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Abstract: In this study we present an autonomous grasping system that uses a vision-guided hand–
eye coordination policy with closed-loop vision-based control to ensure a sufficient task success rate
while maintaining acceptable manipulation precision. When facing a diversity of tasks with complex
environments, an autonomous robot should use the concept of task precision, including the accuracy
of perception and precision of manipulation, as opposed to just the grasping success rate typically
used in previous works. Task precision combines the advantages of grasping behaviors observed
in humans and a grasping method applied in existing works. A visual servoing approach and a
subtask decomposition strategy are proposed here to obtain the desired level of task precision. Our
system performs satisfactorily on a tangram puzzle task. The experiments highlight the accuracy of
perception, precision of manipulation, and robustness of the system. Moreover, the system is of great
significance for improving the adaptability and flexibility of autonomous robots.

Keywords: robotic grasping; vision-guided; hand–eye coordination

1. Introduction

In this study, we outline a general framework of robot control to solve a class of
intelligent grasping tasks. For such tasks, the environment is variable, and so the framework
of solving tasks cannot be defined in advance with a fixed sequence of motions. For
example, in order for a home-service robot to accomplish a cup-carrying task, it must
be able to adapt to changes in the color, lighting, position, shape, background, and other
parameters of a cup and its surrounding environment. The robot needs to reliably recognize
the target object, accurately locate the object, and have a closed-loop control process. These
three requirements are difficult for an intelligent robot to satisfy because they present
challenging computer vision task problems, such as invariant recognition under a complex
background, optical measurement, and adaptive control with visual feedback.

In many existing works on robot grasping, the robot first perceives the scene and
recognizes appropriate grasp locations, then plans a path to those locations, and finally
follows the planned path to those locations [1,2]. These tasks are respectively called
perception, planning, and action. However, the grasping behaviors observed in humans
are dynamical processes that interleave sensing and manipulation at every module [3].
Robot hand–eye coordination is a typical feedback-based, closed-loop control process
similar to grasping behaviors observed in humans. The core function of the process is
to guide the motion of the robot based on the relative displacement between the target
location and the end-effector of the robot [4,5]. This eliminates the work of calibration and
transformation between multiple coordinate systems.

To achieve vision-guided hand–eye coordination, the core function must be redesigned
to sense changes in both the environment and the target object and then provide a corre-
sponding control strategy. We propose task precision as the core function, which can be
calculated by the relative distance between the target object and the end-effector of the

AI 2021, 2, 209–228. https://doi.org/10.3390/ai2020013 https://www.mdpi.com/journal/ai

https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0003-2696-0707
https://doi.org/10.3390/ai2020013
https://doi.org/10.3390/ai2020013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ai2020013
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai2020013?type=check_update&version=2


AI 2021, 2 210

robot. The system is expected to have the ability to (1) recognize both the end-effector of
the robot and the target object (recognition ability), (2) accurately describe their contours to
determine their relative displacement (locating ability), and (3) track the movement of the
robot towards the end-effector and the target object (tracking ability).

Humans have the ability to precisely solve tangram puzzles (see Section 4.1 for more
details on this task). However, since the game background and target layout are both
changeable, it is difficult for a robot to achieve hand–eye coordination and solve tangram
puzzles. The vision-guided hand–eye coordination system in this study can complete the
autonomous decision-making process like a human can.

The paper is organized as follows. Related robotic grasping research is introduced
in Section 2. The framework of the system is reported in Section 3. The application of the
system to solving a tangram puzzle is described in Section 4. The experimental results are
presented in Section 5, and the conclusion is given in Section 6. Our robot environment is
described in Appendix A.

The main contributions of the work are as follows: (1) Vision-guided hand–eye
coordination is analyzed, and a new concept of task precision in robot grasping tasks is
proposed, taking inspiration from the original closed-loop hand–eye coordination method.
(2) The perception, planning, and action stages in existing works are integrated into a
module of our system so that we can choose different policies when facing different
grasping tasks. (3) Our experimental evaluation demonstrates the effectiveness of this
approach, which can run with only a laptop, in terms of both a sufficient task success rate
and acceptable manipulation with precision.

