
Academic Editor: Gniewko Niedbała

Received: 4 March 2025

Revised: 30 March 2025

Accepted: 5 April 2025

Published: 7 April 2025

Citation: Xie, M.; Wu, J.; Sun, J.; Xiao,

L.; Liu, Z.; Yuan, R.; Duan, S.; Wang, L.

MFFSNet: A Lightweight Multi-Scale

Shuffle CNN Network for Wheat

Disease Identification in Complex

Contexts. Agronomy 2025, 15, 910.

https://doi.org/10.3390/

agronomy15040910

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

MFFSNet: A Lightweight Multi-Scale Shuffle CNN Network for
Wheat Disease Identification in Complex Contexts
Mingjin Xie 1, Jiening Wu 1,2,*, Jie Sun 1, Lei Xiao 1, Zhenqi Liu 1, Rui Yuan 1, Shukai Duan 1,3,4,5,6

and Lidan Wang 1,3,4,5,6,*

1 College of Artificial Intelligence, Southwest University, Chongqing 400715, China;
qmpz2715987686@email.swu.edu.cn (M.X.); sj11swu@email.swu.edu.cn (J.S.);
liangpeiyin163@email.swu.edu.cn (L.X.); liuzhenqi@swu.edu.cn (Z.L.); yuanruiswu@swu.edu.cn (R.Y.);
duansk@swu.edu.cn (S.D.)

2 Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
3 National & Local Joint Engineering Research Center of Intelligent Transmission and Control Technology,

Chongqing 400715, China
4 Chongqing Key Laboratory of Brain-Inspired Computing and Intelligent Chips, Chongqing 400715, China
5 Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest

University, Chongqing 400715, China
6 State Key Laboratory of Intelligent Vehicle Safety Technology, Chongqing 400023, China
* Correspondence: jnwu66@swu.edu.cn (J.W.); ldwang@swu.edu.cn (L.W.)

Abstract: Wheat is one of the most essential food crops globally, but diseases significantly
threaten its yield and quality, resulting in considerable economic losses. The identification
of wheat diseases faces challenges, such as interference from complex environments in the
field, the inefficiency of traditional machine learning methods, and difficulty in deploying
the existing deep learning models. To address these challenges, this study proposes a multi-
scale feature fusion shuffle network model (MFFSNet) for wheat disease identification
from complex environments in the field. MFFSNet incorporates a multi-scale feature
extraction and fusion module (MFEF), utilizing inflated convolution to efficiently capture
diverse features, and its main constituent units are improved by ShuffleNetV2 units. A
dual-branch shuffle attention mechanism (DSA) is also integrated to enhance the model’s
focus on critical features, reducing interference from complex backgrounds. The model
is characterized by its smaller size and fast operation speed. The experimental results
demonstrate that the proposed DSA attention mechanism outperforms the best-performing
Squeeze-and-Excitation (SE) block by approximately 1% in accuracy, with the final model
achieving 97.38% accuracy and 97.96% recall on the test set, which are higher than classical
models such as GoogleNet, MobileNetV3, and Swin Transformer. In addition, the number
of parameters of this model is only 0.45 M, one-third that of MobileNetV3 Small, which
is very suitable for deploying on devices with limited memory resources, demonstrating
great potential for practical applications in agricultural production.

Keywords: wheat disease identification; lightweight CNN network; complex contexts;
attention mechanism; multi-scale feature fusion

1. Introduction
Wheat is one of the most widely cultivated cereals worldwide, ranking as the third

most consumed grain after maize and rice. Wheat is also a vital food crop in China,
where its planting area and total production hold a significant position on the global
scale. According to data from the National Bureau of Statistics, in 2024, China’s wheat
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planting area was 23,587.4 thousand hectares, with a total production of 140.10 million
tons. However, wheat diseases, particularly fungal pathogens such as rusts, crown and
root rot, and powdery mildew, severely impact both yield and quality across China’s
major wheat belts. According to the National Agro-Tech Extension and Service Center
(2022), wheat rusts cause annual production losses of 1.5–3.2 million metric tons in China,
with severe epidemics reducing yields by over 40% in affected regions. Accurate wheat
disease identification depends on plant pathologists, but farmers in remote areas have
limited contact with them due to geographical and economic factors. To address these
issues, machine learning offers an efficient alternative for wheat disease identification.
Tian et al. [1] analyzed the color, shape, and texture features of wheat leaves affected by
fungal diseases like powdery mildew and rust, then applied support vector machines to
distinguish and identify these diseases based on the extracted features. Azadbakht et al. [2]
used four machine learning techniques for wheat disease classification, achieving the best
results with support vector regression. Traditional machine learning for wheat disease
identification depends on manual feature extraction, a process that is not only time- and
labor-intensive but also constrained by the subjectivity of the extracted features, leading to
limited accuracy. Additionally, this approach requires specific models to be designed for
different diseases, which lacks generalization.

