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Abstract: The shikimate pathway is crucial for the biosynthesis of aromatic amino acids in plants and
represents a promising target for developing new herbicides. This work aimed to identify inhibitors
of shikimate dehydrogenase (SDH), a key enzyme of the shikimate pathway that catalyzes the
conversion of 3-dehydroshikimate to shikimate. Virtual screening and molecular dynamic simulations
were performed on the SDH active site of Arabidopsis thaliana (AtSDH), and 6-nitroquinazoline-2,4-diol
(NQD) was identified as a potential inhibitor. In vitro assays showed that NQD decreased the activity
of AtSDH by reducing Vmax while keeping KM unchanged, indicating non-competitive inhibition.
In vivo, hydroponic experiments revealed that NQD reduced the root length of soybean and maize.
Additionally, NQD increased the total protein content and certain amino acids. Soybean roots uptake
NQD more efficiently than maize roots. Furthermore, NQD reduced shikimate accumulation in
glyphosate-treated soybean roots, suggesting its potential to restrict the flow of metabolites along the
shikimate pathway in soybean. The simultaneous treatment of maize seedlings with glyphosate and
NQD accumulated gallic acid in the roots, indicating that NQD inhibits SDH in vivo. Overall, the
data indicate that NQD inhibits SDH both in vitro and in vivo, providing valuable insights into the
potential development of herbicides targeting SDH.

Keywords: molecular docking; enzyme inhibitor; herbicides; shikimate pathway; virtual screening

1. Introduction

The shikimate pathway converts carbohydrate precursors derived from glycolysis and
the phosphate pentose pathway into chorismate, which acts as the precursor for phenylala-
nine, tyrosine, and tryptophan. Typically, up to 20% of the fixed carbon is channeled into
the shikimate pathway, but this percentage tends to increase during plant stress or rapid
growth periods [1]. These aromatic amino acids are essential for plant growth, development,
and responses to changes in their environment [2–5]. The pathway starts with erythrose-4-
phosphate and phosphoenolpyruvate, derived from the pentose phosphate pathway and
glycolysis, respectively. It involves seven enzymatic reactions that produce chorismate, a
precursor of aromatic amino acids [6] (Figure 1). The pathway is present in plants, bacteria,
fungi, and some apicomplexan parasites but varies in the regulation, organization, and
cellular location of the enzymes [7–9]. The biosynthesis of amino acids involves enzymes
targeted by herbicides, such as glyphosate, imazamox, and glufosinate. Glyphosate inhibits
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the production of aromatic amino acids, imazamox disrupts the branched-chain amino acid
pathway, and glufosinate explicitly targets glutamine synthesis [10].
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Figure 1. The shikimate pathway. The pathway begins with erythrose-4-phosphate and phospho-
enolpyruvate, obtained from the pentose phosphate pathway and glycolysis, respectively. The
pathway comprises seven enzymatic reactions that lead to the formation of chorismate, which serves
as a precursor to aromatic amino acids. Pi, inorganic phosphate (Pi). PEP, phosphoenolpyruvate.
Adapted from Marchiosi et al. [6].

Weeds compete with cultivated plants for vital resources such as water, nutrients,
and sunlight, reducing agricultural productivity [11]. Synthetic herbicides have brought
about greater weed control efficiency. However, excessive and indiscriminate use without
implementing other management practices resulted in the emergence of resistant weeds. In
addition, this problem has been worsened by the emergence of several multiple or cross-
resistant species [10]. Therefore, it is crucial to explore novel molecules and mechanisms of
action to overcome this complex situation. In this way, shikimate pathway enzymes are
potential candidates for developing novel herbicides. This is because these enzymes are not
present in animals, and the herbicide glyphosate effectively targets 5-enolpyruvylshikimate
3-phosphate synthase (EPSP synthase), a crucial enzyme in this biochemical pathway [12].
EPSP synthase catalyzes the condensation of shikimate 3-phosphate and phosphoenolpyru-
vate to produce EPSP. Therefore, herbicides limit the biosynthesis of aromatic amino acids
and further proteins [6].

The bifunctional enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase
(DHQD/SDH) is responsible for catalyzing the third and fourth reactions of the shikimate
pathway in plants. In contrast, monofunctional enzymes catalyze these reactions in bacteria,
and they are a component of the pentafunctional complex AROM (reactions 2 to 5; Figure 1)
in fungi [3,4,13]. Also known as shikimate/NADP+ oxidoreductase (EC 1.1.1.25), SDH
catalyzes the NADPH-dependent reduction in 3-dehydroshikimate to shikimate [6]. SDH
has been investigated for its medical potential as a site of action for novel antibiotics against
microorganisms such as Mycobacterium tuberculosis [14], Staphylococcus aureus [15,16], and
Toxoplasma gondii [17]. At the plant level, the foremost evaluation of SDH as a new site of
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action for herbicides was performed by Baillie et al. [18]. Using purified SDH from etiolated
pea (Pisum sativum) shoots, several 1,6-dihydroxy-2-oxoisonicotinic acid derivatives were
assessed in vitro. The results showed that some derivatives acted as irreversible enzyme
inhibitors, but none displayed any potential herbicidal actions. Also, a study showed that
epigallocatechin gallate and epicatechin gallate can effectively inhibit Arabidopsis thaliana
DHQD/SDH (AtDHQD/SDH) when tested in vitro. However, the potential use of these
compounds as herbicides has yet to be evaluated in vivo [19]. Recently, Ma et al. [20]
discovered that drupacine, a natural compound extracted from Cephalotaxus sinensis, can
target SDH. Molecular docking simulations indicated that drupacine has a higher binding
energy with SDH. As a result, the inhibition of SDH by drupacine could potentially disrupt
the biosynthesis of aromatic amino acids, leading to abnormal growth and eventual death
of weed seedlings [21].

