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Abstract: This study evaluates the projected impact of climate change on wheat production in
Northwest Tunisia, specifically at Medjez El Beb (36.67 m, 9.74°) and Slougia (36.66 m, 9.6°), for
the period 2041–2070. Using the CNRM-CM5.1 and GFDL-ESM2M climate models under RCP4.5
and RCP8.5 scenarios, coupled with the AquaCrop and SIMPLE crop growth models, we compared
model outputs with observed data from 2016 to 2020 to assess model performance. The objective was
to determine how different climate models and scenarios affect wheat yields, biomass, and growth
duration. Under RCP4.5, projected average yields are 7.709 q/ha with AquaCrop and 7.703 q/ha with
GFDL-ESM2M. Under RCP8.5, yields are 7.765 tons/ha with AquaCrop and 7.198 q/ha with SIMPLE
Crop, indicating that reduced emissions could improve wheat growth conditions. Biomass predictions
showed significant variation: in Medjez El Beb, average biomass is 17.99 tons/ha with AquaCrop and
18.73 tons/ha with SIMPLE Crop under RCP8.5. In Slougia, average biomass is 18.90 tons/ha with
AquaCrop and 19.04 tons/ha with SIMPLE Crop under the same scenario. Growth duration varied,
with AquaCrop predicting 175 days in Medjez El Beb and 178 days in Slougia, while SIMPLE Crop
predicted 180 days in Medjez El Beb and 182 days in Slougia, with a standard deviation of ±12 days
for both models. SIMPLE Crop demonstrated higher accuracy in predicting growth cycle duration
and yield, particularly in Slougia, with mean bias errors of −3.6 days and 2.26 q/ha. Conversely,
AquaCrop excelled in biomass prediction with an agreement index of 0.97 at Slougia. Statistical
analysis revealed significant yield differences based on climate models and emission scenarios, with
GFDL-ESM2M under RCP4.5 showing more favorable conditions. These findings emphasize the
importance of model selection and calibration for accurately projecting the agricultural impacts
of climate change, and they provide insights for enhancing prediction accuracy and informing
adaptation strategies for sustainable wheat production in Northwest Tunisia.

Keywords: AquaCrop model; SIMPLE crop model; climate change; northwest Tunisia; CNRM-CM5.1
and FDL-ESM2M. models; RCP 4.5; RCP 8.5; wheat production

1. Introduction

In the 21st century, climate change has become a major global concern, profoundly
affecting livelihoods, agriculture, the environment, and public health [1,2]. Alarming fore-
casts indicate a potential increase in the Earth’s average surface temperature by 2.6 to 4.8 °C
by the end of the century, posing serious risks to global food security and ecosystem stabil-
ity [3]. Concrete illustrations of disastrous consequences include excessive precipitation,
extreme weather events, and glacier retreat [4,5]. In Tunisia, agriculture holds a critical role
both economically and socially, with cereal cultivation forming a cornerstone of the national
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agricultural system. This sector is pivotal to the country’s economy, significantly influenc-
ing the national economic balance [6]. Cereals, particularly durum wheat, are fundamental
to the Tunisian diet, providing 54% of the population’s caloric intake and 64% of their
protein needs. On average, each Tunisian consumes 181 kg of cereals annually, with du-
rum wheat accounting for 51% and soft wheat for 41% of this total, highlighting the vital
importance of these crops not only for food security but also for the overall economy [7].
However, despite efforts to intensify agricultural practices, Tunisia’s agriculture remains
predominantly rain-fed, with 80% of agricultural land dependent on rainfall. This sector is
also the largest consumer of water, using more than 80% of the country’s water resources.
Projections from General Circulation Models (GCMs) indicate a potential increase in aver-
age temperatures and a decrease in precipitation in the Mediterranean region [8], which
could exacerbate the vulnerability of this crucial sector to climate change [6]. The Tunisian
climate, characterized by rising temperatures and uneven intra- and inter-seasonal precipi-
tation distribution, is undergoing significant transformations. These changes could have a
considerable impact on the yield and quality of crops, particularly determinate-cycle plants
like cereals [9,10]. Studies suggest that anticipated consequences of climate change could
affect agricultural productivity, leading to fluctuations in prices of staple food products.
This could jeopardize food balance and economic competitiveness against international
counterparts [11,12]. Furthermore, climate change exacerbates regional inequalities and
the vulnerability of disadvantaged rural populations [13,14]. The Tunisian revolution of
January 2011 brought to light structural weaknesses in the agricultural sector, particularly
prevalent in the country’s inland sites, where agricultural activity is crucial. To address
these challenges, it is imperative to ensure food security, promote sustainable agricultural
development, and improve living conditions in rural areas in Tunisia. As a Mediterranean
country in the Middle East and North Africa, Tunisia faces regular forecasts of increasing
average temperatures and decreasing precipitation according to general circulation mod-
els [8,15]. Despite efforts to improve agricultural practices, the country relies heavily on
extensive farming methods. Rain-fed crops, such as cereals and olives, dominate the agri-
cultural landscape, significantly contributing to the national economy [6,16,17]. However,
the resilience of these agricultural systems to increasing climate pressures remains a critical
challenge. Crop models play a pivotal role in the context of climate change, particularly in
tropical and subtropical sites, where the benefits of carbon dioxide can be counteracted by
rising temperatures, leading to decreased yields and increased irrigation demand [18,19].
A thorough understanding of these impacts is essential for effectively advising farmers
on crop management, including crop selection, planting dates, and irrigation optimiza-
tion [20]. Farmers can adapt agricultural technologies to mitigate these adverse effects [21].
Simulation models like Decision Support System for Agrotechnology Transfer (DSSAT) and
Crop Growth Model (DSSAT CROPGRO) are crucial for projecting the potential impacts of
climate change on global food systems [22]. Despite the limitations of General Circulation
Models (GCMs), integrating their outputs into simulation models can enhance forecast
accuracy and support the development of strategies for sustainable agriculture, especially
in developing countries. Understanding the relationship between crop growth, yields,
and climate change is crucial. Simulation models contribute to efficient agricultural plan-
ning and are utilized in research, education, farm management, policy analysis, and yield
forecasting [23,24]. They facilitate the integration of knowledge across different crops and
disciplines, enabling detailed analyses such as productivity assessment and soil fertility
dynamics [25]. These tools also provide valuable insights into genetic traits influencing
yields, thereby supporting genetic improvement programs. Currently, crop simulation
models such as those from the De Wit school, International Benchmark Sites Network for
Agrotechnology Transfer (IBSNAT), and Decision Support System for Agrotechnology Ap-
plications (DSSAT), are critical tools in agricultural research and practical applications [26].
Additionally, specific models like AquaCrop are widely used to assess water stress effects,
optimize deficit irrigation, and enhance agricultural management [27–30]. The SIMPLE
crop model, named "SIMPLE", is a SIMPLE generic crop model , developed based on
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established principles of crop physiology, and offers relative simplicity with few equations
and parameters [31]. Successfully validated against real-world data, this model can assess
future climate impacts, particularly for crops not covered by other modeling platforms [31].
While global studies have extensively explored the impacts of climate change on wheat
yield [32–34], there is a lack of research specific to Tunisia that integrates climate models
with crop growth models to assess these impacts. For instance, Lhomme et al. [35] focused
on the cropping calendar and yield response to water deficits. In contrast, Bahri et al. [36]
utilized the APSIM model to investigate conservation agriculture and its effects on soil and
erosion. Our research advances the field by integrating climate models, GFDL-ESM2M and
CNRM-CM5.1, coupled with crop growth models, SIMPLE and AquaCrop. This innovative
approach enables a detailed assessment of the combined effects of climate change scenarios
RCP 4.5 and RCP 8.5 on critical parameters such as biomass and the growth cycle duration
of durum wheat, projected to 2070. The findings will provide valuable insights for Tunisian
farmers and policymakers, facilitating the development of targeted adaptation strategies to
enhance food security and agricultural resilience. Historical climate data are essential for
understanding long-term climate variations and contextualizing future projections. They
not only allow for the reconstruction of past climates but also preserve spatial variations
due to topographic effects through the anomaly method or delta method. These datasets
are crucial for assessing the impacts of climate change and developing adaptation strategies,
providing a solid foundation for studies based on advanced climate models. Addition-
ally, the integration of digitally available data with newly digitized records constitutes a
valuable resource for future climate analyses [37,38].