In recent years, deep learning techniques, such as convolutional neural networks
(CNNs) and other artificial neural network (ANN) architectures [3,4], have been exten-
sively applied to agricultural disease identification [5–7], with the primary advantage
of automatically learning features from image data. This method not only enhances the
efficiency of disease diagnosis but also, by leveraging deep learning models, can process
vast amounts of data and extract more abstract and higher-level features, leading to im-
proved disease identification accuracy. Additionally, deep learning models offer strong
generalization capabilities, enabling them to adapt to diverse datasets and practical ap-
plication scenarios. Lu et al. [8] designed a real-time automatic wheat disease diagnosis
system, utilizing image processing and machine learning to identify wheat diseases in field
environments, offering technical support for early detection and precise management of
wheat diseases. Nema and Dixit utilized support vector machines (SVMs) to detect and
prevent wheat leaf diseases in their study [9]. Their approach involved k-means clustering
for classifying wheat leaf samples and SVMs for identifying healthy and diseased leaves.
Abade et al. [10] reviewed the application of CNNs for plant disease image recognition,
analyzing 121 research papers published over the past decade. The review highlighted
trends in CNN applications for plant disease identification, offering insights to guide future
studies in the field. In the study by Picon [11], the use of deep convolutional neural net-
works successfully enabled the classification of crop disease images captured under field
conditions using mobile devices. Their experiments, specifically targeting wheat diseases,
improved the balanced accuracy to 0.87. Mi et al. proposed a deep-learning-based grading
method for wheat stripe rust [12]. The proposed C-DenseNet model significantly improved
the classification accuracy of different severity levels of wheat stripe rust.

In addition, CNNs have achieved remarkable results in the disease identification of
other agricultural products. Albayrak’s team assessed 20 CNN architectures for mushroom
disease classification using a 3195-image dataset [13]. Some of these CNN architectures
produced good results. Pan’s team proposed DualTransAttNet, a rapid corn seed classifica-
tion method using multi-source images [14]. The model combines hyperspectral and RGB
data, leveraging CNNs and transformers to capture features, achieving 90.01% accuracy.
Ou’s team used hyperspectral imaging and multi-dimensional features for early strawberry
disease detection [15]. They extracted and selected key features, then built models with
deep learning methods. The CNN model achieved the highest accuracy of 96.6%.
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Although the aforementioned methods have shown remarkable results in plant dis-
ease identification, they depend heavily on large amounts of training data and powerful
computational resources. This poses limitations for applying these methods in resource-
constrained settings, particularly in real-time applications on mobile devices. In contrast,
lightweight convolutional neural networks (LWCNNs) have shown considerable potential
for real-time disease detection on mobile devices thanks to their lower resource require-
ments, efficient computational performance, and faster processing speeds. Thakur et al.
presented an LWCNN-based method for crop leaf disease identification, with the model
comprising about 6 million parameters, fewer than traditional CNNs and many of their
improved models, allowing the model to maintain high recognition accuracy while running
more efficiently on resource-limited devices [16]. Zhang et al. proposed a novel method
to achieve rapid and accurate identification of greenhouse cucumber diseases in naturally
complex environments [17]. The method reduces the number of parameters and computa-
tional cost by optimizing the network’s width, depth, and resolution while maintaining
high accuracy. Barman and his team developed a real-time citrus leaf disease classification
system based on smartphone images using their own CNN model and MobileNet to enable
fast identification of citrus leaf diseases on mobile devices [18].

Lightweight neural networks have demonstrated strong performance in recognizing
plant disease images with simple backgrounds. However, they often face difficulties in
extracting enough feature details from images with complex backgrounds, primarily due
to parameter constraints and insufficient utilization of multi-scale feature information.
To overcome this challenge, researchers have turned to attention mechanisms, which are
an effective feature extraction technique. Attention mechanisms enhance the model’s
ability to focus on important regions within an image, improving its feature recognition
ability. Bao et al. introduced an LWCNN model named SimpleNet for the automatic
identification of wheat spike diseases from images captured in field conditions via mobile
devices [19]. This model employs inverted residual blocks and integrates the convolutional
block attention module (CBAM) to enhance attention to critical disease features. Li et al.
proposed a transformer module based on spatial convolutional self-attention (SCSA) for the
recognition of strawberry diseases in complex backgrounds [20]. The SCSA-Transformer
module integrates multi-head self-attention (MSA) with spatial convolutional self-attention,
greatly enhancing recognition accuracy and efficiency.

