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Abstract: Soil mapping plays a crucial role in optimizing agricultural production by pro-
viding spatially explicit information on soil types and properties, which supports decision-
making in precision fertilization, irrigation, and crop selection. Traditional soil mapping
methods, which rely on field surveys and laboratory analyses, face challenges related to
efficiency and scalability. Although combining legacy soil maps with environmental co-
variates can reveal soil-environment relationships and improve sampling layouts, low soil
spatial variability and significant human activity in plain areas often hinder the effective-
ness of existing algorithms, making them sensitive to sample density and environmental
variability. This study proposes a genetic algorithm (GA)-based sampling optimization
framework tailored to plain areas with low soil spatial variability. By integrating legacy
soil maps and environmental covariates, the GA dynamically balances spatial dispersion
and environmental representativeness, addressing the limitations of traditional methods
in homogeneous landscapes. In a case study conducted in Tongzhou District, Beijing,
China, the GA sampling method combined with random forest modeling, applied to
soil type mapping, achieved the highest kappa coefficient of 70.25% with 5000 sampling
points—an average improvement of 10% over fuzzy C-means clustering and K-nearest
neighbor methods. Additionally, field-validated accuracy reached 89.69%, representing a
13% improvement over the other methods. This study demonstrates that the GA-based
sampling approach significantly enhances sample representativeness and efficiency, thereby
improving the accuracy of digital soil mapping. The proposed method offers an efficient
and reliable solution for soil mapping in plain areas, contributing to optimized land use
and more informed precision agriculture decisions.

Keywords: genetic algorithm; precision agriculture; sampling layout optimization; soil
type mapping

1. Introduction

Soil mapping provides critical spatial information on soil types and attributes, forming
the foundation for land management by supporting land suitability assessments and
sustainable land-use planning [1,2]. Accurate soil mapping enables policymakers and
land managers to scientifically plan land use, mitigate soil degradation, and allocate land
resources effectively. However, traditional soil mapping methods rely heavily on field
surveys, expert knowledge, and laboratory analyses. While reliable on a small scale, these
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methods are time-consuming and labor-intensive, lacking scalability, particularly in vast or
complex regions [3]. These limitations hinder the efficiency and coverage of soil mapping,
necessitating the improvement of sampling strategies and the optimization of mapping
methods [4].

Traditional soil mapping typically involves extensive field sampling, where soil sam-
ples are manually collected across the study area, followed by detailed laboratory analyses
to classify and map soil properties [5]. While this approach is highly reliable and accurate
for small-scale or localized applications, it is extremely time-consuming, labor-intensive,
and resource-intensive, especially in vast or complex regions [6]. To overcome these lim-
itations, methods based on auxiliary variables have been widely used in recent years to
improve the efficiency and accuracy of soil mapping. Based on Jenny’s [7] theory of soil-
forming factors, which relates soil development to various environmental factors, numerous
methods have been developed to optimize sample designs in the environmental feature
space using auxiliary environmental covariates [8]. Yang et al. [9] used conditioned Latin
hypercube sampling (CLHS) to study the quantitative impact of sample randomness on
soil mapping accuracy under different sample sizes and analyzed the possible reasons from
the perspective of pedogenesis. Stumpf et al. [10] incorporated limited field operability
and legacy soil samples into the hypercube sampling design, modifying conditioned Latin
hypercube sampling to return sample locations that best cover the covariate space related
to soil, while maintaining the correlation of covariates within the sample set. Zhu et al. [11]
used fuzzy C-means classification to identify unique soil-environment combinations and
their spatial locations. Field sampling tasks were then allocated to investigate the soils at
typical locations of these combinations, determine the relationships between soil conditions
and environmental conditions, and use the established relationships to map the spatial
distribution of soil conditions. These methods provide valuable tools for soil mapping,
significantly improving sampling efficiency, accuracy, and representation [12].

Nevertheless, the applicability of these methods is often constrained by sampling
density, diversity of environmental variables, and the spatial scale of study areas [13]. In
plain areas, the uniformity of topography and land use leads to low spatial variability in soil
attributes, making it difficult for existing sampling methods to comprehensively capture
the complexity of soil distributions. Furthermore, natural processes such as soil erosion and
groundwater fluctuations introduce spatio-temporal dynamics to soil properties, adding
challenges to sampling design [14,15]. Therefore, how to improve sampling strategies
to better capture soil spatial variability and enhance the accuracy and efficiency of soil
mapping in plain areas has become a pressing issue to be addressed.