Because this subject has yet to be extensively explored, we decided to expand the
study on SDH inhibition as a potential target for herbicides. The original purpose of
this study was to employ in silico tools for prospecting potential SDH inhibitors. In
silico experiments revealed 6-nitroquinazoline-2,4-diol (NQD) (depicted in Figure 2A) as a
highly promising inhibitor of shikimate dehydrogenase (SDH). Notably, NQD exhibited a
superior docking score compared to the substrate DHK and all other compounds under
consideration. Afterward, the inhibitory action and effectiveness of NQD were evaluated
using in vitro kinetic enzyme assays with AtDHQD/SDH (Figure 2B). To evaluate the
potential of NQD as an herbicide in practical in vivo scenarios, we conducted experiments
using hydroponically cultivated soybean (Glycine max) and maize (Zea mays) seedlings. We
chose soybean, a C3 dicot, and maize, a C4 monocot, as our model plants for comparing
their metabolic responses to NQD exposure. Based on our previous studies, we determined
that growing soybean and maize seedlings in a hydroponic system would be the most
effective method to evaluate the molecules with biological activities [22–25]. This system
provides optimal growth conditions, easy access for treatment, and minimizes the risk of
compound adsorption to the soil or substrate, thereby maximizing the biological activity of
the NQD.
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Figure 2. (A) Chemical structure of 6-nitroquinazoline-2,4-diol (NQD) selected by virtual screen-
ing. NQD (−8.52 kcal mol−1) showed the best score compared to substrate 3-dehydroshikimate
(−7.51 kcal mol−1). (B) Three-dimensional structure of AtDHQD/SDH used in molecular docking
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simulations. The DHQD domain (magenta) is dehydroquinate, and the SDH domain (green) con-
tains dehydroshikimate and NADPH. (C) A 12% polyacrylamide gel (SDS-PAGE) with samples
from ∆88DHQ-SDH protein purification from nickel affinity chromatography. kDa = kiloDalton;
mm = standard molecular mass; crude extract = supernatant after bacterial lysis; flow through = flow
eluted directly through the column; washing = buffer injection (10 mM Tris HCl, 500 mM NaCl, pH 7.5)
to remove impurities that weakly interacted with the resin; 40 mM, 150 mM, or 250 mM = buffer
injection containing imidazole. The blue arrow indicates the ∆88DHQ-SDH protein, which is approx-
imately 58 kDa. NQD was purchased from BLD Pharmatech (Shanghai, China).

2. Materials and Methods
2.1. Three−Dimensional Structure of AtDHQD/SDH

The Protein Data Bank database (PDB ID: 207s) provided the crystallographic structure
of the AtDHQD/SDH (EC 4.2.1.10). The structure was obtained in the presence of the
cofactor NADPH and the ligand 3-dehydroshikimate (DHK) [26]. An OH group was added
to the DHK ligand (residue 9241), forming the 3-dehydroquinate (DHQ) ligand, which is
the substrate of this domain. The structural waters were maintained, and the remaining
ions from the crystallization solution were removed. The Modeller 9.20 program [27] was
used to model the crystallographic structure gaps caused by a lack of electron density
between residues 436 to 454 and 510 to 511 based on the amino acid sequence (UniProt ID:
Q9SQT8). S-Hydroxycysteine heteroatoms were replaced by cysteines, and alternative side
chain conformations were removed via the PDBSet program [28].

The modeled structure of AtDHQD/SDH was subjected to molecular dynamic simu-
lations with the NAMD2 program [29]. The force field used for the protein and the cofactor
was Charmm [30], and for the ligands, the force fields were generated by the SwissParam
server [31] in the same manner. The simulations occurred in five cycles. In the first cycle, the
protein atoms, water, and salts were subjected to 20,000 steps of minimization by the conju-
gate gradient (CG) while the ligand atoms and cofactors were held fixed in space. In the
second cycle, all atoms in the system were subjected to another 10,000 steps of minimization
by CG. The spatial coordinates of AtDHQD/SDH originating from this second cycle were
used in the docking simulations. In the third stage, the protein and ligand atoms were kept
fixed, while the water and salts were subjected to 60 ps of molecular dynamics equilibration.
In the fourth stage, all atoms underwent a new cycle of CG consisting of 20,000 steps. In
the fifth and final stage, the entire system was subjected to 100 ns of molecular dynamics
equilibration under NPT conditions (constant: temperature 300 K, pressure 1 atm, and
number of atoms). The analyses were conducted in terms of root mean square deviation
(RMSD), the radius of gyration, and the contact frequency of protein–ligand complexes
within up to 4.0 Å.

2.2. Docking Simulations and Virtual Scanning

Molecular docking protocols were set up for each protein domain using the AutoDock
version 4.2.3 program [32] and Molegro version 6.0 program [33]. The protocols were
confirmed by redocking, in which the crystallographic ligand pose was reproduced in all
replications with a root mean square deviation (rmsd) less than 0.5 Å.

In the context of the SDH domain, the Pyrx graphical interface [34] was used to
facilitate the application of the AutoDock program [32]. The standard search and ranking
algorithm was employed, with the search restrictions set at 40 units along the X-, Y-, and
Z-axes, respectively. These search dimensions were applied to a grid with a spacing of
0.375 Å (for the AutoDock program [32]) and 0.300 Å (for the Molegro program [33]) and
were centered on the DHK ligand. The protocol for the Molegro program [33] utilized
the PLANTS score function for the ranking process. The search procedure employed the
Iterated Simplex (Ant Colony Optimization) function. It used x, y, and z of 37.34, 42.42,
and 84.16 Å, respectively, and a search radius of 8 Å centered on the ligand. The docking
simulations used the exogenous ligand (ZINC103687345), provided in *.sdf format.
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Virtual screening simulations were conducted using the Sigma-Aldrich library, down-
loaded from the ZINC15 database [35]. DHK was included in the library as the best-
classified molecule compared to the substrate. Selected molecules were downloaded in *.sdf
format. After the first screening, the selected compounds were screened again three times
using the AutoDock program [32] and four more using the Molegro program [33] to
eliminate false positives and ensure reproducibility.

2.3. Expression and Purification of the DHQD/SDH Protein

The AtDHQ/SDH nucleotide sequence was cloned into the pET28 bacterial vector
using the Nde I and Bam HI restriction sites [13]. The protein was expressed from the
∆88DHQ-SDH plasmid construct in modified pET28, expressing residues 89-603 of the
enzyme. For this, an Escherichia coli BL21 (DE3) strain was grown in Luria–Bertani (LB)
broth supplemented with 50 µg mL−1 kanamycin. First, a pre-culture was incubated at
37 ◦C with continuous shaking overnight at 200 rpm. Then, 500 µL of this preculture was
added to 50 mL of LB broth with kanamycin. After reaching optical density (OD) at 600 nm
between 0.6 and 0.8, the cultures were induced with 0.4 mM β-D-thiogalactopyranoside
(IPTG, Sigma-Aldrich, St. Louis, MO, USA). for 20 h at 18 ◦C under shaking. After
induction, the cells were separated by centrifugation (5000× g, 15 min, 4 ◦C) and stored
for purification.