Based on the preceding discussion, this study proposes a lightweight network model
(MFFSNet) for wheat disease recognition in complex environments. The model first cap-
tures features at multiple scales through a multi-scale feature extraction and fusion module
(MFEF) and then further refines these features using lightweight modules. On this basis,
an attention mechanism is introduced to enhance the model’s recognition of key features
while suppressing interference from complex backgrounds, significantly improving the
network’s performance in disease feature representation. The model is characterized by its
small size and fast operation speed, meeting the requirements for real-time applications.
The experimental results show that this method outperforms other networks in terms of
performance. The main contributions of this study can be summarized as follows:

1. A novel lightweight network model (MFFSNet) was developed for wheat disease
recognition in complex field backgrounds. MFFSNet employs a lightweight module
to reduce parameters and enhance operational speed, making it suitable for real-time
disease recognition.

2. A multi-scale feature extraction (MFE) module was proposed, using dilated convo-
lutions and the inception module to extract multi-scale feature information. This
approach captures detailed and contextual information across multiple scales, im-
proving disease recognition accuracy.
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3. A multi-scale feature fusion (MFF) module was introduced, which integrates the
extracted multi-scale features. This module overcomes the challenge of fragmented
feature representations by combining information from different scales, thereby en-
hancing the network’s ability to comprehensively recognize wheat diseases.

4. An efficient channel attention mechanism was proposed to improve key feature
recognition in complex backgrounds, enhancing model performance and reliability in
real-world applications.

2. Materials and Methods
2.1. Datasets

The dataset used in this study was derived from the LWDCD wheat disease
dataset [21], with 40% of the images collected in the field, while the remaining images
were sourced from previously published datasets. The LWDCD2020 dataset comprises
approximately 12,000 images, covering nine categories of wheat diseases with single-
disease annotations per image and one additional healthy category introduced to explicitly
distinguish healthy plants from diseased cases. The images have been preprocessed for
dimensional uniformity. These images feature complex backgrounds, varying capture
conditions, different characteristics at various stages of disease progression, and similar
features among different wheat diseases. We selected three common wheat diseases in
China: crown and root rot, leaf rust, and wheat loose smut, along with healthy wheat
as a control category. This selection enables us to focus on specific disease identification
challenges while working with limited data resources. The dataset of 3430 images was
randomly split into training and testing sets at a 9:1 ratio. This division ensures sufficient
samples for robust model training while preserving an adequate testing set for reliable per-
formance evaluation. The test set’s sample distribution is detailed in Table 1. This is crucial
for practical applications where data collection may be limited by resources or conditions.

Table 1. The sample distribution of the test set.

Type Crown and Root Rot Healthy Wheat Leaf Rust Wheat Loose Smut

Numbers 45 143 72 83

2.2. Image Preprocessing

Before model training, the preprocessing steps for all wheat disease images were as
follows: training set images were randomly cropped to 224 × 224 pixels and randomly
horizontally flipped to enhance feature diversity while preventing dataset expansion.
Considering that the disease distribution is not limited to the center of the leaf, a random
cropping method was used to retain more lesion information. The test set images were first
resized to 256 × 256 pixels and then center-cropped to a fixed size of 224 × 224 pixels. All
images were standardized to reduce data variability, which in turn enhances the model’s
convergence speed and improves its generalization ability.

2.3. Experiment Details

To evaluate the effectiveness of the MFFSNet model in wheat disease image recognition
and classification, we conducted a series of experiments. The experimental hardware
setup in this study includes a Linux operating system and an Intel(R) Xeon(R) E5-2686 v4
processor, while model training and testing are accelerated using an NVIDIA GeForce RTX
3060 GPU. During the model training process, hyperparameters are critical in determining
the model’s overall performance. Therefore, after referring to related literature on model
design, we set the hyperparameters as shown in Table 2 .
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Table 2. Experiment details.

Parameter Value

Optimization Adam
Learning rate 0.001
Weight decay 5.00 × 10−4

Epoch 250
Batch size 16

GPU NVIDIA GeForce RTX 3060

2.4. Evaluation Indexes

Regarding evaluation metrics, relying solely on accuracy to assess the model’s perfor-
mance on wheat disease images is inadequate. When the data are insufficient or imbalanced,
the model’s accuracy may appear high, but its overall performance could still be subopti-
mal. In such cases, the model may perform well in minority classes, but it is also prone
to misclassification, which negatively impacts its practical effectiveness. To address this,
we employ four evaluation metrics: accuracy, precision, recall, and F1-score—to compre-
hensively evaluate the performance of the proposed method. The calculation formulas for
these evaluation metrics are presented below:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − score =
2 × precision × recall

precision + recall
(4)

Here, TP (true positive) represents the number of samples that are correctly pre-
dicted as positive, FP (false positive) represents the number of samples that are incorrectly
predicted as positive, FN (false negative) represents the number of samples incorrectly
predicted as negative, and TN (true negative) represents the number of samples correctly
predicted as negative.