This study proposes a genetic algorithm sampling (GAS) method that integrates legacy
soil maps with environmental covariates to optimize soil sampling point selection [16]. The
GAS method iteratively adjusts the selection and distribution of sampling points, intelli-
gently exploring optimal sampling layouts to effectively capture soil spatial variability and
overcome the limitations of traditional sampling methods [17]. The study area is Tongzhou
District in southeastern Beijing, a typical plain area with relatively uniform topography but
complex soil distributions influenced by natural processes. Additionally, Tongzhou District
was one of the pilot areas for China’s second national soil survey conducted 40 years ago
under the leadership of Chinese soil scientist Xi Chengfan. The soil maps created during
this survey contain highly reliable expert knowledge. This study evaluates the performance
of the GAS method using the random forest (RF) model and compares it with K-nearest
neighbors (KNN) and fuzzy C-means clustering sampling (FCMS) under different sample
sizes. The objectives of this study are as follows: (1) to evaluate whether the GAS method
can improve the accuracy, stability, and spatial details of soil type mapping by integrating
legacy soil maps with environmental covariates; (2) to quantify the improvement achieved
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by the GAS method compared to KNN and FCMS; (3) to analyze the performance of the
GAS method relative to KNN and FCMS under different sample sizes; (4) to evaluate the
potential for agricultural utilization of soils in 2light of their resources and provide rational
amelioration measures to improve yields and sustainable development.

2. Materials and Methodology
2.1. Research Area Overview

Tongzhou District is located in the southeast of Beijing, at the northern end of the
Beijing-Hangzhou Grand Canal, between 39°36’ and 40°02" N Lat, and 116°32" and
116°56' E Long. It is 36.5 km wide from east to west, 48 km long from south to north,
with a total area of 907 km?. The terrain slopes down from northwest to southeast. The
elevation ranges from 2.47 to 62.18 m, and most of the area consists of alluvial fans and
plains created by the Yongding River, the Chaobai River, and the Wenyu River. The average
annual temperature is 13.8 °C, with a frost-free period of about 190 days. Most precipitation
is concentrated in July and August, with an average annual precipitation of 620.9 mm.
The average annual solar radiation is 132.6 kcal/cm?, with abundant sunlight and heat.
Tongzhou District is continuously covered by thick Quaternary and Tertiary loose deposits,
which form the material basis for the modern alluvial fan plain and the alluvial low plain.

The Figure 1 presents the original soil type map of Tongzhou District. Since the soil
type map was created 40 years ago, when communication was more difficult, a unified
national classification standard and nomenclature had not yet been established. To address
issues in the original soil type map, such as different names for the same soil, the same
names for different soils, and inconsistent classification standards, a new soil classification
system for Tongzhou District has been established. This system is based on the provisional
soil classification system from the Third National Soil Survey of China (Trial) [18], combined
with field verification and digital soil mapping. The soil classification follows the Chinese
soil genetic classification. A total of three soil groups, eight subgroups, 13 soil genera, and
42 soil species have been identified. Each soil species has been assigned a unique code to
facilitate subsequent analysis. The details of the soil classification system for Tongzhou
District are presented in Table S1 in the Supplementary Material.

2.2. Selection and Processing of Environmental Covariates

The selection of environmental covariates for soil mapping should prioritize factors
that accurately characterize pedogenic processes. While key soil properties such as soil
depth, diagnostic horizons, and soil organic carbon (SOC) are ideal indicators of soil char-
acteristics, comprehensive field survey data are often unavailable across large areas. Under
such data-scarce conditions, remote sensing data serve as crucial supplementary informa-
tion sources, providing reliable predictive variables that compensate for missing ground
observations [19]. Based on the Dokuchaev pedogenic factor theory [3], environmental co-
variates were selected, including parent material, texture, land cover type, elevation, slope,
aspect, planar curvature, profile curvature, topographic wetness index (TWI), distance from
water bodies, groundwater depth, Risk-Screening Environmental Indicators (RSEIs), Land
Surface Temperature (LST), Soil-Adjusted Vegetation Index (SAVI), Normalized Difference
Vegetation Index (NDVI), Difference Vegetation Index (DVI), Ratio Vegetation Index (RVI),
and Green Normalized Difference Vegetation Index (GNDVI). Remote sensing data hold
significant potential in soil mapping, and this study explores the use of several remote
sensing indices as alternative environmental covariates. RSEI, derived from principal com-
ponent analysis of humidity, greenness, temperature, and dryness indices, reflects human
and biological influences on environmental quality. LST, a key remote sensing index, char-
acterizes surface temperature and reflects climatic impacts on soil. SAVI is used to assess
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soil moisture status, correcting for the interference of vegetation in high-coverage areas,
thereby highlighting environmental influences on soil. DVI assesses vegetation growth
and, when combined with NDVI and other indices, improves the accuracy and reliability of
remote sensing monitoring, emphasizing the role of vegetation on soil. RVI, closely related
to soil physicochemical properties, reflects soil quality and nutrient status, while GNDVI
indicates vegetation growth status, which significantly impacts soil properties and quality.
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Figure 1. Map of original soil types in the study area. Table S1 in the Supplementary Material lists
the specific meanings of the codes shown in the figure, providing explanations of the correspondence
between soil type codes and their respective soil type names. Number “13” was missing because
the soil type it represents covers a very small area and did not meet the size requirement needed
for display.