The ∆88DHQ-SDH protein was purified using a nickel affinity chromatography col-
umn (GE Healthcare, Uppsala, Sweden). During purification and dialysis, a 10 mM
Tris-HCl buffer (pH 7.5) with 500 mM NaCl was used. Elution was performed with the
same buffer having 40-, 150-, and 250 mM imidazole. After that, fractions were separated
using polyacrylamide gel electrophoresis (SDS-PAGE) (Figure 2C).

The sample with the highest enzyme concentration was dialyzed, and the protein
concentration and identity were determined by the Bradford method [36] and mass spec-
trometry, respectively. For the latter, the protein was digested, according to Villén and
Gygi [37], with some modifications. An aliquot (50 µL) obtained from purification was
treated with 8 M urea and 5 mM dithiothreitol (DTT, Sigma-Aldrich, St. Louis, MO, USA)
(1:1) at 56 ◦C for 25 min. Then, it was cooled to room temperature, and 14 mM iodoac-
etamide was added, and it was kept protected from light for 30 min. Afterward, 5 mM DTT
was added and kept at rest for another 15 min at room temperature, protected from light. To
decrease the urea concentration to 0.8 M, 400 µL of 50 mM ammonium bicarbonate followed
by 1 mM CaCl2 was added, and the sample was digested at 37 ◦C for 16–20 h by adding
20 µL of trypsin (1:50). The reaction was stopped by adding 10 µL of formic acid. The
sample was centrifuged (3000× g, 15 min, 4 ◦C), and the supernatant was saved in an
Eppendorf® (Hamburg, Germany) tube and kept on ice until injection into the nanoUPLC-
MSE (Waters Corp., Milford, MA, USA), which was performed according to Foletto-
Felipe [38].

2.4. In Vitro SDH Activity

SDH activity was measured by monitoring NADPH production in the presence of
shikimate (Sigma-Aldrich, St. Louis, MO, USA) at 340 nm (ε = 6.22 mM−1 cm−1). The
reaction mixture consisted of 0.1 M Tris-HCl buffer (pH 8.8), 1 nM ∆88DHQ-SDH en-
zyme, 0.1 to 2 mM shikimate, and 0 or 250 µM NQD. The reaction was started by adding
2 mM NADP+, and the reduction in NADP+ was checked for 5 min at 23 ◦C. The maximal
velocity (Vmax) values and Michaelis–Menten constants (KM) were obtained by fitting the
Michaelis–Menten equation to the initial velocities (with or without NQD) using iterative
nonlinear least-squares analysis (Prism®, version 8.0.2, GraphPad Software Inc., Boston,
MA, USA).

2.5. Germination and Seedling Growth

Soybean (Glycine max L. Merr. cv. BRS 232) and maize (Zea mays L. cv. IPR-164) seeds
were sanitized in a 2% sodium hypochlorite solution for 5 min and washed thoroughly with
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deionized water. Next, the seeds were deposited between moistened Germitest® CEL-060
(NetLab, São Paulo, SP, Brazil) papers, which were rolled up and placed in germination
tubes. After germination in the dark at 25 ◦C for three days, seedlings were transferred to
hydroponic systems with or without 500 µM NQD for 24 to 96 h (at 25 ◦C and a 12/12 h
photoperiod). A nutrient solution (1/6 strength) [39] was added every 48 h. The length
of the roots was measured in cm before and after the incubation period. The fresh weight
of the roots was determined immediately after the incubation period. The dry weight
was measured after drying the seedling tissues in an oven set at 70 ◦C for 72 h or until a
consistent weight was achieved.

2.6. Nutrient Solution Consumption and NQD Absorption by the Seedlings

NQD depletion from the nutrient solution was monitored by high-performance liquid
chromatography (HPLC). Samples (1.0 mL) were collected at 24, 48, 72, and 96 h after
adding a nutrient solution containing 500 µM of NQD. Samples were filtered using a
0.45 µm disposable syringe filter and then analyzed (20 µL) with a Prominence HPLC
system (Shimadzu®, Tokyo, Japan) equipped with a UV-VIS detector (SPD-M20A). NQD
detection was performed at 310 nm using an isocratic run. The mobile phase was a 50:50
(v/v) mix of 4% acetic acid and 70% methanol applied with a flow rate of 0.8 mL min−1 on
a C18 column (250 × 4.6 mm, 5 µm; Supelco Discovery®, Darmstadt, Germany) maintained
at 30 ◦C. Nutrient solution uptake was checked by measuring the volume of solution
consumed every 24 h.

To determine the NQD absorption by the seedlings, 0.2 g of fresh roots was homoge-
nized with 2.5 mL of 65% methanol and then centrifuged at 3200× g for 15 min at 4 ◦C. The
supernatant was filtered through a 0.45 µm disposable syringe filter and analyzed (20 µL)
on a Prominence HPLC (Shimadzu®, Tokyo, Japan) as described earlier. The yield of this
extraction was estimated (Table S1).

2.7. Quantification of Total Proteins, Amino Acids, Phenolic Acids, and Lignin

For protein quantification, 0.5 g of fresh roots was homogenized with liquid nitrogen,
polyvinylpyrrolidone (PVP), and then with 100 mM phosphate buffer (pH 7.5) containing
1 mM ethylenediaminetetraacetic acid (EDTA) and 3 mM of DTT [40]. Subsequently, it
was transferred to an Eppendorf® (Hamburg, Germany) tube and centrifuged (13,000× g,
30 min, 4 ◦C). The supernatant protein was determined by the method of Bradford [36],
using bovine serum albumin as a standard.