2.5. Model Structure

The proposed MFFSNet mainly consists of the MFEF module and three key stages,
achieving efficient extraction and recognition of wheat disease features. The MFEF module
serves as the core of MFFSNet, effectively capturing fine textures and macrostructures
in images through a multi-scale feature fusion strategy, providing rich feature support
for disease recognition. The structure of MFFSNet is shown in Figure 1. MFFSNet first
employs a CBR layer to perform preliminary downsampling on the input image, extracting
important features and reducing computational load. Subsequently, the MFEF module is
applied to further extract multi-scale features, and, through the feature fusion strategy, it
reduces information loss and enhances the network’s ability to express disease features.
Following this, MaxPool is used for downsampling, reducing feature dimensions and
laying the foundation for deep feature extraction. The network then proceeds with three
stages of deep feature extraction, with each stage consisting of a different number of units
to accommodate varying levels of feature learning requirements.
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Figure 1. Structure of MFFSNet.

The architecture of MFFSNet is shown in Table 3 . Referring to classic network models,
for multi-channel input images (each sized 3 × 3 × 224), an output feature map (sized
112 × 112) is obtained through a convolution layer (Conv1 with a kernel size of 3 × 3 and
stride = 2), batch normalization (BN) [22], and ReLU6 activation function. Subsequently,
the feature map passes through the MFEF module, which includes multi-scale feature
extraction and deep attention feature fusion, maintaining an output channel count of
24 with the feature map size unchanged. Next, a 3 × 3 max pooling layer (MaxPool)
with a stride of 2 halves the spatial size of the feature map to 56 × 56 while retaining
24 channels. Then, the process enters three stage-wise deep feature extraction modules,
which progressively increase the number of output channels (from 48 to 96, and then to
192) to deepen feature representation. Finally, through Conv5 and a global average pooling
layer (GAP), a fixed-length feature vector is obtained. The final classification is achieved
through a fully connected layer (FC), resulting in the final category output. In MFFSNet,
the specific output channel count and feature map size at each stage are designed to help
the model capture image features at different levels, enhancing the accuracy of wheat
disease identification.

Table 3. Layered description of the proposed MFFSNet.

Layer Output Size Configurations Repeat Output
Channels

Input 224 × 224 images 1 3

Conv1 (3 × 3) 112 × 112 Conv (stride = 2), BN,
Relu6 1 24

MFEF 112 × 112 MFE, MFF 1 24
MaxPool (3 × 3) 56 × 56 stride = 2 1 24

Stage2 28 × 28 stride = 2 unit 1 48
28 × 28 stride = 1 unit 3 48
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Table 3. Cont.

Layer Output Size Configurations Repeat Output
Channels

Stage3 14 × 14 stride = 2 unit 1 96
14 × 14 stride = 1 unit 7 96

Stage4 7 × 7 stride = 2 unit 1 192
7 × 7 stride = 1 unit 3 192

Conv5 (1 × 1) 7 × 7 Conv(stride = 1), BN,
Relu6 1 1024

GlobalPool (7 × 7) 1 × 1 1
Classifier 1 4

2.6. Component Units

In the process of designing the MFFSNet network architecture, we faced the challenge
of identifying wheat disease features at different scales. To effectively capture and recog-
nize these disease features, we needed a network structure capable of densely capturing
features at different scales. This structure should be able to maintain computational effi-
ciency while enhancing the network’s ability to capture detailed contextual information.
The ShuffleNetV2 network architecture [23], with its unique design advantages, served as
an inspiration for our approach.

ShuffleNetV2 is a lightweight convolutional neural network. It effectively improves
network information flow and parameter efficiency by introducing channel shuffle opera-
tions and pointwise grouped convolutions. The core advantage of ShuffleNetV2 lies in its
channel shuffle layer, which rearranges the channel dimensions of feature maps to enhance
information exchange between different groups, thereby improving the network’s feature
representation capability. Moreover, ShuffleNetV2’s pointwise grouped convolutions not
only reduce computational cost but also maintain the network’s depth and complexity by
utilizing grouped operations. This allows the network to learn rich feature representations
despite having fewer parameters.