As shown in Table 1, the data for RSEI, LST, SAVI, DVI, GNDVI, RVI, and NDVI were
derived from remote sensing data processed using Google Earth Engine, based on Landsat
satellite imagery (30 m resolution). Soil parent material data were obtained from a digitized
1:25,000 geological map of China. Land cover type data were sourced from GlobeLand30,
a global geographic information product. Digital Elevation Model (DEM) data (12.5 m
resolution) and water system data were obtained from the National Science & Technology
Infrastructure of China (http:/ /www.geodata.cn) (accessed on 8 April 2024). Slope, aspect,
planar curvature, profile curvature, TWI, and distance from water bodies were derived
from DEM and water system data using ArcGIS software (version 10.6, ESRI, Redlands,
CA, USA). The groundwater depth data were obtained from the automated monitoring
wells of the Beijing Water Affairs Bureau and were interpolated using the Inverse Distance
Weighting (IDW) method. Texture data were extracted from the indoor calibration soil map.
All time-related data represent the entire year of 2023.
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Table 1. Selected environmental covariates.
No. Abbreviation Resolution Source
1 Parent Material - 1:25,000 Digitized geological map of China
2 - - Indoor calibration soil map
3 Land Cover Type - 30 m GlobeLand30
National Science & Technology
4 DEM 12.5m Infrastructure of China
(http:/ /www.geodata.cn)
5 - Derived from DEM Processed using ArcGIS
6 - Derived from DEM Processed using ArcGIS
7 Planar Curvature - Derived from DEM Processed using ArcGIS
8 Profile Curvature - Derived from DEM Processed using ArcGIS
9 Topographic Wetness Index TWI Derived from DEM Processed using ArcGIS
10 Distance to water bodies ) ) Processed using ArcGIS and water
system data
Water Affairs Bureau of Tongzhou
11 Groundwater Depth - - District, interpolated using inverse
distance weighting
Risk-Screening Landsat imagery processed using
12 Environmental Indicators RSEI 30m Google Earth Engine
13 Land Surface Temperature LST 30 m Landsat imagery proces§ed using
Google Earth Engine
14 Soil-Adjusted Vegetation SAVI 30m Landsat imagery proces§ed using
Google Earth Engine
Normalized Difference Landsat imagery processed using
15 Vegetation Index NDVI 30m Google Earth Engine
16 Difference Vegetation Index DVI 30m Landsat imagery proces§ed using
Google Earth Engine
17 Ratio Vegetation Index RVI 30m Landsat imagery procesged Hsing
Google Earth Engine
Green Normalized Landsat imagery processed using
18 Difference Vegetation Index GNDVI 30m Google Earth Engine

2.3. Models for Sampling Design
2.3.1. Genetic Algorithm Sampling

The selection of soil sampling points needs to take into account both cost and represen-
tativeness, which is a multi-objective optimization problem. Genetic algorithms can find
solutions close to the optimum in the complex sampling scheme design space by utilizing
parallel search capabilities [20,21]. Compared with traditional methods, genetic algorithm
sampling can more comprehensively cover the study area while taking sampling efficiency
into account. Genetic algorithms are essentially optimization algorithms that simulate
the biological evolution process. They mimic the problem to be solved as a biological
evolution process by drawing on biological evolutionary theory, generating solutions for
the next generation through operations such as replication, crossover, and mutation, while
gradually eliminating solutions with low fitness function values and increasing solutions
with high fitness function values [22,23].