With modifications, the determination of free amino acids was performed according
to Astarita et al. [41] and Pieruzzi [42]. Fresh roots (0.2 g) were homogenized with 80%
ethanol, and the ethanol was removed using a rotary evaporator. An amount of 2 mL of
ultrapure water (Milli-Q®, Darmstadt, Germany) was added to the sample, which was
centrifuged at 10,000× g for 10 min. Amino acids in the supernatant were derivatized
with O-phthaldialdehyde (OPA, Sigma-Aldrich, St. Louis, MO, USA) and analyzed by
HPLC [43]. The amino acids were separated using a C18 column (4.6 × 250 mm, 5 µm;
Shimadzu® Shim-pack GIST, Tokyo, Japan) equipped with a precolumn (C18, 4 × 3.0 mm;
Phenomenex® SecurityGuard, Aschaffenburg, Germany). The separation of amino acids
was performed using two different mobile phases: (A) 50 mM phosphate buffer (pH 7.2)
containing 2% methanol, 2% tetrahydrofuran, and 0.7% acetic acid, and (B) 65% methanol.
A gradual increase in solvent B relative to solvent A was performed as follows: from
0 to 5 min with B(20%):A(80%); from 5 to 39 min with B(28%):A(72%), at 39 min with
B(58%):A(42%), at 40 min with B(75%):A(25%); from 40 to 56 min with B(95%):A(5%); from
56 to 59 min with B(96%):A(4%); and from 59 to 61 min with B(100%):A(0%). The flow
rate was 0.8 mL min−1, and the oven temperature was 30 ◦C. The fluorescence detector
(RF-20A) was set for excitation at 265 nm and emission at 480 nm. Retention times and
amino acid concentrations were determined by comparing them with a Sigma AAS-18
standard (containing aspartate, glutamate, serine, arginine, glycine, threonine, alanine,
tyrosine, methionine, valine, phenylalanine, isoleucine, leucine, and lysine) plus asparagine
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and glutamine. Different standard solutions (0.5 to 31.25 µM) were prepared and used to
construct a calibration curve.

The quantification of phenolic acids was determined by HPLC [24]. Dry roots (0.25 g)
were boiled for 30 min in 5 mL of 2 M HCl. After cooling, the samples were filtered
through filter paper. Samples were diluted, filtered through a 0.45 µm membrane, and
analyzed (20 µL) on a Prominence HPLC (Shimadzu®, Tokyo, Japan) with a UV-VIS detector
(SPD-M20A). The mobile phase was methanol/4% acetic acid (30:70, v:v), which was run
isocratically at a consistent flow rate of 0.8 mL min−1 at 30 ◦C. Separation was performed
using a C18 column (250 × 4.6 mm, 5 µm; Supelco Discovery®, Darmstadt, Germany).
Phenolic acids were identified and quantified at 254 nm by comparing their retention times
with standard values.

The lignin content was determined by the acetyl bromide method [44]. Protein-free
cell walls (10 mg) of roots were incubated with a 25% acetyl bromide (Sigma-Aldrich,
St. Louis, MO, USA) solution in 250 µL acetic acid at 70 ◦C for 30 min. Afterward, the
reaction was placed in an ice bath, and 400 µL of 2 M NaOH, 50 µL of 7.5 M hydroxylamine,
and 2 mL of glacial acetic acid were added. Following centrifugation at 10,000× g for 5 min,
the supernatant was spectrophotometrically measured at 280 nm.

2.8. Glyphosate Effects on Shikimate Levels

The soybean and maize seeds were sanitized in a 2% sodium hypochlorite solution
for 5 min and then thoroughly washed with deionized water. The seeds were deposited
between sheets of Germitest® CEL-060 (NetLab, São Paulo, SP, Brazil) paper, previously
moistened, rolled up, and placed in germination tubes. Germination took place in a dark
chamber at 25 ◦C for 3 days. After this period, the seedlings were transferred to hydroponic
systems with nutrient solutions (pH 6.0) [38] in the presence or absence of glyphosate
(Sigma-Aldrich, St. Louis, MO, USA) and NQD, as follows. For soybean: control (no
glyphosate or NQD), 100 µM glyphosate, and 100 µM glyphosate plus 500 µM NQD.
For maize: control (no glyphosate or NQD), 25 µM glyphosate, and 25 µM glyphosate
plus 500 µM NQD. Containers with soybean seedlings were incubated for 48 h, whereas
maize seedlings underwent 96 h incubation, both under conditions of 25 ◦C and a 12/12 h
photoperiod. After incubation, the fresh roots (0.5 g) were homogenized with 0.25 M HCl
and centrifuged (1200× g, 10 min). The supernatant was used for shikimate determination.
The samples were diluted, filtered through 0.45 µm membranes, and analyzed (20 µL) on
a Prominence HPLC (Shimadzu®, Tokyo, Japan) equipped with a UV-VIS detector (SPD-
M20A). The separation of shikimate was performed using a C18 column (250 × 4.6 mm,
5 µm; Shimpack CLC-ODS(M) Shimadzu®, Tokyo, Japan), and a mobile phase (3.5 mM
phosphoric acid) was applied isocratically with a flow rate of 0.8 mL min−1 at 30 ◦C.
Shikimate identification involved comparing its retention time with injected standards
using identical conditions. Additionally, the samples were spiked with standard stock
solutions for confirmation of shikimate identification. A calibration curve was established
by chromatographically separating standard shikimate solutions to determine shikimate
concentrations, yielding linear correlations between concentrations and elution curve areas.
The calculated regression parameters were used to determine the shikimate concentrations
present in the given samples [45].

2.9. Statistical Analysis

The experimental design was completely randomized, and the data were expressed
as the mean of at least three independent experiments ± standard error of means. All
statistical analyses were performed using Prism® software (version 8.0.2., GraphPad Soft-
ware Inc., Boston, MA, USA). Regression analyses were performed on non-transformed
data. Student’s t test, Tukey’s, and Dunnett’s multiple comparisons were used to analyze
differences between parameters. Values with a cutoff threshold of p ≤ 0.05 were considered
statistically significant.
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3. Results
3.1. In Silico and In Vitro Analyses Reveal NQD as a Potential Inhibitor of SDH

Table 1 shows the average scores and rmsd obtained by redocking the DHQ and DHK
ligands. Validated programs were used to simulate virtual screening and find ligands, with
the DHQ and DHK reference ligands used as a cutoff point for mean scores.