However, the basic unit of the ShuffleNet network suffers from partial structural redun-
dancy, as well as poor network operation speed. To solve the problem of the ShuffleNetV2,
we designed the basic unit of MFFSNet, as shown in Figure 2. Its basic units will be reused
in the three stages of MFFSNet for progressive extraction of deep features. To improve the
model’s performance and computational efficiency, we introduced key optimizations in the
stride = 2 units, including replacing the original 3 × 3 depthwise separable convolution
(DWConv) [24] with a 5 × 5 DWConv to capture a broader spatial context. Additionally,
one 1 × 1 pointwise convolution layer was removed to reduce the computational burden
while preserving feature diversity. Moreover, DSA mechanism was introduced after concat
operation, replacing the conventional channel shuffle to improve the model’s capability
in recognizing disease features. In the stride = 1 unit, we introduced the Fasternet Block
module [25], combined with the efficient channel attention (ECA) mechanism [26]. This
module consists of partial convolution (PConv) and two pointwise convolutions (PWConv),
reducing redundant computation and memory access while accelerating the network’s
processing speed. The receptive field of the PConv + PWConv combination resembles a
T-shaped convolution, focusing primarily on the central region, which is critical for the pre-
cise localization of disease features. The ECA mechanism is both computationally efficient
and parameter-light. When incorporated into PConv, it selectively enhances the extracted
features, reinforcing important ones while suppressing irrelevant ones, thus reducing the
learning of these redundant features by the subsequent layers and improving the overall
computational efficiency.
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Figure 2. MFFSNet component unit. (a) Stride = 1 unit; (b) stride = 2 units.

2.7. Dual-Branch Shuffle Attention (DSA)

Wheat disease images often display substantial inter-class differences and subtle intra-
class variations, making the recognition process vulnerable to interference from redundant
information within the images. To suppress background noise and address image quality
issues that can affect classification performance, we propose an improved shuffle attention
mechanism [27] (DSA) to help the network focus more effectively on critical disease features
in the images. The DSA mechanism incorporates group convolutions and channel shuffle
operations, which are tightly aligned with the core design principles of MFFSNet, and they
will replace channel shuffle operations and be applied to basic units with a stride of 2. Given
an intermediate feature map X ∈ RC×H×W into G groups along the channel dimension,
denoted as X = [X1, . . . , XG],where Xk ∈ R C

G ×H×W . Each sub-feature Xk progressively
captures specific semantic information during training. Subsequently, the channel attention
module assigns importance coefficients to each sub-feature. As depicted in Figure 3, one
branch employs global average pooling (GAP) to capture the statistical properties of each
channel globally, denoted as s ∈ R C

G ×1×1, by compressing Xk across the spatial dimensions
H × W:

s = Fgp(Xk) =
1

H × W

H

∑
i=1

W

∑
j=1

Xk(i, j) (5)

Another branch adopts standard deviation pooling to capture intra-channel distribu-
tion characteristics, offering a more comprehensive feature representation for the model,
as calculated below:

rc = Fstd(XK) =

√√√√ 1
H × W

H

∑
i=1

W

∑
j=1

(XK(i, j)− µc)
2 (6)

where the mean µc for each channel c is given by

µc =
1

H × W

H

∑
i=1

W

∑
j=1

XK(i, j) (7)
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Figure 3. Construction of the DSA module.

The result of the standard deviation pooling reduces the dimensions from C × H × W
to C × 1 × 1:

R = Fstd(XK) = [r1, r2, . . . , rC] ∈ RC×1×1 (8)

The features are then concatenated along the channel dimension, resulting in the
aggregated feature t. To capture local cross-channel interactions and enhance channel atten-
tion learning, we employ Conv1D convolutions inspired by ECA. The first 1D convolution
facilitates the integration of standard deviation pooling and global average pooling results
along the channel dimension, as described below:

ω1 = Conv1D1(t) (9)

The second 1D convolution is used for dimensionality reduction, filtering out the most
representative information from the enhanced features, thus boosting the channel attention
mechanism’s effectiveness, as shown below:

ω2 = σ(Conv1D2(ω1)) (10)

Finally, all sub-features are aggregated, and the “channel shuffle” operator is applied
to enable cross-group information flow along the channel dimension.

2.8. Multi-Scale Feature Extraction and Fusion Module (MFEF)

The multi-scale feature extraction and fusion module comprises an extraction module
for capturing wheat disease features at different scales and a fusion module for integrating
these features to improve disease recognition.

2.8.1. Multi-Scale Feature Extraction Module (MFE)

In investigating the complex visual features of wheat diseases, a key challenge lies in
capturing their multi-scale details. To comprehensively extract disease features ranging
from subtle to prominent, we reference and improve the Receptive Field Block (RFB) [28]
module to serve as a multi-scale feature extraction module, as depicted in Figure 1. This
module employs dilated convolutions [29] to expand the network’s receptive field, thereby
capturing disease features at varying scales. The introduction of dilated convolutions
allows the module to significantly enhance its perception of image details while main-
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taining a low computational cost. Specifically, the module adopts a parallel processing
structure, consisting of multiple branches, each with 3 × 3 convolutional kernels at varying
dilation rates, paired with 1 × 1 convolutions for dimensionality reduction. The outputs
from these branches are subsequently merged to enable multi-scale feature fusion. This ap-
proach enhances the network’s capacity to identify disease features without compromising
computational efficiency.