The fitness function plays a crucial role in genetic algorithms, as it directly determines
which individuals are more likely to be selected for reproduction, crossover, and mutation,
and thereby be preserved during the iterative process [24]. In the definition of the fitness
function in this paper, two factors play a decisive role: variance and spatial distance. In
ecology and geospatial analysis, a set of sample points with high environmental covariate
variance is considered to have high environmental heterogeneity. Environmental hetero-
geneity refers to the coverage of a wide range of environmental conditions by the sample
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points, which is beneficial for the generalization ability of the model [25]. The variance
component in the fitness function is designed to maximize this environmental heterogene-
ity [26]. The spatial distribution of sample points is also an important consideration. If
the sample points are clustered within a small area, they may be insufficient to represent
the entire study region [27,28]. By introducing a negative distance score into the fitness
function, the dispersion of sample points in space is encouraged, thus preventing the
over-sampling of a particular environmental condition [29,30]. Therefore, the core objective
of this paper is to quantify the quality of each possible sample set (a solution generated
by the GAS) and to select the most representative and dispersed set of sample points. The
fitness function employs two key metrics: variance (representativeness) and mean distance
(dispersion). By assigning different weights to these two metrics, the function generates a
single fitness score to evaluate the quality of each solution. The higher the fitness score, the
more representative and spatially dispersed the sample points in the solution, indicating a
better solution. In this way, the GAS can guide the search process toward the evolution of
high-quality sample sets. The fitness function is defined as follows:

S =wi; X m —wy X My 1)

Here, w1 and wy are the weights, where w; = 1 and wy = 0.5 are chosen to give greater
influence to variance while still considering spatial distribution, without allowing the
latter to dominate.m; represents the representativeness score, which is the variance of the
environmental covariates of the selected sample points, and m; represents the distance
score, which is the spatial distance between the selected sample points. The population size,
the maximum number of iterations and the number of runs are all important parameters
in GAS, and they need to be selected reasonably according to the specific problem and
computational resources to ensure that the algorithm can effectively find the optimal
solution to the problem [16]. In this paper, the population size, maximum number of
iterations and the number of runs are set to 150, 150, and 50, respectively, and the final
result is shown in Figure 2.

GAS1000
GAS2000
GAS3000
GAS4000

GAS5000

Figure 2. Spatial distribution of sampling points selected by the GAS method under different sample
sizes (1000-5000 points) in Tongzhou District, Beijing.



Agronomy 2025, 15, 963

7 of 19

2.3.2. The K-Nearest Neighbors Sampling

The K-nearest neighbors (KNN) search is a distance-based algorithm used for classifi-
cation or regression. Its core principle involves identifying the K nearest neighbors of a data
point based on a distance metric and using the information from these neighbors to predict
or classify the point [31]. KNN is characterized by its simplicity, intuitiveness, and ease of
implementation. However, as the size of the dataset increases, its efficiency and accuracy
may be impacted [32]. The implementation pathway in this paper begins by reading the
data of environmental covariates, followed by random sampling within the study area. This
process continues until the number of sampled points reaches 100,000. A nearest neighbor
search object is created using the createns function, which organizes the environmental
covariate data for efficient spatial analysis. The knnsearch function is then used to perform
the KNN search for each sample point, with K set to 1, meaning that only the nearest
neighbor is identified. These functions are essential for selecting optimal sampling points,
ensuring that they are representative of the soil’s spatial variability and improving the
accuracy of the sampling layout. This approach is employed to select representative points.
KNN is implemented in this study using Matlab 2018 (MathWorks, Natick, MA, USA). The
locations of the sample points for different quantities are shown in Figure 3.

KNN1000
KNN2000
KNN3000
KNN4000

KNN5000

40 km
I N |

Figure 3. Spatial distribution of sampling points selected by the KNN method under different sample
sizes (1000-5000 points) in Tongzhou District, Beijing.

2.3.3. Fuzzy C-Means Clustering Sampling

Fuzzy C-means clustering sampling (FCMS) is a sampling method based on cluster
analysis. The membership degree of each sample point to all cluster centers is obtained
through optimizing the objective function, thereby determining the class membership of
the sample points to achieve automatic classification of the sample data [33]. The sampling
points represent the characteristics of each cluster while covering the overall variation
range of the soil environment, leading to representativeness and comprehensiveness of
sampling [34]. One hundred iterations of model training were performed to optimize and
adjust the cluster centers to more accurately reflect the cluster structure of the sample data,
and reduce the impact of initial samples on the clustering results, improving clustering
stability. This study used Matlab 2018 (MathWorks, USA) to implement FCMS. The steps
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of the process for FCMS are shown in Table 2, and the sample point sampling results are
shown in Figure 4.

Table 2. Construction steps for FCMS.

Step Description
1 Overlay the environmental variable dataset in space.
2 Perform FCM clustering analysis on the data and divide the data into multiple classes.
3 Iterate to optimize the cluster centers, train 100 times.
4 Randomly select sampling points within each optimized class.
5 Repeat step 4 until the number of sampling points reaches the required amount.