The study aims to assess the impact of climate change on durum wheat yield, biomass,
and growth cycle duration in northwest Tunisia by comparing historical data from 1970 to
1997 with future projections for the period 2041–2070. This evaluation employs the CNRM-
CM5.1 and GFDL-ESM2M climate models, coupled with the SIMPLE and AquaCrop crop
growth models, under RCP4.5 and RCP8.5 emission scenarios.

2. Materials and Methods
2.1. Study Area Presentation

Tunisia’s climate varies greatly due to its diverse geography. The country can be
divided into three primary climatic regions: a northern mountainous area with a Mediter-
ranean climate characterized by mild, rainy winters and hot, dry summers; a semi-arid
climate in the south as it transitions towards the Sahara Desert; and an arid steppe climate
along the eastern coast. Historical data indicate an average annual precipitation of 158 mm
for the entire country, with notable regional variations: less than 100 mm annually in the
south and over 700 mm annually in the north. Temperature averages also differ by season
and region, with winter temperatures in the northern coastal region ranging from 10 °C to
summer temperatures reaching 27 °C, while in the central-western and southern regions,
temperatures range from 11 °C in winter to 32 °C in summer [39]. In terms of recent climatic
trends, the average temperature has increased by 0.4 °C per decade over the past 30 years,
totaling a rise of 1.4 °C during the 20th century. Regarding precipitation, although there was
no significant change in annual precipitation from 1901 to 2013, there has been a decrease
of approximately 3% in average annual precipitation over the past 30 years. This context
is crucial for understanding the effects of climate change on the agricultural production
parameters examined in the study [39].

In Tunisia, national wheat production varies between 5 and 30 million tonnes annually,
depending on precipitation levels [40]. The national cereal policy, regarded as vital for food
security, aims to achieve self-sufficiency in durum wheat by 2025. This includes improving
yields to 2.5 t/ha in rainfed areas and 5.5 t/ha in irrigated areas, and expanding irrigated
cereal areas to 100,000 ha/year [41]. Our study focuses mainly on the sites of Slougia and
Medjez El Beb, situated downstream of the Medjerda Valley. This region is among the most
productive and fertile in Tunisia, with rich soils and favorable precipitation levels (Figure 1).
The Medjerda Valley plays a crucial role in national cereal production, particularly for
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wheat, and significantly contributes to the country’s food security by providing a substantial
share of cereal yields. The strategic productivity of this region makes it an ideal choice for
evaluating cereal production in Tunisia.

Figure 1. Locations of study area.

In our study, we focused on specific sites, gathering historical meteorological data
from 1970 to 1997, as well as future projections for the period 2041–2070. The historical
data for the study area were obtained from the National Meteorological Institute (INM).
The research utilized two growth models, AquaCrop and SIMPLE, coupled with two
climate models: CNRM-CM5.1 and GFDL-ESM2M. We used four grid cells, two per region
(Table 1). The daily averages of these climatic parameters were used to predict the growth
model outcomes.

Table 1. List of grid cells used to predict wheat growth parameters.

Region rLat * rLong ** Raw1 Raw2 Id Lat Long

Slougia −13.695 −6.925 32 140 189 36.66 9.60
−13.585 −6.815 33 140 174 36.78 9.72

Medjez el Bab −13.695 −6.815 33 142 190 36.67 9.74
−13.585 −6.705 34 142 175 36.80 9.85

* Rotated Latitude; ** Rotated Longitude

2.2. Conceptual Flow Diagram

The study aims to analyze the impact of climate change on wheat production parame-
ters in the Northwest sites of Tunisia, focusing on Medjez El Beb and Slougia, over 30 years
from 2041 to 2070 (Figure 2). Using the climate models CNRM-CM5.1 and GFDL-ESM2M
with RCP 4.5 and RCP 8.5 scenarios (Section 2.3) coupled with two Crop Growth Models
(Section 2.4), alongside adjusted historical data (1970–1997) , the study examines the impact
on wheat biomass and yield throughout the growing season. Initially, daily climate data,
including temperatures and precipitation, are collected. A linear correction method is
then applied to align projected data with historical observations. This approach involves
applying a linear transformation to the simulated values to match them with the obser-
vations, thereby reducing systematic discrepancies between the simulations and the real
data [42]. Integrating soil properties and agricultural practices specific to the sites enhances
the accuracy of the simulations. Finally, model results, comparing historical trends with
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future projections, provide insights into the potential impacts of climate change on wheat
production in the studied sites.

Figure 2. Conceptual flow diagram illustrating the methodology adopted to evaluate the impact of
climate change on wheat production parameters in the Northwest sites of Tunisia. ** obtained from
the CORDEX portal (www.cordex.org/data-access/esgf/, (accessed on 1 January 2024)).

In this study, the input variables for the SIMPLE and The FAO AquaCrop models (https://
www.fao.org/aquacrop/software/aquacropstandardwindowsprogramme/en/, Version 7.1,
accessed on 1 January 2024) namely Maximum Temperature (TMAX), Minimum Temperature
(TMIN), Rainfall (RAIN), and Solar Radiation (SRAD), were selected for each grid cell in the
study area. This selection was made using the GFDL-ESM2M and CNRM-CM5.1 climate
models, along with the RCP 4.5 and RCP 8.5 projection scenarios for the period 2040–2070.
The determination of the sowing date was based on an analysis of structural surveys on
wheat conducted in the northwest sites of Tunisia as part of the KAFACI (Korea-African
Food Agriculture Cooperation Initiative) project [43]. Examination of survey data for the
period 2009–2020 indicates that the optimal sowing date for the study area is 5 November,
with a frequency of 97%.