2.8.2. Multi-Scale Feature Fusion Module (MFF)

Based on multi-scale feature extraction, to fully utilize the advantages of information
at different scales, it is necessary to fuse feature maps with varying receptive fields, thereby
achieving multi-scale feature integration and enhancing the model’s representation capa-
bility. In this study, the adopted feature fusion strategy is inspired by the kernel selection
technique in LSKNet [30]. This technique enables each neuron in the network to adaptively
adjust its receptive field size based on the content of the input features, allowing for more
effective capture of multi-scale information. In terms of selection mechanism, we referred
to Coordinate Attention [31] and proposed an alternative spatial selection mechanism.
The spatial selection mechanism in LSKNet encodes spatial information globally, but it com-
presses the global spatial information into a single channel descriptor, making it difficult
to preserve the positional information necessary for capturing spatial structures in vision
tasks. Therefore, we use Coordinate Attention to capture long-range spatial interactions
while retaining precise positional information.

As illustrated in Figure 4, the information extracted by the MFE module is first pro-
cessed using max pooling and average pooling kernels with spatial ranges of (H, 1) or
(1, W), encoding each channel along the horizontal and vertical axes, respectively. The out-
put of the c− th channel at a given height h can be expressed using the following two formulas:

Zh
c (h1) =

1
W ∑

0≤i<W
µc(h, i) (11)

Zh
c (h2) = max

0≤i<W
µc(h, i) (12)

Similarly, the output of the c − th channel at width w can be written as

Zh
c (w1) =

1
H ∑

0≤j<H
xc(j, w) (13)

Zh
c (w2) = max

0≤j<H
xc(j, w) (14)

To fully utilize the captured positional information, accurately locate regions of in-
terest, and facilitate information interaction between different spatial descriptors, we first
concatenate them and then use a convolutional layer F2C→N(N) to transform the pooled
features (with 2C channels) into N spatial attention maps.

f = F2→N([Zh
c (h1); Zh

c (h2); Zh
c (w1); Zh

c (w2)]) (15)

Then, f is divided into two separate tensors f h ∈ R3×H and f w ∈ R3×W along the
spatial dimension, and a sigmoid activation function is applied to obtain the individual
spatial selection mask for each of the branch inputs:{

gh = σ( f h)

gw = σ( f w)
(16)



Agronomy 2025, 15, 910 11 of 19

where σ is the sigmoid function, and gh and gw are the attention weights in the H and
W directions.

Then, different branch inputs are weighted using their corresponding spatial selection
masks to obtain the final output.

y = x1 × gh1 × gw1 + x2 × gh2 × gw2 + x3 × gh3 × gw3 (17)

Figure 4. Construction of the MFF module.

3. Experiments and Results
3.1. Impact of the Position of MFEF Module

The core advantage of the MFEF module is its ability to process and integrate features
at different scales, which is crucial for understanding disease progression and identifying
subtle differences in disease symptoms. Its feature extraction primarily targets details such
as texture and color in wheat diseases, which are typically captured in the shallow layers
of convolutional neural networks. Consequently, placing the MFEF module in the initial
layers of the network introduces multi-scale information early in the feature extraction
process, which aids the network in better understanding disease traits and improving
performance in later stages. To identify the optimal placement of the MFEF module, we
conducted comparative experiments by inserting it at different network positions: the
first layer, after the Conv1 layer, and after the MaxPool layer. We tested the models with
these different MFEF positions, and their loss and accuracy curves are shown in Figure 5.
The MFEF module’s performance varies with its placement within the network. When
positioned as the network’s first layer, it achieves 96.50% accuracy and 96.13% precision.
Placing the module after the MaxPool (3 × 3) layer results in 94.47% accuracy and 94.84%
precision. However, when positioned after the Conv1 layer, the module attains its highest
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accuracy of 97.38% alongside 96.79% precision. Therefore, subsequent experiments in this
study were conducted by placing the MFEF module after the Conv1 layer.

Figure 5. The effect of different positions of the MFEF module in the model. (a) Accuracy value curve;
(b) loss value curve.

3.2. Comparative Experiment on Different Network Models

Extensive experiments were conducted on the wheat disease dataset, comparing the
proposed MFFSNet with several classical models, with the highest accuracy achieved over
250 epochs taken as the optimal recognition result for each model. As shown in Table 4,
the proposed network model is tens of times better in terms of the number of parameters
and floating point operations, and its accuracy, precision, recall, and F1-score are better than
those of ResNet50 when compared to the heavyweight network (ResNet50 [32]). When
compared to several classical lightweight networks (GoogleNet [33], Densenet-121 [34],
MobileNetV2 1.0x [35], MobileNetV3 Small [36], ShuffleNetV2 2.0x, and EfficientNetV2-
S [37]), the proposed model has the fewest parameters—approximately one-third of the
smallest among the other models. Additionally, its accuracy, precision, recall, and F1-score
are the highest among the compared models, reaching 97.38% (approximately 3% higher
than GoogleNet), 96.79% (around 2% higher than MobileNetV3 Small), 97.96%, and 97.34%
(roughly 1.5% higher than EfficientNetV2-S), respectively. Although the proposed model
does not exhibit significant superiority over Densenet-121 and ShuffleNetV2 2.0x in terms
of performance metrics, its parameter count is less than one-tenth of these two models,
and its floating point operations are substantially lower. When compared to the state-of-the-
art transformer-based Swin Transformer module [38], the proposed method also exhibits
superior performance.