FCMS1000
FCMS2000

FCMS3000
FCMS4000

FCMS5000

40 km

Figure 4. Spatial distribution of sampling points selected by the FCMS method under different
sample sizes (1000-5000 points) in Tongzhou District, Beijing.

2.3.4. Field Calibration

The purpose of field calibration is to verify and assess the accuracy and reliability of
maps or data generated by models. By comparing the model’s predicted results with actual
field data, field validation can reveal the model’s limitations and errors, providing a basis
for subsequent model adjustments and optimizations [35,36]. Representative checkpoints,
which reflect the overall variability of soil types, were selected through quick sampling
using soil augers or by digging soil profiles. To ensure that the sampling points represent
all soil types within Tongzhou District, spatial analysis was conducted on the updated
soil type maps in the lab, focusing on the boundaries between different soil types and
special topographic areas. Despite the plain nature of Tongzhou District, where surface
undulation is minimal, terrain and topography still exert a significant influence on soil
formation and distribution. Therefore, special attention was paid to areas where different
soil types intersect when planning the validation routes. Additionally, by overlaying the
analysis of land-use maps and elevation data, key areas where different soil types might
exist were identified, and initial sample points were selected to reflect these characteristics,
ensuring comprehensive coverage of soil types across Tongzhou [37,38]. The distribution
of the final 97 sample points collected is shown in Figure 5a.
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2.4. Random Forest Model

The random forest model (RF) has been widely applied to update conventional soil
maps [19,39]. The model predicts soil types by assembling multiple decision trees. It
makes full use of the advantages of non-parametric and nonlinear fitting of decision
trees. The ensemble of multiple decision trees improves the prediction stability and over-
comes the shortcomings of a single decision tree. Compared with traditional soil mapping
methods, RF can handle high-dimensional environmental variables, use soil data for ef-
fective training, and achieve automatic and accurate prediction of large-scale soil type
distributions [40-42]. This study implemented the RF model for spatial mapping using R
(v4.0.2; R Core Team, 2021).

2.5. Evaluation of Soil Map Accuracy

Soil mapping accuracy is one of the most widely used and important evaluation
indicators in machine learning and soil mapping. The overall accuracy of classification
or prediction is calculated from the proportion of correctly predicted samples in the clas-
sification results [43,44]. The accuracy of the model in classifying soil types is important
for model optimization. It is an important evaluation tool to ensure the reliability of soil
mapping results. Its principle is shown below [45,46]:

TP+TN

2
TP+FN+FP+ TN @

Accuracy =

where true positives (TP) represent the number of positive examples that are correctly
predicted as positive; false negatives (FN) represent the number of positive examples
that are incorrectly predicted as negative; false positives (FP) represent the number of
negative examples that are incorrectly predicted as positive; true negatives (TN) represent
the number of negative examples that are correctly predicted as negative.
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Kappa coefficient is a statistical metric widely used to assess the performance of
classification models. It takes into account the consistency between the predictions of the
model and the actual observations, overcoming the limitation of using only accuracy. The
kappa coefficient is calculated using the following formula [47]:

o )

Kappa =
PP 1_pe

where p, represents the observed accuracy, and p, represents the accuracy under random
classification.

Balanced accuracy is an accuracy metric that takes into account the imbalance in the
number of samples in different categories. It calculates the overall accuracy of the model
by taking a weighted average of the accuracy of each category. This helps to avoid biased
assessment results due to unbalanced sample sizes. The formula for calculating balanced
accuracy is as follows [48]:

TP,

4
TP, + FN; @)

1 N
Balanced Accuracy = —
"k
where N is the number of categories, TP; represents the number of true cases in the ith
category, and FN; represents the number of false negative cases in the ith category.