Table 1. Mean scores obtained from redocking using the Autodock [32] and Molegro [33] programs
for both the crystallographic binders and the binders from the Zinc15 database.

Crystallographic Binder Zinc Database Binder

Autodock Molegro Autodock Molegro

Mean Score rmsd
(Å) Mean Score rmsd

(Å) Mean Score Mean Score

DHQ −7.98 ± 0.09 0.32 ± 0.02 −81.38 ± 0.02 0.27 ± 0.01 −7.88 ± 0.10 −79.69 ± 0.24
DHK −8.25 ± 0.02 0.22 ± 0.03 −67.35 ± 0.01 0.21 ± 0.01 −7.26 ± 0.21 −62.63 ± 0.00

We started the virtual screening with the Sigma library having 214,000 molecules; from
the first screening for the SDH domain, 1042 compounds were selected. After repeating
the protocols, eight compounds were selected, of which the compound Zinc330539, called
6-nitroquinazoline-2,4-diol (NQD), showed the best score (Table 2). NQD was purchased from
BLD Pharmatech Ltd. (Shanghai, China) and used in further in vitro and in vivo analyses.

Table 2. Compounds selected in silico via virtual screening with better classification concerning
endogenous and exogenous 3-dehydroshikimate (DHK). The 6-nitroquinazoline-2,4-diol (NQD) was
assessed in vivo.

Name Structure xlogP
Score

AutoDock Molegro

DHK endo
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Table 2. Cont.

Name Structure xlogP
Score

AutoDock Molegro

Methyl 3-bromo-4-hydroxybenzoate
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To investigate the structural stability of the AtDHQD/SDH enzyme in the presence
of the substrate DHK and the selected compound NQD, molecular dynamic simulations
lasting 100 ns were conducted. In these simulations, we utilized the modeled pose of the
DHK substrate (Figure 3A) and the best pose of NQD (Figure 3B), determined by molecular
docking programs.
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Figure 4A reveals that the structures converged to an equilibrium state around
70 ns and remained bonded to ligands throughout the simulation. The RMSD value
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for the enzyme in complex with the substrate was lower than that of the NQD compound.
Furthermore, the radius of the gyration plot (Figure 4B) clearly demonstrated that no
protein unfolding was detected in the presence of these ligands.
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Via molecular dynamic simulations, it was also possible to determine the frequency of
contacts between amino acid residues of AtDHQD/SDH and the ligands within a distance
of up to 4.0 Å. A contact frequency exceeding 60% was delineated to identify the most
critical residues in ligand stabilization. A comprehensive list of residues comprising the
binding site of each ligand is shown in Table 3, indicating binding frequencies. These
data highlight those residues ILE-328, SER-336, SER-338, SER-379, ASN-406, GLN-578, and
GLN-582 play a more significant role in anchoring the substrate and NQD.

Table 3. Frequency of contact between the residues of the SDH domain of the AtDHQD/SDH enzyme
and the ligands was assessed within the range of up to 4 Å. Residues highlighted in bold exhibit a
contact frequency with the ligand exceeding 60%.

Residues DHQ NQD Residues DHQ NQD

ILE-328 0.99 0.93 CYS-380 0.62 0.01
PRO-332 - 0.01 THR-381 0.89 0.23
VAL-333 - 0.29 LYS-385 0.17 0.04
HIS-335 0.09 0.45 ASN-406 0.86 0.67
SER-336 1.00 1.00 THR-422 0.18 0.01
LYS-337 - 0.90 ASP-423 0.04 0.06
SER-338 1.00 1.00 TYR-550 0.65 0.03
PRO-339 - 0.31 PHE-575 0.51 0.76
HIS-342 - 0.34 GLN-578 1.00 1.00
TYR-355 0.34 0.80 ALA-579 - 0.07
SER-379 1.00 0.66 GLN-582 1.00 0.82

The inhibitory effect of NQD on AtDHQD/SDH activity was determined in the
presence of 250 µM of NQD, a concentration range of 10 to 2000 µM of shikimate, and 2 mM
NADP+ (Figure 5; Table S2). Via the application of nonlinear least squares analysis, it was
revealed that NQD causes a 41% decrease in the Vmax of AtDHQD/SDH. This inhibitory
effect occurred without any change in the apparent KM value. This outcome underscores a
non-competitive inhibition mechanism attributed to NQD (Table 4).
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mM NADP+ (Figure 5; Table S2). Via the application of nonlinear least squares analysis, it 
was revealed that NQD causes a 41% decrease in the Vmax of AtDHQD/SDH. This 
inhibitory effect occurred without any change in the apparent KM value. This outcome 
underscores a non-competitive inhibition mechanism attributed to NQD (Table 4). 
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Figure 5. Activity of shikimate dehydrogenase from Arabidopsis thaliana (AtDHQD/SDH) expressed 
in E. coli strain BL21(DE3) and purified using a nickel affinity chromatography column. The enzyme 
activity was determined by monitoring NADPH production in the presence of shikimate in a 
reaction mixture without () or with () 250 µM 6-nitroquinazoline-2,4-diol (NQD). The reaction 
mixture contained 0.1 M Tris-HCl (pH 8.8), 1 nM of the ∆88DHQ-SDH enzyme, 100 to 2000 µM 
shikimic acid, and 2 mM NADP+. The maximal velocity (Vmax) values and Michaelis–Menten 
constants (KM) were calculated by fitting the Michaelis–Menten equation to the initial rates using 
iterative nonlinear least-squares analysis. Values are presented as the mean ± SEM (n = 3 to 9). The 
Michaelis–Menten plot indicates a kinetic profile of non-competitive inhibition of AtDHQD/SDH by 
NQD. 

Figure 5. Activity of shikimate dehydrogenase from Arabidopsis thaliana (AtDHQD/SDH) expressed
in E. coli strain BL21(DE3) and purified using a nickel affinity chromatography column. The enzyme
activity was determined by monitoring NADPH production in the presence of shikimate in a reaction
mixture without (•) or with (■) 250 µM 6-nitroquinazoline-2,4-diol (NQD). The reaction mixture
contained 0.1 M Tris-HCl (pH 8.8), 1 nM of the ∆88DHQ-SDH enzyme, 100 to 2000 µM shikimic
acid, and 2 mM NADP+. The maximal velocity (Vmax) values and Michaelis–Menten constants (KM)
were calculated by fitting the Michaelis–Menten equation to the initial rates using iterative nonlinear
least-squares analysis. Values are presented as the mean ± SEM (n = 3 to 9). The Michaelis–Menten
plot indicates a kinetic profile of non-competitive inhibition of AtDHQD/SDH by NQD.