2. Related Work
2.1. Hand–Eye Coordination

Hand–eye coordination can be divided into two main types, calibrated and uncal-
ibrated. Hill and Park first achieved closed-loop control in a calibrated hand–eye co-
ordination method [4]. Calibrated hand–eye coordination methods [4,6–8] obtain the
corresponding relationship between the camera and the robot base by using the three-
dimensional space transformation principle and the known camera parameters. This kind
of method requires a lot of labor; the accuracy of the parameters depends on the calibration,
and recalibration is necessary when camera parameters change. Therefore, this kind of
method is not suitable for the manipulator environment with open operation.

Many studies have been conducted on the uncalibrated hand–eye coordination of
robots. Herve [9] demonstrated the feasibility of mapping from image space to robot space.
Meanwhile, Su et al. proposed an uncalibrated robot hand–eye coordination system that
improved the robot’s environmental adaptability [5,10,11]. Levine et al. used deep learn-
ing in large-scale datasets to achieve hand–eye coordination [12,13]. The learning-based
method uses multiple sensors and a large amount of pretraining data [14,15], while the
other methods require a manual presentation of some of the first trial motions. Therefore,
this type of approach is not suitable for open environment tasks. Although these methods
simplify the challenging task of hand–eye coordination calibration and location, it becomes
more challenging to guide the robot to make correct motion decisions on practical problems.
For instance, if the goal of a robot with uncalibrated hand–eye coordination is to play chess,
the robot needs to know where the pieces are placed before it can pick them up and place
them in the correct position. The robot does not determine for itself where to place a piece.

2.2. Robotic Grasping

With the development of hardware technology, it has become possible to use mature
three-dimensional laser ranging technology and point cloud processing to achieve three-
dimensional reconstruction and to complete the task of robot grasping. Several works
on this topic have used open-loop planners to determine the best location at which to
grasp [1,2,16]. In contrast, our system uses vision-guided hand–eye coordination, which
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enables closed-loop vision-based control. Therefore, our system can respond to dynamic
disturbances and deal with complex environments.

In recent years, there have also been many studies on closed-loop grasping [12,17–28]. For
example, the Google team proposed a vision-based deep reinforcement learning algorithm
to realize robotic grasping, which enables closed-loop control [10]. The robot can grasp
objects unknown to the model with a grasping success rate of 96%. These works all
focus on the grasping success rate. However, most tasks faced by intelligent robots have
hard constraints such as a variable environment, time sensitivity, and the need for precise
manipulation, so only focusing on the grasping is not enough, as in the example of playing
chess above. Moreover, solving a tangram puzzle requires not only grasp success (how to
grasp) but also task success (how to rotate and put down). Our system, which uses task
precision rather than the grasping success rate, has strong adaptability and intelligence for
tasks and maintains acceptable manipulation precision.

2.3. Visual Feedback

The classic choice for visual feedback is visual features. In recent years, deep learn-
ing technology has seen a great breakthrough in automatic feature extraction with the
development of the convolutional neural network (CNN) to Faster R-CNN and Mask
R-CNN [29–31]. These algorithms can effectively complete instance segmentation and
can be used for “object detection” and “object key point detection”. For example, the
algorithms can be used to identify the tangram and its contours in a 2D picture. These
algorithms are usually evaluated by recall, precision, and pattern classification indicators.
The precision attained so far, however, is far from sufficient to guide the robot through
delicate movements. Moreover, the good performance of these algorithms is generally
based on large datasets and sufficient machine learning training in advance, so the cost of
data acquisition, manual annotation, high-performance hardware, and other aspects of the
final product is very high. In contrast, our system uses simple contour-based methods that
require no training, and it adapts to complex backgrounds with enough precision.

3. Vision-Guided Hand–Eye Coordination for Robotic Grasping
3.1. System Structure

In this study, we used a vision-guided hand–eye coordination system as shown in
Figure 1. The camera first acquires images of the task environment. An image is extracted
by the visual processing module. The problem-solving module confirms the current action
according to the environmental information and determines the best task to carry out. The
motion planning module guides the robot’s manipulation. The robot itself is composed
of a controller and a body, forming a closed loop. Thus, the whole system forms a typical
double closed-loop system.
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The robot and its controller belong to the hardware system. The hardware system
includes robot hardware, kinematics, and communication systems. The hardware system
is not the focus on this paper, but its structure is shown in Appendix A.