3. Results and Discussion
3.1. Selection of Environmental Covariates

This study employs the RF model using the random forest R package to analyze the
importance and relevance of environmental covariates in soil mapping, primarily eval-
uated through the MeanDecreaseAccuracy and MeanDecreaseGini metrics, and further
validated using a correlation heatmap. Figure 6 illustrates the importance rankings of vari-
ous covariates under these two metrics. In Figure 6a, based on the MeanDecreaseAccuracy
metric, certain covariates significantly influence the model’s accuracy more than others. For
instance, it is evident that LST is the highest-ranked environmental covariate derived from
remote sensing data, highlighting its significant role in predicting soil types. As LST cap-
tures temperature variations across the landscape, it provides crucial information about soil
moisture, thermal properties, and other factors that are essential for distinguishing different
soil types. This makes LST a key factor for improving the accuracy of soil type predictions.
Figure 6b displays the distribution of covariate importance under the MeanDecreaseGini
metric. This metric assesses the decrease in Gini impurity when splitting nodes, revealing
the role of covariates in the selection of split points in the decision tree. Some covariates are
more prominent under this metric, suggesting they have a higher distinguishing power
in differentiating soil types. Through the analysis of Figure 6c, it is found that texture
contributes the most to soil mapping, followed by factors such as groundwater depth
and distance to water bodies. Figure 7 shows that, due to the study area being a plain
region, the contribution of DEM is relatively weak. Meanwhile, there is a strong positive
correlation among covariates such as RVI, DVI, SAVI, RSEI, NDVI, and GNDVI, which may
lead to multicollinearity issues. Therefore, this study selects RSEI, the covariate with the
highest importance, as the representative covariate. Ultimately, groundwater depth, parent
material, texture, distance to water bodies, land cover type, elevation, LST, and RSEI were
selected as the key environmental covariates used in this study.
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Figure 7. Correlation of environmental covariates. The color scale represents the strength and
direction of the correlation, with red indicating a strong positive correlation, blue indicating a strong
negative correlation, and white indicating no correlation.
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3.2. Comparison of Soil Mapping Accuracy

After applying the RF model uniformly for mapping, as shown in Figure 8, the kappa
coefficient of the soil mapping results based on the GAS method increased from 49.05%
with 1000 samples to 70.25% with 5000 samples, demonstrating a steady improvement in
accuracy as the sample size increased. This indicates that GAS can learn better from larger
datasets, exhibiting good scalability. The performance of FCMS showed slight fluctuations
with increasing sample size, starting at 51.68%, peaking at 60.22% (with 4000 samples), and
then slightly declining to 58.43%. This may suggest that FCMS is more sensitive to changes
in sample size, with its performance being significantly affected by the structure of specific
sample sets. KNN began at 53.56%, reached its highest accuracy of 68.13% at 4000 samples,
and then slightly decreased. The performance trend of KNN indicates that it can effectively
utilize larger sample sizes, although the impact of increasing sample size on accuracy
diminishes after a certain point. In terms of accuracy changes with sample size, GAS
exhibited a sharp increase initially, becoming stable after 2000 samples, and continued to
show improvements thereafter, whereas FCMS and KNN demonstrated more fluctuations
in performance. Additionally, only GAS ’s kappa value continued to increase after the
sample size reached 4000. GAS also showed the highest average accuracy, indicating its
overall best performance across different sample sizes. In summary, GAS exhibited the best
overall performance, demonstrating high average accuracy and stability.

- Avg: 0.54

1,000

2,000 3,000 4,000 5,000

Sample Size
@ FCMS GAS KNN
Figure 8. Kappa coefficient of soil maps with different sample selections.

3.3. Accuracy Range Analysis for Soil Types

As shown in Figure 9, the prediction accuracy of the model for different soil types in
Tongzhou District varies under different sampling methods and sample sizes. Under the
GAS sampling method, a consistent increase in accuracy is observed as the sample size
increases from 1000 to 5000 points. The GAS method shows a marked improvement in
accuracy, particularly at higher sample densities, where the accuracy of soil type predictions
becomes more concentrated and stable. This trend suggests that GAS is highly effective in
capturing the spatial variability of soil attributes, making it a robust choice for updating
soil maps in areas with complex soil distributions. In contrast, the KNN method demon-
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strates relatively stable accuracy across different sample sizes, with minimal fluctuations
in the distribution range. However, the accuracy tends to plateau or even decline slightly
after reaching a certain sample size, indicating that KNN may have limitations in further
improving accuracy with additional sampling. This could be attributed to the method’s
reliance on proximity-based classification, which might not fully capture the complexity
of soil type variations at higher densities. The FCMS method exhibits a different pattern,
where the accuracy distribution shows significant variation across different sample sizes.
Notably, the accuracy improves significantly as the sample size increases up to 3000 points,
after which the improvement stabilizes. This indicates that while FCMS can effectively
enhance accuracy with moderate sample sizes, it may require fine-tuning or additional
data to achieve stability and consistency at higher sample densities. In summary, GAS per-
forms the best overall, showing high average accuracy and stability in predicting different
soil types.

Kernel
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Figure 9. Distribution of balanced accuracy across different sampling selections for KNN, FCMS,
and GAS methods, calculated for all soil types in Tongzhou District. Each violin plot represents the
kernel density distribution, with the orange box in the middle indicating the median of the balanced
accuracy. The left, middle, and right plots correspond to the performance of the KNN, FCMS, and
GAS methods under different sample sizes, respectively.