The performance of the two models was evaluated using datasets from trials conducted
by FAO [44]. Data from 2016 to 2020 for the two selected sites and the winter wheat
crop were utilized. The experimental data included quantities of seeds sown per Square
Meter, observed phenological phases (emergence, tillering, stem elongation, heading,
flowering, and maturity), the number of tillers per Square Meter, the weight of 1000 grains,
and information on the preceding crop.

To calculate the ARID (Arid Region Irrigation Demand) water stress index [45], soil
parameters were obtained from the literature based on general soil information for the
study area. The three most common soil textures identified in the study area—Silty Clay
Loam [46], Silt-Clay Sandy [47], and Clay Loam [48]—were determined through consulta-
tion with local wheat Local Services of Ministry of Agriculture, Hydraulic Resources and
Fisheries and a detailed analysis of soil maps. The default soil parameters, including Field
Capacity, Wilting Point, Hydraulic Conductivity, and Organic Matter content, were applied
to these predominant soil textures within the SIMPLE and AquaCrop models. These param-
eters were chosen for their ability to represent typical soil behavior accurately, ensuring the
reliability of the model outputs while aligning with the well-documented characteristics of
the soils in the region [49]. Data on soil texture, bulk density, total porosity, field capacity,
wilting point, organic carbon content, total nitrogen, and pH for specific soil profile layers
were also available. Initial conditions for available soil water at various depths were also
considered. Predicted yields are sensitive to two other parameters: the reference crop index
and the initial soil moisture content. The study’s initial soil moisture content estimates were

www.cordex.org/data-access/esgf/
https://www.fao.org/aquacrop/software/aquacropstandardwindowsprogramme/en/
https://www.fao.org/aquacrop/software/aquacropstandardwindowsprogramme/en/
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derived from hydrological models at the station scale within the study area. The FAO crop
calendar ([50]) was used for the input parameters. Simulations were assessed using three
statistical metrics: mean biased error (MBE; [51]), root mean square error (RMSE; [52]),
and index of agreement (IA; [53]). MBE quantifies average systematic deviations, RMSE
measures prediction error dispersion, and IA evaluates agreement between observed and
simulated data, with higher values indicating better fit [54]. The Index of Agreement ranges
from 0 to 1. An IA value of 1 signifies perfect agreement between observed and simulated
data, while an IA value of 0 indicates no agreement. Higher IA values represent a closer
alignment between the observed and simulated datasets. The formulas to calculate these
criteria are as follows:

MBE =
∑n

i=1(Si − Oi)

n
(1)

RMSE =

√
∑n

i=1(Si − Oi)2

n
(2)

IA = 1 − ∑n
i=1(Si − Oi)

2

∑n
i=1(|Si − Ō|+ |Oi − Ō|)2 (3)

where Si is the simulated value, Oi is the observed value, Ō is the mean of observed values,
and n is the number of observed/simulated pairs.

2.3. Climate Models

Climate change poses a crucial challenge for the agricultural sector, prompting nu-
merous studies. Accurately predicting future climate has thus become a global prior-
ity. Various General Circulation Models (GCMs) have been developed to simulate the
Earth’s climate and forecast its future evolution [55]. However, these models may lack
precision for regional and local scale forecasts. To address these uncertainties, “downscal-
ing” techniques such as the Coordinated Regional Downscaling Experiment (CORDEX
www.cordex.org/data-access/esgf/) provide more reliable regional climate projections.
In this study, climate projections were generated using both GCMs and Regional Climate
Models (RCMs), each with different grid resolutions [56]. GCMs generally possess a spatial
resolution that exceeds 1°, which limits their ability to effectively capture climate details at
the regional or local scale, such as in Tunisia. To address this limitation, GCMs are combined
with RCMs that offer a finer spatial resolution, typically less than 0.5°, allowing for more
precise downscaling of climate data. This study utilized the MENA domain as outlined
in the Coordinated Regional Climate Downscaling Experiment (CORDEX) to ensure that
the models accurately reflect Tunisia’s specific climatic conditions. The CNRM-CM5.1 and
GFDL-ESM2M models each offer specific strengths for climate projections. CNRM-CM5.1
excels in simulating climate processes in Mediterranean regions, which is particularly
relevant for our study area in Tunisia. However, its spatial resolution may limit the ability
to capture local variations and require substantial computational resources [57]. Similarly,
GFDL-ESM2M integrates carbon cycle processes comprehensively, providing high accuracy
in temperature and precipitation simulations. Nevertheless, its resolution also presents
challenges in detailing local phenomena [58]. Both models, while powerful and widely
used, demand significant resources, underscoring their validation and importance within
the scientific community [59]. Given that the study area is located in Northern Tunisia,
this technique was used to obtain the necessary climate parameters, including maximum
and minimum temperatures and precipitation. This study aims to examine the impact
of climate change on wheat biomass and yield, utilizing two RCMs, CNRM-CM5.1 and
GFDL-ESM2M (Table 2), and two Representative Concentration Pathways (RCP), RCP 4.5
and RCP 8.5 [60].

www.cordex.org/data-access/esgf/
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Table 2. Attributes of the climate models used in the study.

Model Institution Full Name Resolution References

CNRM-CM5.1 CNRM CNRM Coupled Model 5.1 0.22° × 0.22° [57,61]

GFDL-ESM2M NOAA/GFDL
Geophysical Fluid Dynamics
Laboratory Earth System
Model 2M

0.22° × 0.22° [58,62]

Historical climate projections from the GFDL-ESM2M and CNRM-CM5.1 models were
downloaded from 1970 to 1997, considering the availability of observed data with less
than 10% missing data in the four sites of Northwest Tunisia. The raw data for maximum
temperature (TMAX), minimum temperature (TMIN), precipitation (RAIN), and solar
radiation (SRAD) were adjusted to eliminate systematic errors, known as biases. We
selected the linear scaling technique among the bias correction methods available in the
literature [60]. This method applied monthly, involves comparing the observed historical
data with the simulated data [63]. Subsequently, this bias correction was applied to the
projections for the period 2041–2070, covering the two stations in the study area.

Observed climate data were collected from the National Institute of Meteorology
(INM) for the period 1970–1997, which was considered as the reference period and used for
climate model corrections in the study area. After bias correction, the projected data for the
period 2041–2070 were processed. Corrected daily maximum and minimum temperatures
as well as precipitation were used for both stations using the CNRM-CM5.1 and GFDL-
ESM2M models. The corrected daily data (maximum and minimum temperatures) and
precipitation were coupled to the growth models according to the two projection pathways
RCP 4.5 and RCP 8.5. (Figure 3).