According to the principles of Sanderson and Weiss [32] and other related works, each
module has multiple choices. The camera can be mounted on the arm of the robot (i.e.,
eye in hand) or somewhere in the environment (i.e., eye to hand). The visual processing
module can have an RGB image or RGB-D image as the input and can select the feature and
algorithm accordingly. The problem-solving module can use search, reasoning, or learning
methods to achieve its function. The motion planning module can use a sampling-based
approach (such as RRT) or a combinatorial approach.

3.2. Problem Solving

The robotic grasping task in our study has the following requirements: (1) good
real-time performance, meaning the robot needs to respond to real-time changes in the
environment; and (2) high manipulation precision, meaning that a large error leads to
mission failure. Solving such a task requires a real-time, high-precision system, and we
contend that the vision-guided robot hand–eye coordination system is the best choice.

Algorithm 1 Servoing

1: Given current image X and Task Precision f(ti,p)
2: Get state s from visual processing module
3: Calculate p with image X and robot state
4: Get subtask ti from problem-solving module and s
5: n = f (ti, p)
6: for 1 . . . n do
7: Execute ti with motion planning module

Similar to hierarchical reinforcement learning [33], we propose having the whole task
to be composed of several subtasks t ∈ T and each subtask to be composed of several
actions a ∈ A. The key to problem solving is the Task Precision function f(ti,p), which
uses input subtasks ti and precision p to obtain the number of dynamic divisions n. The
precision p can be defined as the relative distance between the target object and the end-
effector of the robot. The Task Precision function can be predefined or learned. Finally, we
propose Algorithm 1 Servoing to guide the robot with continuous control.

4. Application to Completing Tangram Puzzle
4.1. Task Description

The tangram puzzle is a toy composed of seven blocks: five isosceles right triangles, a
square, and a parallelogram [34]. The puzzle is shown in Figure 2.
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In this study, our system framework is applied to the tangram puzzle task. The main
process of the task is as follows. (1) Tangram blocks are laid down on the table randomly.
(2) The target state image with a given pattern (see in Section 4.4) is known. (3) The robot
selects the tangram blocks in the needed order and lays them down in accurate positions
(see Section 4.5.4 for more detail).

As we are primarily concerned with our system having acceptable precision of ma-
nipulation, for this task, we can make the following assumptions: (1) the objects have one
solid color and are not textured, and (2) the offset from the camera center to gripper center
is known. We use preprogrammed motion to compensate for this offset.

4.2. Vision-Guided Hand–Eye Coordination for Tangram Task

In our system, the monocular camera for RGB imaging is mounted on the arm of the
robot. We use the search policy in the problem-solving module and the combinatorial
approach in the motion planning module.

The tangram task can be regarded as a 2D planar grasp, which means that the target
object lies on a planar workspace and the grasp is constrained from one direction. In this
case, the height of the gripper is fixed, and the gripper direction is perpendicular to one
plane. Therefore, the essential information is simplified from 6D to 3D, including the 2D
in-plane positions and the 1D rotation angle.

The key to solving the task lies in understanding the environment. We selected the
centers of the shapes as image features. As the offset from the camera center to the gripper
center is known, the error between the center of the shape and the center of the two-
dimensional image (see in Section 4.5.1) can be used to calculate p instead of the relative
distance between the target object and the end-effector of the robot, as shown in Figure 3.

Additionally, we predefined Task Precision f(ti,p) as follows:

f(ti,p)={
3 ti=Moveto(X)

1 other
(1)
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4.3. Visual Processing of the Tangram Puzzle

The complex background forces the system to perform effective preprocessing on the
images. To ensure that the system can recognize and extract features of images such as
shape, position, and pose, the shape recognition and rotation calculations are added to the
visual processing module. Figure 4 illustrates the stages of precise object recognition.



AI 2021, 2 214

AI 2020, 1, FOR PEER REVIEW 6 

 
Figure 4. Flowchart of image processing. 