Table 4. Comparison of the identification results of different models.

Methods Acc (%) Precision (%) Recall (%) F1-Score (%) FLOPs (G) Params (M)

GoogleNet 94.46 93.43 94.68 93.98 25.31 5.98
DenseNet-121 96.50 95.93 96.33 96.12 46.34 6.96

MobileNetV2 1.0× 95.92 95.24 95.94 95.56 5.22 2.23
MobileNetV3 Small 95.67 94.86 95.25 95.02 0.98 1.52
ShuffleNetV2 ×2.0 96.50 95.84 97.30 96.52 9.54 5.35
EfficientNetV2-S 95.92 95.49 96.28 95.83 46.36 20.18

Swin Transformer 95.63 95.90 95.63 95.64 69.94 27.50
Proposed model

(MFFSNet) 97.38 96.79 97.96 97.34 1.58 0.45

To visually present the classification performance of the proposed method, we used
a confusion matrix to analyze the classification results of each disease category in the
MFFSNet model, as illustrated in Figure 6. Categories A, B, C, and D represent the four
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different types, and the values on the main diagonal of the confusion matrix indicate the
classification accuracy for each category. As shown in the figure, the darkest colors on the
main diagonal are the maximum values for each row and column, indicating that the model
demonstrates better classification performance for each category. Since crown and root rot
has a relatively simple background, its classification accuracy reaches 100%. In the healthy
wheat category, 137 images were correctly classified, with two images each misclassified
into other categories. For leaf rust, two images were misclassified as healthy wheat. As for
wheat loose smut, one image was misclassified as crown and root rot. These categories are
susceptible to interference from complex backgrounds, and the presence of similar features
among different diseases causes some degree of misclassification.

Figure 6. Confusion matrix analysis. (a) Without normalization; (b) with normalization.

3.3. Results of Experiments for the Attention Mechanism

To evaluate the impact of the proposed DSA module on model performance, we
designed a series of experiments based on different attention mechanisms. We replaced the
DSA module with various other attention mechanisms for comparative analysis, and the
results of these experiments are depicted in Figure 7. As shown in the figure, incorpo-
rating the DSA module led to a noticeable performance enhancement. When compared
to networks using ECA, SE [39], SA, and CA attention mechanisms, it outperformed the
best-performing SE-MFFSNet by approximately 1% in accuracy, with a corresponding
increase in F1-score.

Figure 7. Comparison of accuracy and F1-scores of different attention mechanism models.

To further validate the effectiveness of the DSA module, we utilized Class Activation
Mapping (CAM) [40] to visualize the disease recognition process of the model, as illustrated
in Figure 8. The heatmap indicates that, the darker the red regions in the image, the more
effectively the model extracts features from these areas. Conversely, if the heatmap appears
blue, it suggests that the region may be prone to redundancy. As illustrated in the figure,
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the model incorporating DSA can better focus on diseased regions and extract critical
features, thereby enhancing its recognition accuracy.

Figure 8. CAM visualization results for different models of attention mechanisms.

3.4. Comparison of Experiments Performed on Different Datasets

To verify the generalizability of our method across different datasets, we conducted
comparative experiments on the AppleLeaf9 dataset [41], which consists of nine classes of
apple leaf diseases, with a total of 14,582 images, 94% of which were captured in natural
outdoor environments. The experimental results are illustrated in Figure 9. Compared with
other models, our proposed method demonstrated superior performance. Although its
accuracy is slightly higher than that of DenseNet121, the parameter count is substantially
reduced compared to DenseNet121. We also displayed the loss curve of the proposed
module along with those of other excellent recognition methods, as shown in Figure 10b.
From the loss curves, it is evident that the convergence rate of our model is on par with
other models. As observed from the accuracy curves in Figure 10a, our method outperforms
the other classifiers in terms of accuracy.

Figure 9. Recognition results of different models on AppleLeaf9 dataset.
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Figure 10. Comparative evaluation of experiments performed on AppleLeaf9 dataset. (a) Accuracy
value curve; (b) loss value curve.