Figure 3. Projection pathways used to evaluate wheat production parameters. This figure shows the
simulation pathways combining climate models and RCP scenarios to assess wheat production from
2041 to 2070. Corrected climate data were used in the AquaCrop and SIMPLE models to evaluate the
potential impact of different climate scenarios on wheat growth.

2.4. Crop Growth Models

Crop growth models simulate an interconnected soil-plant-atmosphere system, influ-
enced by various agronomic practices and environmental factors [64]. They are commonly
used to analyze multiple aspects related to crop growth, development, yield, and related soil
processes. The increased use of these models is particularly evident in assessing the poten-
tial impacts of climate change on agriculture and developing adaptation strategies [65,66].
However, due to the inherent complexity of modeling, some uncertainty persists in the
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results, primarily due to the need for simplifications compared to real systems [67]. To miti-
gate this risk of error, it is recommended to use multiple models simultaneously. Studies
have shown that model ensembles provide more robust assessments than individual mod-
els, offering a more reliable approach for predicting future impacts on wheat [68,69]. In this
study, the SIMPLE Crop and AquaCrop models were used to assess the potential impact of
climate change on wheat production in Northwest Tunisia.

SIMPLE Model, AquaCrop Model

The SIMPLE crop model is designed to characterize different types of crops using
13 parameters, four of which are tailored to the specific traits of cultivars [31]. The 13 param-
eters are listed in Table 3. The four parameters particular to cultivars are base temperature
(Tbase), optimal temperature for growth (Topt), radiation use efficiency (RUE), and relative
increase in RUE per ppm of CO2 (SCO2). These specific parameters allow the model to be
adjusted according to the distinct characteristics of each cultivar.

Table 3. Crop and cultivar parameter values used in the SIMPLE model [31].

Parameter Description Value

Tsum Cumulative temperature requirement from sowing to maturity (°C·d) 2200

HI Potential harvest index 0.36

I50A Cumulative temperature requirement for leaf area development to intercept
50% of radiation (°C·d)

480

I50B Cumulative temperature till maturity to reach 50% radiation interception
due to leaf senescence (°C·d)

200

Tbase Base temperature for phenology development and growth (°C) 0

Topt Optimal temperature for biomass growth (°C) 15

RUE Radiation use efficiency (above ground only and without respiration)
(g·MJ−1·m−2)

1.24

I50maxH The maximum daily reduction in I50B due to heat stress (°C·d) 100

I50maxW The maximum daily reduction in I50B due to drought stress (°C·d) 25

Tmax Threshold temperature to start accelerating senescence from heat stress (°C) 34

Text The extreme temperature threshold when RUE becomes 0 due to heat stress
(°C)

45

SCO2 Relative increase in RUE per ppm elevated CO2 above 350 ppm 0.08

Swater Sensitivity of RUE (or harvest index) to drought stress (ARID index) 0.4

This model relies on daily weather data, crop management information, and soil
water retention parameters for optimal operation. To validate its accuracy, the SIMPLE
model was calibrated using data from 25 field experiments covering four different crops,
with a relative root mean square error (RRMSE) of 25.4% for final yield prediction [31].
This highlights its ability to accurately predict wheat yields. The SIMPLE model uses the
cumulative temperature concept to evaluate phenological development, as indicated by
CERES-Wheat [70].

AquaCrop is a versatile and essential tool for simulating wheat yields, developed
by the Food and Agriculture Organization (FAO) of the United Nations [71]. Specifically
designed for a diverse range of users, such as engineers, economists, extension specialists,
and water managers, AquaCrop can be used for strategic, tactical, and operational planning.
It facilitates management decisions based on reliable data and is useful for comparing
potential yields to actual yields, identifying constraints, and enabling corrective actions.
Additionally, AquaCrop is suitable for simulating future scenarios and conducting climate
change research. According to [71], this model stands out for its simplicity regarding
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parameters and input data, making it easier to model plant responses to water for various
crops. AquaCrop’s growth simulations are based on water consumption, considering
evaporation and transpiration, crucial factors in greenhouse environments. Therefore,
calibrating AquaCrop’s parameters is essential to ensure an accurate representation of
water consumption and yield improvements [71–73]. For the SIMPLE model, the fraction
of plant available water-holding capacity, the runoff curve number, the deep drainage
coefficient, and the root zone depth (mm) were either obtained from the literature or
estimated from general soil information for each location.

3. Results
3.1. Performance Assessment of SIMPLE Crop and AquaCrop Model

Performance metrics for growth cycle duration (days), biomass (q/ha), and yield
(q/ha) of the SIMPLE Crop and AquaCrop models at Slougia and Medjez El Beb are
summarized in Table 4.

At Slougia, SIMPLE Crop exhibits a mean bias error (MBE) of −3.6 days and a root
mean square error (RMSE) of 5.8 days for growth cycle duration, accompanied by an index
of agreement (IA) of 0.78, indicating relatively accurate predictions. Conversely, AquaCrop
shows a higher RMSE of 8.9 days but a slightly better IA of 0.83, suggesting more prediction
variability. At Medjez El Beb, SIMPLE Crop performs better with a growth cycle duration
MBE of −3.8 days and an RMSE of 8.1 days, while AquaCrop shows an MBE of −5.0 days
and an RMSE of 7.3 days, with both models achieving high IA values of 0.85 and 0.87,
respectively.

For biomass prediction at Slougia, SIMPLE Crop has an MBE of 2.50 q/ha and an
RMSE of 1.12 q/ha, while AquaCrop shows slightly lower errors with an MBE of 2.15 q/ha
and an RMSE of 1.21 q/ha. At Medjez El Beb, SIMPLE Crop predicts biomass with an MBE
of 2.30 q/ha and an RMSE of 1.20 q/ha, while AquaCrop performs well with an MBE of
1.95 q/ha and an RMSE of 1.02 q/ha. Both models achieve high IA values (0.89 and 0.88
for SIMPLE Crop, 0.89 and 0.97 for AquaCrop). Regarding yield, SIMPLE Crop performs
better at Slougia with an MBE of 2.26 q/ha and an RMSE of 1.32 q/ha, whereas AquaCrop
shows higher errors with an MBE of 2.10 q/ha and an RMSE of 1.32 q/ha. At Medjez El
Beb, SIMPLE Crop predicts yield with an MBE of 1.36 q/ha and an RMSE of 1.23 q/ha,
compared to AquaCrop with an MBE of 2.79 q/ha and an RMSE of 1.35 q/ha. Both models
maintain good IA values (0.77 and 0.79 for Slougia, 0.88 and 0.83 for Medjez El Beb).