4.3.1. Shape Recognition 
In considering (1) the lack of a large number of training samples, (2) the requirement 

of minimal computing resources and fast computing speed, and (3) the needs of fine-
grained image analysis, the system adopted the basic image processing method and math-
ematical judgment instead of using the neural network. First, simple image enhancement 
operations are applied to the acquired image, such as Gaussian de-noising, brightness, 
and contrast adjustment [35]. To filter out different blocks according to color, the system 
converts the image mode from RGB to HSV for a more favorable segmentation interval. 
Simultaneously, morphological expansion and erosion operations are used to optimize 
regional boundaries [35]. 

The obtained results were not satisfying because of the complexity of the background 
and the limitations of the color filtering algorithm. The system needed to remove the noise 
that disturbs the task, and this process runs through the entire shape recognition process. 
First, small areas (e.g., the areas in the red boxes of Figure 5b) can be filtered out by area 
computation, and the remaining parts are distinguished by shape, as shown in Figure 5c. 

   

(a) (b) (c) 

Figure 5. Preliminary processing: (a) the image captured by the camera; (b) the binary map of the 
pink block; (c) the binary map of red blocks, including a cylinder and a triangle. 

The system determines the vertices of each area (e.g., the areas in Figure 5c) by ap-
proximating its contour. According to the number of vertices, the areas are divided into 
two types. Then, the triangle is identified according to the angles and the relationships 

Figure 4. Flowchart of image processing.

4.3.1. Shape Recognition

In considering (1) the lack of a large number of training samples, (2) the requirement of
minimal computing resources and fast computing speed, and (3) the needs of fine-grained
image analysis, the system adopted the basic image processing method and mathematical
judgment instead of using the neural network. First, simple image enhancement operations
are applied to the acquired image, such as Gaussian de-noising, brightness, and contrast
adjustment [35]. To filter out different blocks according to color, the system converts the
image mode from RGB to HSV for a more favorable segmentation interval. Simultane-
ously, morphological expansion and erosion operations are used to optimize regional
boundaries [35].

The obtained results were not satisfying because of the complexity of the background
and the limitations of the color filtering algorithm. The system needed to remove the noise
that disturbs the task, and this process runs through the entire shape recognition process.
First, small areas (e.g., the areas in the red boxes of Figure 5b) can be filtered out by area
computation, and the remaining parts are distinguished by shape, as shown in Figure 5c.

AI 2020, 1, FOR PEER REVIEW 6 

 
Figure 4. Flowchart of image processing. 

4.3.1. Shape Recognition 
In considering (1) the lack of a large number of training samples, (2) the requirement 

of minimal computing resources and fast computing speed, and (3) the needs of fine-
grained image analysis, the system adopted the basic image processing method and math-
ematical judgment instead of using the neural network. First, simple image enhancement 
operations are applied to the acquired image, such as Gaussian de-noising, brightness, 
and contrast adjustment [35]. To filter out different blocks according to color, the system 
converts the image mode from RGB to HSV for a more favorable segmentation interval. 
Simultaneously, morphological expansion and erosion operations are used to optimize 
regional boundaries [35]. 

The obtained results were not satisfying because of the complexity of the background 
and the limitations of the color filtering algorithm. The system needed to remove the noise 
that disturbs the task, and this process runs through the entire shape recognition process. 
First, small areas (e.g., the areas in the red boxes of Figure 5b) can be filtered out by area 
computation, and the remaining parts are distinguished by shape, as shown in Figure 5c. 

   

(a) (b) (c) 

Figure 5. Preliminary processing: (a) the image captured by the camera; (b) the binary map of the 
pink block; (c) the binary map of red blocks, including a cylinder and a triangle. 

The system determines the vertices of each area (e.g., the areas in Figure 5c) by ap-
proximating its contour. According to the number of vertices, the areas are divided into 
two types. Then, the triangle is identified according to the angles and the relationships 

Figure 5. Preliminary processing: (a) the image captured by the camera; (b) the binary map of the
pink block; (c) the binary map of red blocks, including a cylinder and a triangle.

The system determines the vertices of each area (e.g., the areas in Figure 5c) by
approximating its contour. According to the number of vertices, the areas are divided into
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two types. Then, the triangle is identified according to the angles and the relationships
between the three sides. The square and the parallelogram can be distinguished by the
aspect ratio, but the parallelogram needs to be further determined by finding out whether
the opposite sides are parallel.