Table 4. Kinetic parameters for shikimate dehydrogenase obtained by fitting the Michaelis–Menten
equation to the initial velocities with or without NQD.

NQD (µM) Vmax (µmol h−1 g−1) KM (µM)

0 472.1 244.0
250 276.2 245.7

3.2. In Vivo, NQD Has an Impact on the Root Growth of Soybean and Maize

Following an incubation period of 24 to 96 h, the application of 500 µM NQD resulted,
on average, in a 41% reduction in soybean root lengths compared to the control group
(Figure 6A). For maize, the same treatment led to a decrease of 25% and 29% in root length
at 48 and 96 h, respectively, when compared to controls (Figure 6B).

After 96 h of incubation, 500 µM NQD reduced nutrient solution uptake by 32% in
soybean (Figure 7A) and 31% in maize (Figure 7B) compared to the controls. The depletion
of NQD in the nutrient solution varied depending on the plant species. NQD depletion
reached 41% in nutrient systems with soybean seedlings, while nutrient systems with maize
seedlings only exhibited a 14% depletion over 96 h. Both depletion processes followed
linear and time-dependent kinetics (Figure 7C). Experiments were conducted without
the plant in the hydroponic system to evaluate the spontaneous degradation of NQD in
the nutrient solution. The results indicated no degradation of NQD during the testing
period (Figure S1). Soybean and maize seedlings showed different contents of NQD in
their roots after 96 h of incubation. While 83.6 µg NQD g−1 was extracted from soybean
roots, 52.2 µg NQD g−1 was extracted from maize roots (Figure 7D). The extraction yield
was 87% for soybean roots and 77% for maize roots (Table S1).
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Student’s t test with a significance level of 5% (p ≤ 0.05).
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Figure 7. Nutrient solution consumption by soybean (A) and maize (B) seedlings for 24 to 96 h of
incubation without (•) or with (■) 500 µM NQD. (C) Depletion of 500 µM NQD from the nutrient
solution with soybean and maize seedlings for 24 to 96 h of incubation. (D) NQD absorption by
soybean and maize seedlings after 96 h incubation with 500 µM NQD. In (A–C), the symbols show
experimental values (mean ± SEM; n = 4), and the fitted curves in each graph correspond to the
equations provided. In (D), the mean values ± SEM (n = 4) for maize marked with an asterisk
(*) differ from those of soybean, as determined by Student’s t test with a significance level of 5%
(p ≤ 0.05).
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At 500 µM, NQD increased the total protein content by 39% and 36% in soybean and
maize roots, respectively (Table 5).

Table 5. Total protein content (mg% protein) in soybean (48 h) and maize (96 h) seedlings incubated
with 0 (control) or 500 µM NQD.

Control 500 µM NQD Difference

Soybean 334.0 ± 16.52 465.6 ± 19.51 a 39%
Maize 222.9 ± 7.91 303.0 ± 27.20 a 36%

Mean values ± standard error of the mean (n = 4), significantly different from the control, are marked with a letter
(Student’s t test, p ≤ 0.05).

Significant changes were observed for free amino acids, which were represented as a
percentage of the control (Figure 8).
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Figure 8. Effects of 500 µM NQD on the levels of free amino acids in the roots of soybean (A) and
maize (B) seedlings after 48 and 96 h of exposure, respectively. Amino acids are shown in distinct
colors based on their R-group classification (nonpolar, aromatic, basic, acidic, and polar). Valine
(Val), alanine (Ala), methionine (Met), leucine (Leu), glycine (Gly), isoleucine (Ile), tyrosine (Tyr),
phenylalanine (Phe), histidine (His), arginine (Arg), lysine (Lys), glutamic acid (Glu), aspartic acid
(Asp), threonine (Thr), glutamine (Gln), serine (Ser), and asparagine (Asn). The results are expressed
as a percentage of the control and were analyzed using Student’s t test. The mean values ± SEM
(n = 4) are provided, and any significant differences from the control are indicated by an asterisk (*).

Of the 17 amino acids quantified in the soybean roots, four increased significantly,
varying from 34 to 96% in comparison to the respective controls (Figure 8A). Based on
the distribution of amino acids by R-group classification, significant increases occurred
in nonpolar (valine, 96%; alanine, 34%), basic (lysine, 45%), and polar (asparagine, 48%)
amino acids. Eight of the 17 amino acids quantified in maize roots increased significantly
compared to the respective controls (Figure 8B). The increases varied from 48 to 300%.
Based on the R-group classification, significant increases were observed in nonpolar (valine,
82%; alanine, 300%), aromatic (tyrosine, 48%; phenylalanine, 102%), basic (histidine, 145%;
arginine, 150%), and polar (threonine, 55%; asparagine, 53%) amino acids. For both
soybean and maize, the levels of other amino acids remained unchanged compared to their
respective controls.

In soybean, the contents of gallic acid (GA), p-hydroxybenzaldehyde (p-HB), protocat-
echuic (PRO), vanillic (VA), p-coumaric (p-CA), and ferulic (FA) acids were not changed
compared to the control (Figure 9A). However, in maize roots, a surprising increase (4000%)
in gallic acid (GA) was observed, while no changes in other phenolic acids were detected
(Figure 9B).
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Figure 9. Effects of 500 µM NQD on the levels of phenolic acids in the roots of soybean (A) and maize
(B) seedlings after 48 and 96 h of exposure, respectively. Gallic acid (GA), p-hydroxybenzaldehyde
(p-HB), protocatechuic acid (PRO), vanillic acid (VA), caffeic acid (CA), p-coumaric acid (p-CA), and
ferulic acid (FA). Mean values ± SEM (n = 4) marked with an asterisk (*) differ from the control group,
as determined by Student’s t test with a significance level of 5% (p ≤ 0.05). ns = not significant.

Lignin levels were not altered when seedlings were subjected to 500 µM NQD for 48 h
(soybean) and 96 h (maize) (Table 6).