3.5. Comparison of Experiments on the Wheat Plant Diseases Dataset

To verify the applicability of our method on wheat datasets with more disease cate-
gories, we conducted experiments on the Wheat Plant Diseases dataset [42]. This dataset
provides high-resolution images of real-world wheat diseases without artificial augmenta-
tion, ensuring natural disease variations and improved model generalizability. It contains
13,104 non-repetitive images across 15 categories. We divided the dataset into training,
validation, and test sets in a 1/2, 1/6, 1/3 ratio. As shown in Figure 11, our proposed
method outperforms the others in accuracy. However, our method’s accuracy still has room
for improvement, and we plan to optimize it further in the future.

Figure 11. Recognition results of different models on Wheat Plant Diseases dataset.

3.6. Ablation Experiments

We performed a series of ablation experiments to further investigate the practicality
of the ECA mechanism, MFF fusion method, MFEF module, and the distinctions among
different fusion techniques, with the results summarized in Table 5. First, when the ECA
mechanism is not used in the proposed method, the accuracy decreases by about 1%.
Secondly, without the DSA module, the accuracy and other metrics also decrease. Finally,
in comparison to models without the MFEF module and those utilizing either MFF or LSK
fusion methods, the MFF fusion technique yielded the best recognition performance. These
findings highlight the effectiveness of both the ECA mechanism and the MFEF module.
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Table 5. Ablation experiments.

Methods ECA DSA MFE LSK MFF Acc (%) Pre (%) Recall (%) F1 (%)

MFFSNet

✓ ✓ ✓ 95.63 95.37 94.96 95.10
✓ ✓ ✓ 96.34 96.17 95.66 95.89

✓ ✓ 95.63 94.76 95.00 94.82
✓ ✓ ✓ ✓ 96.50 95.94 97.01 96.42
✓ ✓ ✓ ✓ 97.38 96.79 97.96 97.34

3.7. Visualization of Recognition Models and Results

In this study, Figure 12 shows the visual analysis of the feature heatmaps output
by specific layers in the model. From the figure, it is evident that, after being processed
by the MFEF module, the model successfully captures rich multi-scale information from
the images, encompassing, but not limited to, textures of varying scales, edge features,
and color distributions. As the image progresses through the three key stages, the amount
of detailed visual information gradually decreases, while more abstract feature information
begins to emerge. This indicates that the model, during the feature extraction process, is
progressively shifting from low-level pixel features to higher-level semantic features.

Figure 12. Visualization results of the output feature maps of the convolution layer.

4. Discussion
In this study, we proposed MFFSNet, a novel model for accurately identifying wheat

diseases in complex environments. It uses an MFEF module with inflated convolution to
capture diverse features across scales. MFFSNet’s primary units are enhanced ShuffleNetV2
units for better efficiency and performance. A DSA mechanism is also integrated to help
the model focus on key features and reduce background interference. MFFSNet demon-
strates superior performance compared to several classical models. It not only has fewer
parameters and float operations but also better performance metrics thanks to its unique
architecture. The effectiveness of the DSA module, which enhances the model’s focus on
diseased areas and improves recognition accuracy, is verified by the comparative analysis
in Figure 7 and the visualization in Figure 8. Furthermore, experiments on the AppleLeaf9
dataset, containing apple leaf disease images, show that MFFSNet can generalize well to
different crops, indicating its potential for broader agricultural applications. However,
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this study also has certain limitations. The research mainly focuses on wheat disease
identification in field environments with complex backgrounds, but it does not consider
many factors such as plant age at infection, plant organ infected, wheat variety, stage of
pathogen life cycle, etc. Future research should be conducted in collaboration with plant
pathologists to more comprehensively evaluate wheat disease identification performance.

5. Conclusions
This study successfully designed a lightweight convolutional neural network model,

MFFSNet, for wheat disease recognition in complex backgrounds. The model efficiently
captures subtle features of wheat diseases using multi-scale feature extraction and fusion
modules, refines these features through lightweight components, and employs attention
mechanisms to strengthen the identification of crucial features while mitigating interference
from complex backgrounds. MFFSNet offers advantages such as a compact model size and
fast computational speed. The experimental results demonstrate that the model achieves
an accuracy of 97.38%, approximately 3% higher than the classical model GoogleNet, and a
precision about 2% higher than the mobile network MobileNetV3 Small. Furthermore,
with a parameter count of just 0.45 M, the model is well suited for deployment on resource-
constrained devices. The limitation of this study is that it does not consider the stage of
the pathogen life cycle. For future work, improvements can be made in the following
areas: (1) collaboration with plant pathologists to conduct a more comprehensive eval-
uation of wheat disease identification performance; (2) we intend to deploy MFFSNet
on mobile devices or field-programmable gate arrays (FPGAs) for real-time rapid wheat
disease identification in agricultural fields, offering farmers a convenient tool for effective
disease management.
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