4.3.2. Rotation Computation

Seven tangram blocks are placed on the table with random positions and poses. To
put the messy blocks into a preconceived pattern (i.e., a target state image), the system
needs to recognize the current posture of each block and rotate the blocks to fit the target
state image. Based on the recognition process in Section 4.3.1, the rotation angle α can be
calculated according to the detected image and the target state image, as shown in Figure 6.
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The difficulty of rotation computation lies in the accuracy of mathematical calculations,
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as the impact of actions on the task environment. At the same time, we need to describe
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camera()—Camera ready
The subtasks (bold) performed by the robot include the following:
Moveto(X)—Locate and move to the tangram block
Pickup(X)—Grab the tangram block
Rotate(X)—Rotate the tangram block
Putdown(X)—Put down the tangram block
Evaluate(X)—Check whether all tangram blocks, including X, are in the specified

position
In practice, the subtask may consist of a series of actions, such as moving to a specific

position and rotating to a specific angle (see Section 4.5). Such a design can correspond to
the interface functions provided by the Step 700E robot (see Appendix A.1) and allow the
robot to realize the change in environmental state.

Define the initial state of the tangram task as ontable(Xi) ∧ gripping() ∧ camera(), where
Xi corresponds to the seven pieces of the tangram puzzle i = 1 − 7.

The completed status is inplace(Xi).
In Figure 7, there is no set of premises for the total task Tangram(), which indicates

the start of the task. Arrow means branch structures (i.e., move to a different action). In
Nextpuzzle(), True indicates the presence of a disassembled tangram block and Nextpuz-
zle() moves to Place(X), whereas False ends the task. In Evaluate(X), True means a correct
placement, whereas False means failure in the placement, and Evaluate(X) changes the
environment state to ontable(X).
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Figure 7. Tangram triangle table.

With the aid of the triangle table, a flowchart for solving the tangram puzzle can be
drawn (see Figure 8). The implementation of ontable(X) uses a stack to determine whether
the tangram block is on the desktop.
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Before motion planning, the system analyzes the target state image, which is designed
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Figure 9. An image with a dog pattern.

The system uses the shape recognition algorithm introduced in Section 4.3.1 to process
the image of the target state to obtain the color, shape, and coordinates of each tangram
block’s center. After sorting the coordinates of the tangram block’s center as needed, the
robot places each tangram block.

4.5. Motion Planning

The motion planning module determines how to execute the atomic actions of the
robot. For instance, locating the tangram blocks requires the robot to perform multiple
moves, as discussed in the following subsection.

4.5.1. Locating the Tangram Blocks

The main task of the locating operation is to obtain the error between the image’s
center and the tangram block’s center by using the visual feedback module so that the robot
can accurately differentiate a specified tangram block from the randomly placed blocks.
Figure 10 shows the algorithm flow of this task.
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In Figure 10, cnt is the user-defined count number of fault tolerances, and its initial
value is 3. If the camera captures an image three times and the system still cannot correctly
identify the tangram block with the specified color and shape, an error is reported.

After correctly identifying the tangram block, the system determines whether the

tangram block is in the center of the camera’s field of view by
→

P0P1 (x1 − x0, y1 − y0),
where P0(x0, y0) is the coordinate of the tangram block’s center in the image, and P1(x1, y1)
is the coordinate of the image’s center. The coordinates are shown in Figure 11. The system
defines a threshold as thresh(pix). When |x1 − x0| < thresh and |y1 − y0| < thresh, the
system considers the block to be in the center of the camera’s field of view. Otherwise, the

system calculates the correct direction of movement from
→

P0P1 according to the relationship
between the world coordinates of the robot and the image coordinates. Then, the end-
effector moves one step in the correct direction to gradually approach the target block. The
value of thresh and the size of the step are reduced adaptively with the height of the robot’s
end-effector.
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4.5.2. Picking up Tangram Blocks

After locating a specified block, the block is in the center of the camera’s field of view.
In engaging hand–eye coordination, the end-effector of the robot is moved to the grasping
position. Then, the block is picked up by the electric gripper.