Table 6. Lignin content in soybean seedlings after 48 h and maize seedlings after 96 h of incubation
with 0 or 500 µM NQD.

NQD (µM) Soybean Maize

0 68.73 ± 2.436 144.3 ± 3.036
500 66.56 ± 1.401 ns 149.9 ± 2.819 ns

Mean values ± standard error of the mean (n = 5). (Student’s t test, p ≤ 0.05). ns = not significant.

3.3. Glyphosate Assays Confirm That NQD Inhibits SDH

When soybean was treated only with 100 µM glyphosate, fresh roots had 1.3 mg
of shikimate g−1. After treatment with glyphosate plus NQD, fresh roots had 0.6 mg of
shikimate g−1, resulting in a 54% decrease (Figure 10A). In maize, treatment with 25 µM
glyphosate resulted in the accumulation of 0.7 mg of shikimate g−1 of fresh weight, while no
reduction in the accumulation of shikimate was observed after treatment with glyphosate
plus NQD (Figure 10B).
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for 96 h without (control) or 25 µM glyphosate and 25 µM glyphosate plus 500 µM NQD. Mean
values ± SEM (n = 3) followed by different letters are significantly different, as determined by Tukey’s
multiple comparisons test (p ≤ 0.05). nd = not detected.

In soybean seedlings treated with 100 µM glyphosate or 100 µM glyphosate plus
500 µM NQD, root lengths decreased by 45% and 57%, respectively, compared to the
control (Table S3).

4. Discussion

Employing a step-by-step process that includes in silico, in vitro, and in vivo assays,
our study reveals that SDH inhibition is a promising mechanism of action for herbicides.
Molecular docking, virtual screening, and enzyme kinetics analyses were used to show
that NQD is a non-competitive SDH inhibitor. Our experiments have shown that soybean
seedlings absorb NQD more than maize seedlings. As a result, soybean seedlings were
affected more severely by NQD exposure, as evidenced by measurable changes in their
growth parameters. Under in vivo conditions, NQD’s inhibitory potential on SDH was
highlighted by its ability to reduce shikimate accumulation caused by glyphosate in soy-
bean seedlings. Although NQD did not alleviate the accumulation of shikimate in maize
seedlings, it is essential to consider the potential inhibitory effect on SDH under in vivo
conditions. This is supported by the observed accumulation of gallic acid, a benzoic acid
synthesized from the SDH substrate, in these seedlings. Our findings align seamlessly with
corroborating evidence from the pertinent literature, substantiating our conclusions.

The bifunctional DHQD/SDH enzyme occupies a pivotal position in the shikimate
pathway, actively participating in the intricate biosynthesis of aromatic amino acids in
plants and crucial to synthesizing proteins and many secondary metabolites. In Arabidop-
sis, the tridimensional structure of AtDHQD/SDH has two distinct functional domains.
In the SDH domain, the C-terminal region has a dinucleotide-binding function, while the
N-terminal region is responsible for substrate binding. Interestingly, the active sites of
DHQD and SDH are face-to-face, thus ensuring the proper targeting of intermediaries to the
shikimate pathway and minimizing loss to competing pathways [13,26]. DHQD/SDH is
indispensable in facilitating optimal plant growth and developmental processes, as under-
scored by the observed growth inhibition and attenuation of aromatic amino acid content
in tobacco plants, where their activities have been suppressed [47]. This empirical evidence
substantiates the significance of DHQD/SDH enzymes in shaping essential physiological
cascades and makes them a cornerstone in the intricate framework of plant biology. Based
on its biological importance, we used molecular docking and virtual screening analyses
for prospective inhibitors for the SDH domain of AtDHQD/SDH with possible herbicidal
action. The AtDHQD/SDH structure was modeled with high stereochemical quality, en-
abling us to find the NQD (Figure 2A) with a better docking score and positioning in the
active site of the SDH domain than its physiological substrate, DHK (Table 2). This finding
indicated that NQD could be a potential inhibitor of SDH.

After selecting NQD, we assessed their inhibitory impact on SDH activity under
in vitro conditions. We used ∆88DHQD-SDH from A. thaliana [26], which was expressed
and purified. The decrease in Vmax and no change in KM indicated via kinetic adjustments
that NQD is a non-competitive inhibitor of SDH [48]; NQD binds with similar affinities
to the free enzyme and the enzyme–substrate complex. While non-competitive inhibition
is typically not identified in virtual screening for active sites during prospecting, it is
crucial to emphasize that, under certain circumstances, competitive inhibitors can exhibit
noncompetitive kinetic behavior. In other words, identifying a non-competitive mechanism
for an inhibitor does not necessarily rule out the possibility of it binding to the active
site [49]. Anyway, non-competitive or uncompetitive inhibitors may be more effective
in vivo than competitive inhibitors due to a significant reduction in metabolic flow [50].
In vitro, 250 µM NQD reduced SDH activity by approximately 40% under saturation
and half saturation. Considering the possible non-competitive inhibition mechanism and
relatively low concentration of NQD required to inhibit SDH activity, i.e., in the micromolar
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range, it is plausible that NQD is an efficient inhibitor under in vivo conditions. The Brenda
Enzyme Database (www.brenda-enzymes.org) lists 169 inhibitors of SDH, mostly from
microorganisms. So far, SDH inhibitors have only been found in seven types of plants:
Capsicum annuum, Phaseolus mungo, Camellia sinensis, Cucumis sativus, Euterpe oleracea,
Solanum lycopersicum, and A. thaliana. We present NQD as an additional inhibitor of a
plant-origin SDH and from the A. thaliana plant based on in vitro kinetic studies.

