light lodging.

Field images of rice without lodging were selected for the lodging judgment test to
verify the algorithm’s robustness. Figure 10e shows a field image of rice without lodging,
while Figure 10f shows the distance from the rice to the camera level. In Figure 10f, there is
no obvious line of demarcation between the rice and camera level, and the distance from
the rice to the camera level is stable. Several fluctuations occur in the distance values in
the [700, 800] image height range, caused by the spacing between rice plants evident in the
[700, 800] height range. The fluctuations of a small part do not affect the overall average.
Non-lodging regions may also be determined using the 100 distance threshold.

Overall, the distance threshold determines whether lodging is present in an image.
The experiment’s ROI position can be adjusted according to specific needs. The threshold
selection needs to consider different lodging situations. Furthermore, rice height and
camera installation height must also be considered. Since rice heights and camera mounting
heights differ, the same distance threshold cannot be applied to all field scenes. When
performing a specific task, the distance value from the un-lodging rice region to the camera
level can be read first. This distance value is used as a reference for determining the distance
threshold and adaptive adjustment to complete the subsequent lodging judgment.

4. Conclusions and Discussion

An algorithm for rice lodging judgment based on a binocular camera is presented in
this article. The algorithm improves the two steps of matching cost and cost aggregation.
Five standard test images from Middlebury Benchmark v3 are selected for testing. The im-
proved algorithm performs better than the commonly used SGBM algorithm. The overall
index is better than the ADSM algorithm. A threshold judgment can be used to accurately
determine the rice lodging region from images collected in the field.

The algorithm has a certain degree of robustness but needs to adaptively find the
threshold value in practice. Different rice varieties and camera mounting heights can affect
the threshold value. Second, the deployment of this algorithm on agricultural machinery
is not discussed in this article. Compared to the current common lodging judgment
scheme, binocular cameras can provide ground agriculture equipment with low-cost and
real-time lodging information. Nevertheless, the actual field operation environment is
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complex. Vehicle body shaking and weather may affect lodging judgments. In the next
step, the algorithm will be deployed on agricultural machinery and tested in the field.
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