Both models demonstrate strong performance, particularly in biomass predictions,
as indicated by their high IA values. SIMPLE Crop generally shows better accuracy in pre-
dicting yield and growth cycle duration at Slougia, while AquaCrop demonstrates stronger
agreement in biomass predictions. These findings underscore the critical role of model
calibration and highlight opportunities for further enhancement in prediction accuracy.

Table 4. Evaluation of Growth Cycle Duration (days), Biomass (q/ha), and Yield (q/ha) Using MBE,
RMSE, and IA for SIMPLE Crop and AquaCrop Models at Slougia and Medjez El Beb.

Crop Model Site
Growth Cycle Duration (days) Biomass Yield

MBE (q/ha) RMSE (q/ha) IA MBE (q/ha) RMSE (q/ha) IA MBE (q/ha) RMSE (q/ha) IA

SIMPLE Crop
Slougia −3.6 5.8 0.78 2.50 1.12 0.88 2.26 1.32 0.77

Medjez El Beb −3.8 8.1 0.85 2.30 1.20 0.89 1.36 1.23 0.88

AquaCrop
Slougia −4.3 8.9 0.83 2.15 1.21 0.97 2.10 1.32 0.79

Medjez El Beb −5.0 7.3 0.87 1.95 1.02 0.89 2.79 1.35 0.83

The discrepancies observed in the results at Slougia between the SIMPLE Crop and
AquaCrop models, particularly concerning the Index of Agreement (IA), can be attributed
to several factors, as noted by Kostková et al. [74]. Firstly, the differences in performance
between the models may arise from the inherent characteristics of each model. SIMPLE
Crop and AquaCrop utilize distinct methodologies for simulating crop growth, which can
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impact the accuracy of their predictions. For instance, while SIMPLE Crop shows more
favorable MBE and RMSE values, indicating better average accuracy, its lower IA suggests
that it may not capture the observed data variations as effectively. This observation is
consistent with Kostková et al. [74], which found that the median of model ensembles can
provide better yield modeling accuracy than the average ensemble or individual models.

3.2. Yield

Figures 4 and 5 show wheat yields for the sites of Medjez El Beb and Slougia under
similar conditions. Table 5 summarizes the results of the same combinations of climate
models, RCP scenarios, and growth models for both sites.

The average wheat yields under identical climatic conditions and growth models
show minimal differences between the two areas (Figures 4 and 5). For example, with the
CNRM-CM5.1 climate model and the RCP 8.5 scenario, Medjez El Beb has an average
yield of 6.89 q/ha with the AquaCrop model and 7.53 q/ha with the SIMPLE Crop model.
In comparison, Slougia, under the same scenario, has averages of 6.97 q/ha and 7.89 q/ha,
respectively, for the same growth models. These yield differences, although present,
are relatively small, indicating that the specific local conditions of each region do not
significantly impact yields within the framework of the climate and growth models used.
This suggests that regional differences have a limited effect compared to the influence of
climate models and crop growth models.

The results show notable variations in wheat yields according to different climate
models (CNRM-CM5.1 vs. GFDL-ESM2M), emission scenarios (RCP 4.5 vs. RCP 8.5),
and growth models (AquaCrop vs. SIMPLE Crop) (Tables 5 and 6). Statistical analysis,
notably ANOVA, reveals that the observed differences are significant with an F-value of
3.58 and a p-value of 0.0014, indicating that the variations between groups are significant.

Figure 4. Simulation of wheat yields in Slougia under different climate scenarios and growth models,
using the AquaCrop and SIMPLE crop models for the period 2041–2070.

The differences between climate models are particularly marked. For example, GFDL-
ESM2M under RCP 4.5 shows a higher average yield of 7.73 q/ha compared to CNRM-
CM5.1 under RCP 8.5 with 6.89 q/ha, suggesting that GFDL-ESM2M’s climate projections
predict more favorable conditions for wheat. In general, yields under RCP 4.5 are higher
than those under RCP 8.5, indicating that reduced emissions (RCP 4.5) are associated with
better-growing conditions for wheat.
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Figure 5. Simulation of Wheat yields in Medjez el Beb under different climate scenarios and growth
models, using the AquaCrop and SIMPLE crop models for the period 2041–2070.

The differences between the AquaCrop and SIMPLE Crop growth models are also
significant, although the impact is less pronounced compared to the differences due to
climate models and emission scenarios. For example, for CNRM-CM5.1 under RCP 4.5,
the yield with AquaCrop is 7.55 q/ha, while with SIMPLE Crop it is 7.36 q/ha. These
variations, although smaller, highlight the importance of the choice of growth model in
yield projections.

Table 5. Wheat yields for different combinations of the climate model, RCPs, and crop model for the
period 2041–2070 (q/ha).

Combination Average STD Minimum Maximum

CNRM-CM5.1, RCP 4.5, AquaCrop 7.55 1.12 5.62 9.20
CNRM-CM5.1, RCP 4.5, SIMPLE Crop 7.36 1.06 5.25 8.98
CNRM-CM5.1, RCP 8.5, AquaCrop 6.89 1.14 5.74 9.47
CNRM-CM5.1, RCP 8.5, SIMPLE Crop 7.53 1.17 5.61 9.33
GFDL-ESM2M, RCP 4.5, AquaCrop 8.06 1.16 6.10 9.88
GFDL-ESM2M, RCP 4.5, SIMPLE Crop 7.73 1.12 5.79 9.21
GFDL-ESM2M, RCP 8.5, AquaCrop 6.97 1.16 5.81 9.36
GFDL-ESM2M, RCP 8.5, SIMPLE Crop 7.89 1.21 5.86 9.37

Statistical analysis shows that variations in future wheat yields are mainly influenced
by climate models and emission scenarios, with growth models playing a secondary role.
GFDL-ESM2M’s climate projections seem to offer more favorable conditions for wheat,
particularly under the RCP 4.5 scenario (Table 5). These results underline the importance
of adopting specific adaptation strategies based on precise climate projections to ensure
food security in the context of climate change.

The yield differences between AquaCrop at 7.55 q/ha and SIMPLE Crop at 7.36 q/ha
are attributed to the limitations of the SIMPLE Crop model, which is less sophisticated
and does not capture the complex interactions between climate and plant growth as
effectively as AquaCrop. AquaCrop is a more detailed model that integrates variables such
as evapotranspiration, water management, and crop responses to stress conditions [73].
These aspects allow AquaCrop to provide more accurate and realistic yield projections
under various climate scenarios. Thus, the results show that the choice of growth model can
significantly influence yield estimates, highlighting the importance of using appropriate
models to assess the impact of climate change on agriculture.
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Table 6. Analysis of variance of the combinations of climate models, emission scenarios, and crop
growth tools.