Based on an herbicidal perspective, we conducted in vivo tests on soybean and maize
to demonstrate the inhibition. This represents another potential application for quinazoline-
2,4-dione derivatives, like NQD, which possess antifungal [51] and antitumor [52] prop-
erties. Clearly, NQD decreased the root lengths of soybean and maize. Furthermore, our
results showed that exposure to NQD reduced the uptake of nutrient solution. This could
have resulted in osmotic stress or nutrient deficiency, hindering plant growth to some
extent. Specifically, we observed a higher root absorption of NQD in soybean than in
maize seedlings, which could be attributed to the more significant impact on soybean
root growth. Previous studies have reported a decrease in growth and biomass following
DHQD/SDH suppression in Nicotiana tabacum and a decrease in aromatic amino acid
content [47]. Unexpectedly, NQD increased the levels of aromatic amino acids (tyrosine
and phenylalanine) in maize roots but not in soybean roots. Additionally, NQD increased
the levels of other amino acids in the roots of both plant species. This includes nonpolar
and aliphatic amino acids such as alanine and valine, positively charged amino acids such
as lysine, histidine, and arginine, negatively charged amino acids such as aspartate, and
uncharged polar amino acids such as asparagine and threonine. The accumulation of valine,
a branched side-chain amino acid such as leucine and isoleucine, may be a response to low
water and nutrient availability [53,54], probably induced by NQD. When 3-dehydroquinate
synthase in a culture of Anabaena variabilis was inhibited, nonaromatic amino acids such
as leucine, isoleucine, valine, and arginine increased. However, there was a decrease in
aromatic amino acids [55]. An increase in certain amino acids and total protein levels could
be linked to a stress response [2,4,56,57].

Phenolic acids are secondary metabolites that play essential roles in plants, some of
which are produced from intermediates of the shikimate pathway [6]. The NQD treatment
did not affect the phenolic acid content of soybean seedlings, but it significantly increased
the gallic acid content of maize seedlings. This result provides compelling evidence that
NQD inhibits maize SDH in vivo. This conclusion is supported by the fact that gallic
acid is produced from DHK, the substrate of SDH [6]. Supporting this, previous stud-
ies have shown that some plants have more than one DHQD/SDH enzyme involved in
synthesizing gallic and quinic acids. This was reported in Nicotiana tabacum [47], Betula
pubescens [58], Populus trichocarpa [59], Vitis vinifera [60], Camellia sinensis [61], and more
recently, in aluminum-tolerant Eucalyptus camaldulensis [62]. These findings suggest that
maize seedlings might suffer from an overflow mechanism in the pathway, leading to gallic
acid accumulation. This may redirect DHK toward gallic acid biosynthesis, such as in
regulating sucrose and starch levels [63]. Additionally, gallic acid could be used in detoxifi-
cation, as demonstrated in E. camaldulensis, where a specific SDH enzyme produces gallic
acid to counteract aluminum toxicity [62]. Interestingly, gallic acid itself has phytotoxic
effects on three prevalent herbicide-resistant weeds (Sinapis arvensis, Lolium multiflorum,
and Parthenium hysterophorus) [64].

Glyphosate is a nonselective, post-emergent herbicide. It acts on EPSP synthase,
which catalyzes the condensation of shikimate 3-phosphate and phosphoenolpyruvate to
produce EPSP (Figure 1). By inhibiting EPSP synthase, glyphosate causes an accumulation
of shikimate [65,66], which is the product of the SDH reaction [67,68]. Because SDH
catalyzes the reversible reduction in DHK to shikimate (Figure 1), we aimed to confirm
the inhibition of NQD on the enzyme under in vivo conditions. For this, we assessed the
effect of glyphosate on both plant species. Glyphosate treatment resulted in decreased
root length and fresh weight of soybean seedlings while increasing shikimate content
as expected [24]. However, when glyphosate was combined with NQD, it reduced root
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length and mitigated the accumulation of shikimate. As reported in a previous study,
the accumulation of shikimate and the activity of SDH are impacted by glyphosate [24].
Therefore, the decrease in shikimate levels observed after applying glyphosate and NDQ
together, compared to only the glyphosate treatment, indicates in vivo inhibition of SDH
in soybean seedlings. Notably, there was no absolute inhibition, which allowed for some
metabolic flux via the shikimate pathway (Figure 1). In turn, the combined application of
glyphosate and NQD did not reduce shikimate accumulation in maize seedlings compared
to glyphosate alone. However, the inhibition of SDH by NQD in maize roots may be
justified by the accumulation of gallic acid synthesized from the SDH substrate, DHK.

In addition to its importance as a metabolite of the shikimate pathway, shikimate plays a
crucial role in the production of lignin via the phenylpropanoid pathway. Hydroxycinnamoyl-
CoA/shikimate/quinate hydroxycinnamoyltransferase catalyzes the transesterification
of shikimate with p-coumaroyl-CoA, forming p-coumaroyl-shikimate. This compound is
then used in later reactions to produce additional phenylpropanoids, monolignols, and
lignin [6]. Because lignin is essential for plant growth and development, providing rigidity,
transporting water, and protecting against microbial attacks and environmental stresses [69],
we measured its amount in soybean and maize seedlings submitted to NQD. Although it
was expected that the inhibition of SDH by NQD would reduce lignin levels, no alterations
were observed in either plant species. The aromatic amino acid profile in the roots of
soybean and maize seedlings, however, indicates that NQD did not completely inhibit SDH
in vivo. This implies that there might still be a metabolic flow sufficient to produce lignin
under the specific conditions examined (NQD concentration and plant exposure time).
Therefore, additional research is needed to determine the impact of NQD on lignification.

5. Conclusions

We used bioinformatics tools to find an inhibitor for an SDH of plant origin, i.e., from
A. thaliana, the NQD. In vitro, NQD inhibited SDH from A. thaliana in a non-competitive
manner. In both soybean and maize seedlings, NQD reduced the growth of roots; however,
soybean absorbed it more efficiently. When glyphosate and NQD were applied together
to soybean seedlings, a lower shikimate accumulation was observed compared to the
treatment with glyphosate alone. This proves that NQD inhibits SDH in vivo. In maize
seedlings, the massive accumulation of gallic acid supported the inhibition of SDH by NQD
under in vivo conditions. Based on these findings, NQD appears to be a moderate inhibitor
of plant SDH. Looking ahead, our research has paved the way for further investigations
into the different modes of action demonstrated by NQD in various plant species and
related weeds. Comprehending these processes is vital for the optimization of NQD as an
herbicide. Future studies could explore the development of NQD-based formulations to
enhance efficacy and specificity, providing innovative strategies for weed management
and crop protection. Fundamentally, identifying NQD as a powerful SDH inhibitor opens
exciting avenues in agro-biotech research, with significant implications for sustainable
farming and weed control.
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