4.5.3. Rotating Tangram Blocks

After correctly locating and grabbing the tangram block, we focus on how to accurately
place it. First, the system calculates the rotation angle of the block by using the rotation
algorithm introduced in Section 4.3.2. Then, the robot uses its end-effector to rotate the
block to adjust the block’s pose.
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4.5.4. Putting down Tangram Blocks

This section describes how to calculate the position of tangram blocks in the planar
world coordinate of the robot. We refer to the images with special patterns (see Figure 9)
as goal state images. By proportionally magnifying the length and width of the goal state
image, the system sets a puzzle area to put down tangram blocks in the robot’s planar world
coordinate. The coordinate value of the tangram block’s center in the world coordinate is
calculated according to the pixel coordinate values of the tangram block’s center in the goal
state image. Since the initial height of the robot’s end-effector is known, after obtaining
the coordinate value of the block’s center, the robot can accurately put down blocks in the
puzzle area. Finally, all blocks are placed in the pattern indicated in the goal state image.

4.5.5. Evaluating Tangram Blocks

The evaluation section provides a function with which to check the tangram blocks
placed by the robot (shown in Figure 12). The system defines a set to record the placed
blocks. It checks whether each tangram block recorded in the collection is at the specified
puzzle area. If not, the tangram block is pushed into the stack.
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5. Experiments
5.1. Visual Feedback Statistical Experiment

To demonstrate the effectiveness of our visual feedback processing algorithm, we
compare its performance with the widely used visual feedback algorithms (Faster R-
CNN [21] and Mask R-CNN [22]). In our visual feedback experiment, the background is
complex, while the position and pose of the object are changeable.

5.1.1. Visual Feedback Indicators

The square error in a picture is defined as Esquare = (
n
∑

i=1
(mi − gti)

2)/n, where mi is

the position of the center of mass of the i-th tangram on the picture and gti is the ground
truth position of the center of mass of the i-th tangram. In other words, we evaluate the
accuracy of the visual feedback by calculating the center of mass point deviation from each
tangram.

In Figure 13, we provide a visual look at the square error. The Mask R-CNN algorithm
predicts the position of each tangram and obtains the mask of the object, based on which
mass center of each tangram can be obtained. Our algorithm predicts the center of mass
from the contour of each tangram.
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Figure 13. Visual feedback algorithm evaluation. (a) The center of mass obtained by the masking
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5.1.2. Visual Feedback Statistical Results

We count the square errors of 400 pictures and take the average error of all the blocks
of each picture as an experimental result. As shown in Figure 14, our result is generally
equal to or better than that of the comparison algorithm.
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5.2. Tangram Experiment

The tangram blocks are placed in any position and pose in a complex background.
Then, the robot makes reasonable decisions to complete the tangram puzzle based on the
target state randomly assigned by us. During the execution of the task, we can change
the task environment at will. For example, we can verify whether the robot can still make
correct decisions when we remove a block that had been placed previously or is currently
being identified.

5.2.1. Tangram Indicators

The gap error between tangram blocks is defined as Egap = (∑
∣∣dij − rij

∣∣)/21 , where
0 < i < j < 8, dij is the value of the distance between the mass centers of any two tangram
blocks placed by the robot after finishing the tangram puzzle, and rij is the value of the
distance between any two center points of the tangram blocks in the target state image. The
difference between the two values is used to reflect the gap between the two tangram blocks.
In this experiment, one pixel corresponds to 70/256 ≈ 0.273 mm in the real environment.
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5.2.2. Dog Pattern Experiment

One of our examples, as shown in Figures 15–17, consists of an input state, target state,
and our subtasks. The experimental indicators of this example are shown in Table 1. We
list all the gap errors between any two tangram blocks.
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5.2.3. Statistical Experiment

A large number of experiments are used to test the performance of the proposed
hand–eye coordination system for the tangram task. The target state images used are given
in Figure 18, and the errors are given in Figure 19.
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In Figure 20, the solid red line represents the average gap error in one trial. The dotted
red line shows the total average error; it is generally small, and the task accuracy is high.
The dotted blue line is the total standard deviation, which shows that the error does not
fluctuate very much.
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For the 100 trials, the number of trials is counted according to a certain range, indi-
cating the error distribution. Figure 18 shows that most trials are concentrated near the
average value, and 99% of the trials are concentrated within the range of 0.5–2.5 mm. The
data are normally distributed. Therefore, the entire experiment is dominated by accidental
errors [40].