Source of Variation Sum of Squares df Mean Squares F-Value p-Value

Climate Model (M) 7.92 1 7.92 4.57 0.045
RCP Scenario (R) 4.15 1 4.15 2.40 0.135
Growth Model (C) 11.87 1 11.87 6.86 0.017
Interaction M × R 0.84 1 0.84 0.49 0.490
Interaction M × C 1.29 1 1.29 0.75 0.395
Interaction R × C 0.47 1 0.47 0.27 0.610
Error 34.55 20 1.73
Total 61.08 26

3.3. Biomass

Figures 6 and 7 depict wheat biomass production for the sites of Medjez El Beb
and Sloughia under different climate scenarios and growth models. Table 7 summarizes
the average biomass for both sites under various combinations of climate models, RCPs,
and growth models.

Figure 6. Wheat biomass production in Sloughia under climate scenarios RCP 4.5 and RCP 8.5,
projected by the CNRM-CM5.1 and GFDL-ESM2M models, and simulated using AquaCrop and
SIMPLE Crop models for the period 2041–2070.

Biomass projections for Medjez El Beb and Sloughia for the period 2041–2070 reveal
similar averages when the same climate model (RCP 8.5) and growth model conditions
are applied.

For Medjez El Beb, under the CNRM-CM5.1 climate model with the AquaCrop growth
model, the average biomass is 17.99 q/ha. Using the SIMPLE Crop growth model, the av-
erage slightly increases to 18.73 q/ha. For Sloughia, under the GFDL-ESM2M climate
model with AquaCrop, the average biomass is 18.90 q/ha, while with SIMPLE Crop, it is
19.04 q/ha (Figures 6 and 7).
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Figure 7. Wheat biomass production at Medjez El Beb under climate scenarios RCPs 4.5 and RCP
8.5, projected by the CNRM-CM5.1 and GFDL-ESM2M models and simulated using AquaCrop and
SIMPLE Crop models for the period 2041–2070.

Table 7. Average wheat biomass (q/ha) in Medjez El Beb and Sloughia under different climate models
and growth Models (2041–2070).

Region Climate Model Growth Model Average Biomass (q/ha)

Medjez El Beb CNRM-CM5.1 AquaCrop 17.99
CNRM-CM5.1 SIMPLE Crop 18.73

Sloughia GFDL-ESM2M AquaCrop 18.90
GFDL-ESM2M SIMPLE Crop 19.04

These slight differences in biomass between the two sites are relatively negligible,
suggesting that the specific local conditions of both sites similarly influence the projections
of climate and growth models. This indicates that biomass variations are primarily due to
differences between the climate and growth models used, rather than intrinsic regional char-
acteristics. The results thus emphasize the importance of selecting appropriate models to
achieve accurate projections of future biomass in the context of climate change. The results
of the wheat biomass analysis for the sites of Medjez El Beb and Sloughia for the period
2041–2070 show moderate differences between the projections obtained with AquaCrop
and SIMPLE Crop growth models under the RCP 8.5 climate scenario. For Medjez El Beb,
the average biomass projected by AquaCrop is 17.99 q/ha, while SIMPLE Crop projects
a slightly higher biomass of 18.73 q/ha. This difference of 0.74 q/ha, although modest,
suggests that the SIMPLE Crop model, despite its simplifications, effectively captures the
growth dynamics under future climatic conditions.

In comparison, for Sloughia, the average biomasses are slightly higher, with AquaCrop
projecting 18.90 q/ha and SIMPLE Crop 19.04 q/ha, indicating an even smaller difference
of 0.14 q/ha. These results show that both growth models provide relatively consistent
projections between the two sites. However, it is important to note that AquaCrop can
offer more detailed and precise projections by integrating more complex interactions
between climatic variables and crop responses. Nevertheless, SIMPLE Crop remains a
viable alternative when resources or detailed data are limited while ensuring globally
comparable projections. The regional characteristics have a minor impact on biomass
projections compared to the choice of climate and growth models, it is essential to carefully
select and use models that fit available data and specific study needs.
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3.4. Growth Period

The box plots illustrate variations of the growth period in days for Medjez El Beb
and Sloughia, analyzed across various climate models, RCP scenarios, and growth models.
In Medjez El Beb, the growth period primarily ranges from 150 to 230 days, with notable
nuances depending on the growth models used, particularly AquaCrop and SIMPLE
Crop (Figure 8). Similarly, in Sloughia, the growth periods show comparable variation,
also between 150 and 230 days, but with significant differences influenced by the climate
models and RCP scenarios (Figure 9). Although the growth period appears slightly longer
in Sloughia than in Medjez El Beb, these results highlight a similar sensitivity of both sites
to climate projections and growth model choices, underscoring the importance of a robust
approach in evaluating the climate impacts on local agriculture.

Figure 8. Growth period in Medjez El Beb under different RCPs scenarios according to the CNRM-
CM5.1 and GFDL-ESM2M climate models, simulated by the AquaCrop and SIMPLE Crop models for
the period 2041–2070.

Figure 9. Growth period in Sloughia under different RCP scenarios according to the CNRM-CM5.1
and GFDL-ESM2M climate models, simulated by the AquaCrop and SIMPLE Crop growth models
for the period 2041–2070.
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The analysis of crop growth period projections, based on a fixed sowing date of Novem-
ber 15, underscores the crucial influence of climate models, RCP scenarios, and growth
models, corroborated by several studies. Previous research by Sanchez [75] has demon-
strated that variations between the CNRM-CM5.1 and GFDL-ESM2M climate models can
lead to significant differences in the length of the growth season, with average growth
periods of 180 days for CNRM-CM5.1 and 170 days for GFDL-ESM2M (Figure 10), as well
as notable variability represented by standard deviations of ±10 days for each model [75].
These results indicate that CNRM-CM5.1, projecting more moderate temperature increases
and stable precipitation, tends to favor slightly longer and less variable growth periods
compared to GFDL-ESM2M, which predicts warmer and drier conditions under certain
RCP scenarios [76].

Figure 10. Comparison of Means and Standard Deviations of Crop Growth Periods Across sites, Crop
Models, and Climate Scenarios (RCP4.5 and RCP8.5) for the Period 2041–2070.

IPCC results [3] confirm that the RCP 8.5 scenario with high greenhouse gas emissions,
could significantly reduce the available growth period for crops, compared to RCP 4.5
(Figure 10), which offers more favorable prospects with average growth periods of 185 days
and standard deviations of ±8 days [3].

Agronomic growth models like AquaCrop and SIMPLE Crop, analyzed by
vanuytrecht [77], demonstrate their ability to simulate crop responses to projected cli-
mate conditions, with average growth periods of 175 days for AquaCrop and 180 days
for SIMPLE Crop, and standard deviations of ±12 days for both models [77]. This level of
detail is crucial for assessing and anticipating the impacts on the growth period of wheat
crops in various contexts of climate change. Thus, the fixed sowing date of November 15
serves as an essential reference point to evaluate how these factors interact to modulate the
effective duration of the crop growth season.