3.4. Comparisons of Mapping Results

As shown in Figure 10, for the KNN method, as the sample size increases, there
is a noticeable reduction in uncertainty across the map, particularly when the sample
size reaches 5000. The blue regions expand, indicating that the method becomes more
reliable in its predictions. However, the remaining red areas suggest that even with
larger sample sizes, certain regions remain challenging for the KNN method, reflecting
its limitations in fully capturing complex soil variations. The FCMS method shows a less
consistent pattern of uncertainty reduction. While an increase in sample size to around
4000 samples does lead to a reduction in uncertainty in some areas, as evidenced by a
decrease in red regions, this improvement is not uniform across the entire map. FCMS tends
to localize uncertainty reduction, implying that while it can be effective in certain areas,
its performance is more variable compared to KNN and GAS. The GAS method, however,
shows a complex relationship with uncertainty. Initially, as the sample size increases, there
is a significant reduction in uncertainty, similar to the other methods. However, as the
sample size reaches 5000, the figure shows an increase in red regions, indicating higher
uncertainty. This suggests that while GAS is highly sensitive to changes in sampling size,
leading to significant feedback and adjustments in the soil map, it may also introduce
higher uncertainty in certain regions at higher sample densities. This sensitivity to sample
size makes GAS a powerful tool for soil mapping adjustments, but it also requires careful
calibration to avoid increasing uncertainty in certain areas.
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Sample Size

Figure 10. Uncertainty map of RF predictions for different sampling sizes and methods. The color
scale represents the level of uncertainty, with blue indicating low uncertainty and red indicating
high uncertainty.

Figure 11 shows the soil distribution prediction results under different sample sizes
for the three sampling methods (GAS, KNN, FCMS). The GAS method demonstrates high
stability across all sample sizes, indicating its ability to maintain consistent predictions
of major soil types under different sample sizes, with strong adaptability and global
optimization characteristics. This means that GAS can not only capture large-scale soil
distribution but also maintain stable prediction performance across different soil types and
sampling densities.

O M O SR S oS W 17 [ 15 [ 19 [ 20 [2r [ 22 [ 23 [24 [25 [ 26 [27 [ 28 [29
1000 Sample Size 5000

Figure 11. Predicted soil distribution map. The numbers in the legend correspond to the soil codes
listed in Table S1 of the Supplementary Material, representing the respective soil types.
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In contrast, the KNN method may show significant fluctuations in predicting small,
patchy soil types, indicating its greater sensitivity to local variations, though it may be less
stable than GAS in handling large-scale, consistent soil types. As can be seen in Figures 24,
the lack of training samples in urban areas leads to weaker model predictions for these
areas. There is considerable variation in the results of the FCMS method for different
sample sizes, with the predicted values for 1000 samples differing from those for 3000 or
more samples, suggesting weak generalization to areas where samples were not deployed.
In addition, KNN predicts urban areas differently when the sample size reaches 4000,
compared to smaller sample sizes. The GAS method, on the other hand, can effectively
simulate the spatial distribution pattern of major soil types in the region by using its global
optimization capability and shows strong adaptability and stable prediction performance
under different soil types and sampling densities.

3.5. Status of Field Calibration

In this study, the accuracy variation of different models across various sampling
densities was systematically analyzed, and the effectiveness of these models was validated
through field verification. As shown in Figure 5b, the GAS model exhibited a significant
improvement in accuracy as the sampling density increased, reaching 89.69% accuracy
at 5000 sample points, which is notably higher than that of the KNN and FCMS models.
Additionally, the GAS model’s accuracy surpassed that of the original soil map, indicating
its stronger mapping capabilities at higher sampling densities, whereas the field-verified
accuracy of other models only slightly exceeded or fell below that of the original soil map.
Figure 5c,d further illustrate the trends in model accuracy and field-verified accuracy. It
was observed that between 1000 and 2000 sample points, the GAS model demonstrated
the greatest improvement in accuracy, indicating that increasing the number of sample
points is crucial for enhancing the mapping accuracy of the GAS model. Moreover, the
FCMS model exhibited a notable improvement in accuracy in the 2000 to 3000 sample
point range, suggesting that this model can significantly improve mapping accuracy with a
moderate increase in sample points. However, it is worth noting that although the KNN
model remained relatively stable at low-density sample points, its accuracy improvement
was relatively minor at higher-density sample points. By comparing the field-verified
results with the model accuracy changes, it is evident that the GAS model exhibits excellent
adaptability and accuracy at high sampling densities.