3.5. Projected Impact of Climate Change on Wheat Growth Parameters

The analysis of climate projections using the CNRM-CM5.1 and GFDL-ESM2M models,
coupled with AquaCrop and SIMPLE Crop growth models for wheat cultivation, highlights
significant concerns regarding the future impact of climate change on wheat yields (Table 8).
Historical data, representing stable conditions over past decades, contrast starkly with
projected yields under RCP scenarios. Under the CNRM-CM5.1 model, historical average
wheat yields were 8.63 q/ha, reflecting stable production patterns. However, under the
RCP 4.5 and RCP 8.5 scenarios, projected yields for AquaCrop show noticeable declines
to 6.94 and 6.74 q/ha, respectively. Similar trends are observed with the GFDL-ESM2M
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model, where historical yields of 9.02 q/ha decrease to 7.65 and 7.39 q/ha under RCP 4.5
and RCP 8.5, respectively (Figure 10, Table 8).

For the SIMPLE Crop model under CNRM-CM5.1, historical yields averaged 8.77 q/ha.
Projections under RCP 4.5 and RCP 8.5 scenarios suggest yields of 6.44 and 6.52 q/ha,
respectively. Meanwhile, under GFDL-ESM2M, historical yields of 9.62 q/ha shift to
projections of 7.68 and 7.22 q/ha under RCP 4.5 and RCP 8.5 (Figure 10, Table 8).

These findings underscore the vulnerability of wheat cultivation to climate change,
with both climate models projecting reduced average yields across all scenarios. The in-
crease in standard deviations indicates heightened variability in projected yields, reflecting
uncertain future agricultural productivity under changing climatic conditions. Such in-
sights are crucial for informing adaptive strategies and policy interventions aimed at
mitigating the adverse impacts of climate change on global food security.

Table 8. Comparison of Historical Yields (1970–1997) and Future Projections (2041–2070) for Each
RCP Scenario and Climate Model in Medjez el Bab and Slouguia.

Climate Model RCP/Historical Crop Model Mean Std

CNRM-CM5.1
Historical AquaCrop 8.63 1.07
RCP 4.5 AquaCrop 6.94 0.98
RCP 8.5 AquaCrop 6.74 1.07

GFDL-ESM2M
Historical AquaCrop 9.02 1.09
RCP 4.5 AquaCrop 7.65 1.03
RCP 8.5 AquaCrop 7.39 1.07

CNRM-CM5.1
Historical SIMPLE Crop 8.77 0.92
RCP 4.5 SIMPLE Crop 6.44 0.88
RCP 8.5 SIMPLE Crop 6.52 0.95

GFDL-ESM2M
Historical SIMPLE Crop 6.62 1.08
RCP 4.5 SIMPLE Crop 7.68 0.92
RCP 8.5 SIMPLE Crop 7.22 0.95

The results obtained with the AquaCrop and SIMPLE Crop models for wheat cul-
tivation under different climate scenarios align with several previous scientific studies
examining the impact of climate change on agricultural yields. For instance, research con-
ducted by Rezaei et al. [32] indicated that each degree Celsius increase could reduce wheat
yields by several percentages due to wheat’s sensitivity to temperature and precipitation
variations. Similarly, the work of Hu et al. [18] highlighted that climate changes could
significantly decrease wheat yields globally, affecting food security. Additionally, the study
by Asseng et al. [78] corroborated these findings by highlighting the increased variability
in wheat yields and the heightened risks of production losses due to climate changes.

The analysis of climate projections using the CNRM-CM5.1 and GFDL-ESM2M models,
coupled with AquaCrop and SIMPLE Crop growth models for wheat cultivation, highlights
significant concerns regarding the impact of climate change on wheat biomass. Histori-
cal data reveal that the average biomass for the CNRM-CM5.1 model with AquaCrop is
10.82 q/ha, while with SIMPLE Crop, it is 9.37 q/ha. For the GFDL-ESM2M model, the his-
torical average biomass is 10.69 q/ha with AquaCrop and 10.51 q/ha with SIMPLE Crop.

However, projections under the RCP 4.5 scenario show a marked decrease in biomass.
For CNRM-CM5.1 with AquaCrop, the projected biomass is 6.94 q/ha, indicating a signifi-
cant decline of 36% compared to historical yields. For SIMPLE Crop, the projected biomass
drops to 6.44 q/ha, a reduction of 31%. With the GFDL-ESM2M model, projected biomass
is 7.65 q/ha for AquaCrop and 7.68 q/ha for SIMPLE Crop, representing reductions of 28%
and 27%, respectively (Figure 11).
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Figure 11. comparison of historical (1970–1997) and projected (2041–2070) biomass using climate
models coupled with AquaCrop and SIMPLE Crop models.

Projections under the RCP 8.5 scenario are even more alarming. For CNRM-CM5.1,
the projected biomass for AquaCrop is 6.74 q/ha, a decrease of 38%; for SIMPLE Crop,
6.52 q/ha, a reduction of 30%. For the GFDL-ESM2M model, projected biomass is 7.39 q/ha
with AquaCrop, a decrease of 31%, and 7.22 q/ha with SIMPLE Crop, a reduction of
31%. Projections of growth cycle duration for AquaCrop and SIMPLE Crop models under
climates simulated by CNRM-CM5.1 and GFDL-ESM2M reveal significant anticipated
changes by 2070 compared to the historical period from 1970 to 1997. Under the CNRM-
CM5.1 model, AquaCrop shows a trend towards a reduction in cycle duration under RCP
4.5 (172.62 days) compared to historical values (196.33 days), with a slight increase projected
under RCP 8.5 (172.75 days). In contrast, SIMPLE Crop exhibits a more pronounced
reduction under RCP 4.5 (182.31 days) compared to historical values (208.52 days), followed
by a slight improvement under RCP 8.5 (174.45 days) (Figure 12).

Figure 12. Comparison of historical (1970–1997) and projected (2041–2070) growth cycle duration
using climate models coupled with AquaCrop and SIMPLE crop models.
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For the GFDL-ESM2M model, AquaCrop maintains a relatively stable cycle duration
between historical values (179.73 days) and RCP 4.5 (180.45 days) and RCP 8.5 (172.75 days)
scenarios, while SIMPLE Crop shows a slight decrease under RCP 4.5 (180.31 days) and a
slight increase under RCP 8.5 (176.45 days). These results suggest that projected climate
changes could lead to significant adjustments in crop growth cycle duration by 2070,
necessitating ongoing adaptation of planting dates and agricultural practices to maintain
productivity and resilience of agricultural systems

4. Discussion

The study results provide valuable insights into the performance and projections of
the SIMPLE Crop and AquaCrop models for wheat cultivation under changing climatic
conditions in Slougia and Medjez El Beb.

In Slougia, SIMPLE Crop generally provided more accurate predictions for the growth
cycle duration and yield compared to AquaCrop, as indicated by lower mean bias errors
(MBE) and root mean square errors (RMSE). Specifically, SIMPLE Crop’s predictions for the
growth cycle were closer to observed values with a lower RMSE, and it also outperformed
AquaCrop in yield predictions. For biomass, AquaCrop showed slightly better accuracy
in terms of MBE, though both models had comparable RMSE values. In Medjez El Beb,
the SIMPLE Crop model again exhibited lower errors for the growth cycle duration com-
pared to AquaCrop. However, AquaCrop demonstrated superior performance for biomass
predictions, achieving lower MBE and RMSE values. For yield, SIMPLE Crop showed
higher MBE and RMSE than AquaCrop, indicating that AquaCrop provided more accurate
yield forecasts in this region.

These results highlight the challenges related to quantifying the uncertainties of climate
change impacts on agricultural yields. Variations in greenhouse gas emissions and climate
responses significantly influence model predictions. The different structures and parameter
values between SIMPLE Crop and AquaCrop led to variations in wheat yield projections.
For example, projections under GFDL-ESM2M and RCP 4.5 generally showed higher yields
than under CNRM-CM5.1 and RCP 8.5.

The RCP 4.5 scenario represents a trajectory where substantial efforts are made to
reduce greenhouse gas emissions, thereby limiting the global temperature increase to a
moderate level compared to higher emission scenarios like RCP 8.5. In this context, while
the climate conditions under RCP 4.5 are still affected by climate change, they are less
extreme. This can result in more favorable temperatures, a more balanced distribution
of precipitation, and a lower frequency of extreme weather events, such as prolonged
droughts or intense heatwaves [79,80].

These more moderate conditions are likely to promote crop growth by reducing
thermal and water stress on plants, which could explain why the RCP 4.5 scenario is
associated with better growing conditions. This contrasts with the RCP 8.5 scenario,
where climate conditions could become more extreme and less conducive to optimal crop
growth [79,80].

It is important to note that the beneficial effects of increasing GHG concentrations
on crop yields depend on soil nutrient availability. As indicated in the literature, high
GHG concentration reduces protein concentration in grains, which is an important quality
trait [81–84]. To fully benefit from the positive impact of increasing GHG concentrations
and minimize negative impacts on grain quality, nitrogen fertilization needs to be adjusted
in high GHG environments [82,83,85,86].

Crop models have also been used to manage trade-offs between agricultural pro-
duction and externalities under climate change. For example, in northeastern Germany,
research has explored the trade-off between grain yield and groundwater recharge man-
agement through variable nitrogen inputs for future climate change scenarios [87]. These
simulations showed that the trade-off between deep drainage and grain yield can poten-
tially be controlled by nitrogen management. However, this control is more effective under
current climatic conditions than future ones. The results of this study are consistent with
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those of Lhomme et al. [35]. Indeed, climate projections for 2040–2070 forecast a reduction
in the length of the wheat growing cycle and an earlier sowing period due to the systematic
increase in temperatures and changes in precipitation patterns. These climatic changes lead
to yield deficits, highlighting the need to adapt agricultural practices to new climatic condi-
tions. We recommend advancing sowing dates and adopting shorter-cycle wheat varieties
to mitigate negative impacts and optimize wheat production in Tunisia. Early-maturing
and drought-tolerant varieties, such as those identified in our study, are particularly suited
to the projected conditions and could significantly improve yields. These recommendations
are based on our current observations and align with previous research, emphasizing the
need for innovative agricultural management to address future climatic challenges. We
also observed that impacts vary depending on specific sites in Tunisia, notably Medjez
El Beb and Slougia. These results are confirmed by Lhomme et al. [35] for other sites in
Tunisia. For instance, in Kairouan, while yield deficits slightly improve with better water
management, conditions deteriorate in Jendouba. Projected climatic conditions for these
two sites indicate variations in water availability and temperature needs for optimal wheat
growth, underscoring the importance of local-level selection and screening. Furthermore,
according to Kone et al. [20], there is a significant lack of research on climate change impacts
in certain African sites, including North Africa, Central Africa, and South Africa, including
Tunisia. This research gap concerns the impacts on crop production parameters, water
resources, and management techniques. These gaps highlight the importance of expanding
research to better understand and address the specific challenges faced by these sites in
the face of climate impacts. Therefore, it is crucial to continue refining and improving
adaptation strategies to cope with the progressive aggravation of climate change. Finally,
rising average temperatures due to future climate change will create new opportunities to
increase cropping frequency in some agricultural systems. For example, simulation studies
have shown that recent temperature increases favor double cropping of wheat and soybean
in the southern pampas of Argentina [88] and that delaying wheat planting and maize
harvesting in China can increase the total grain yield of wheat–maize double cropping
systems [89]. These various adaptations underscore crop management’s importance in
taking advantage of opportunities offered by climate change while minimizing its neg-
ative impacts. These adaptation strategies are essential to maintain and improve wheat
production in northern Tunisia in the face of future climatic challenges.

5. Conclusions

Future projections for the period 2041–2070 indicate a significant decrease in average
wheat yields in the study region under the RCP 4.5 scenario. Models CNRM-CM5.1 and
GFDL-ESM2M coupled with AquaCrop and Simple Crop models project average yields of
7.709 q/ha, and 7.703 q/ha, respectively, marking a notable decline compared to historical
averages. These results highlight the major challenges posed by climate change on wheat
production in northern Tunisia.

These findings also underscore the crucial importance of selecting appropriate models
to project future agricultural biomass in a changing climate. The slight differences between
AquaCrop and SIMPLE Crop projections suggest that AquaCrop, with its comprehensive
modeling of climate-crop interactions, offers more detailed projections, while SIMPLE Crop
remains valuable, especially when detailed data are limited.

Furthermore, understanding the variability and uncertainties associated with these
projections is essential for developing effective adaptation strategies. Policymakers and
stakeholders in the agricultural sector can use this information to plan for future scenarios,
ensure food security, and optimize resource use in response to climate change. The next
steps in this research will involve expanding the projections to encompass a broader range
of climate scenarios and agricultural models. Future efforts will also focus on integrating
socio-economic factors to better assess the wider impact of climate change on agricultural
sustainability. It is estimated that these measures can significantly contribute to maintaining
food security and the sustainability of agricultural production in northern Tunisia despite
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the growing challenges of climate change. In conclusion, the data presented in this study
emphasize the urgent need for concerted action to enhance the resilience of the agricultural
sector. The alarming projections of agricultural yields underscore the urgent need for
strategic policies and initiatives aimed at ensuring sustainable yields and food security in
the northern region of Tunisia.
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