3.6. Discussions for Sampling Algorithm Differences

The performance differences among sampling algorithms primarily stem from their
ability to utilize environmental covariate information and optimize sampling point lay-
outs [49]. KNN and FCMS have limitations in leveraging environmental covariate data,
particularly in plain areas, where the terrain is uniform, and spatial variability is low [50]. In
such scenarios, these methods struggle to fully capture soil spatial heterogeneity, resulting
in reduced mapping accuracy [35]. Specifically, the KNN method selects sampling points
based on the nearest neighbor relationships of environmental covariates [43]. However, it
lacks the capability to dynamically adjust the distribution of sampling points, often concen-
trating samples in areas with uniform covariate distributions while neglecting regions with
significant local variations [51]. Similarly, the FCMS method generates sampling points
based on clustering results of environmental covariates [52]. When covariate characteristics
are relatively homogeneous, sampling points tend to cluster within a few groups, failing to
comprehensively cover the spatial distribution of soil attributes [53]. Additionally, neither
of these methods can effectively incorporate the expert knowledge embedded in legacy soil
maps, such as soil type boundaries and prior soil-environment relationships.
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In contrast, the GAS method demonstrates significant advantages in integrating legacy
soil maps with environmental covariate information [13]. The GAS method iteratively
optimizes the fitness function, considering both the spatial heterogeneity of environmental
covariates and the soil type distribution characteristics captured in legacy soil maps. This
enables GAS to intelligently adjust the sampling point layout, aligning it more closely
with the actual soil spatial variability [54]. In plain areas, GAS effectively mitigates issues
arising from low spatial variability, ensuring a more balanced distribution of sampling
points [55]. Moreover, GAS emphasizes sampling in key regions, such as soil type bound-
aries and transition zones, significantly improving mapping accuracy and stability [45].
Through multiple iterations, the GAS method dynamically adjusts the sampling point
layout, enhancing sample representativeness and capturing complex soil-environment
relationships [56]. At the same time, the selection of environmental covariates is crucial, as
different covariates have varying abilities to capture soil spatial variability, which directly
impacts the effectiveness of the sampling points obtained by different algorithms [57]. In
future studies, it may be beneficial to consider data related to soil depth and diagnostic
horizons when selecting environmental covariates [58]. Soil depth directly influences root
development, water retention, and nutrient availability, making it a key indicator for dis-
tinguishing soil types. Diagnostic horizons are fundamental to soil taxonomy, effectively
reflecting pedogenic processes and spatial differentiation. Both of these factors can provide
more accurate supporting information for sampling point collection and model prediction.

3.7. Improving the Utilization of Soil Resources in Agriculture

This study classified regional soils using soil type maps, analyzed soil distribution,
properties and suitability, and provided support for agricultural management and decision-
making. Soil resources were divided into five grades and ten types, and corresponding
improvement and utilization measures were proposed for different types. See the Supple-
mentary Materials for details.

4. Conclusions

By comparing GAS with two other sampling methods, KNN and FCMS, under the RF
model, the results demonstrated that GAS consistently outperformed the other methods
in terms of accuracy, stability, and adaptability. The key findings can be summarized
as follows:

Superior accuracy: The GAS method exhibited higher accuracy across various sample
sizes compared to KNN and FCMS. The kappa coefficient of the soil mapping results
showed a significant improvement with the increase in sample size, reaching 70.25% at
5000 samples. GAS maintained high accuracy and showed better scalability as the sample
size increased.

Stability and consistency: GAS demonstrated more stable performance, with minimal
fluctuations in accuracy across different sample sizes. This stability is crucial for ensur-
ing reliable soil mapping, particularly in areas with uniform topography and minimal
variability in soil attributes.

Field validation: The field validation results confirmed the superiority of GAS,
with a notable accuracy of 89.69% at 5000 sample points. This accuracy was signifi-
cantly higher than that of KNN and FCMS, underscoring the effectiveness of GAS in
practical applications.

Soil resources play a crucial role in agricultural production, as they directly affect crop
growth and yield. The improvement and sustainable utilization of soil are essential for
enhancing agricultural productivity and ensuring long-term food security. It is necessary
to develop more advanced and environmentally friendly methods to obtain more accurate
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information on the distribution of soil types in order to optimize soil use, reduce the
negative effects of overuse, and promote sustainable agricultural practices.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/agronomy15040963/s1, Table S1: Soil Types In Tongzhou District;
Table S2: Statistical tables for soil resource assessment.
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