6. Conclusions

This study presents a vision-guided hand–eye coordination system for robotic grasp-
ing. Our system is a lightweight, intelligent decision-making system utilizing complete
closed-loop control. Owing to the implementation of the concept of task precision, the robot
was able to complete some complex tasks through hand–eye coordination in a dynamic
and changing environment and achieve high precision similarly to how humans can.
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In this study, the robust system showed high adaptability and fault tolerance to the
tangram task. This is helpful for promoting research on intelligent tasks such as cup-
carrying by a household-service robot.

The hand–eye coordination system in this study needs to know the hand–eye rela-
tionship and the distance between the end-effector and the operating surface in advance.
In order to improve intelligence, the system’s dependence on prior knowledge should
be reduced to adapt to various hand–eye relationships. This is a possible direction for
follow-up research.
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Appendix A

Appendix A.1. Robot Hardware

The STEP robot hardware system is composed of a body, robot controller, and control
cabinet, as shown in Figure A1a. The body consists of six axes through which the robot
moves, as shown in Figure A1b. The robot controller has basic software to control the
robot operation with a series of control functions. The control cabinet contains the control
hardware of the six axes, and it loads the control program written by CodeSys. The control
program is the intermediary between the user and the robot controller.
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Appendix A.2. Kinematic Modeling

In this system, because an electric gripper was added, the connecting rod parameters
of the robot needed to be added to the kinematics equation. Thus, the electric gripper can
be regarded as an ideal Cartesian element.

According to the improved D-H representation, the transformation matrix from frame
{i− 1} to frame {i} can be written as follows:

i−1
i TRot(x, αi−1)Trans(ai−1, 0, 0)Rot(z, θi)Trans(0, 0, di), (A1)
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where the parameters are shown in Table A1.

Table A1. Link parameters of SD700E robot.

i ai−1 αi−1 di θi

1 0 0 base 0
2 0 −π/2 0 −π/2
3 l2 0 0 0
4 0 −π/2 l3 0
5 0 π/2 0 0
6 0 −π/2 l5 0

The general formula of the transformation matrix is as follows:

i−1
i T =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −disαi−1
sθisαi−1 cθisαi−1 cαi−1 dicαi−1

0 0 0 1

, (A2)

where cθi is the cosine of θi, which is abbreviated as ci below, and sθi is the sine of θi, which
is abbreviated as si below.

The relationship between the end of the mechanical arm and the base 0
6T is

0
6T = 0

1T(θ1)
1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6), (A3)

According to the general formula, the transformation matrix of each connecting rod
can be obtained as follows:

0
1T =


cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 base
0 0 0 1

, (A4)

1
2T =


sθ2 cθ2 0 0
0 0 1 0

cθ2 −sθ2 0 0
0 0 0 1

, (A5)

2
3T =


cθ3 −sθ3 0 l2
sθ3 cθ3 0 0
0 0 1 0
0 0 0 1

, (A6)

3
4T =


cθ4 −sθ4 0 0
0 0 1 l3
−sθ4 −cθ4 0 0

0 0 0 1

, (A7)

4
5T =


cθ5 −sθ5 0 0
0 0 −1 0

sθ5 cθ5 0 0
0 0 0 1

, (A8)

5
6T =


cθ6 −sθ6 0 0
0 0 1 l5
−sθ6 −cθ6 0 0

0 0 0 1

, (A9)
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0
6T =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

, (A10)

where 

nx = c1[s23(c4c5c6 − s4s6) + c23s5c6] + s1(s4c5c6 + c4s6)
ny = s1[s23(c4c5c6 − s4s6) + c23s5c6]− c1(s4c5c6 + c4s6)

nz = c23(c4c5c6 − s4s6)− s23s5c6
ox = −c1[s23(c4c5s6 + s4c6) + c23s5s6]− s1(s4c5s6 − c4c6)
oy = −s1[s23(c4c5s6 + s4c6) + c23s5s6] + c1(s4c5s6 − c4c6)

oz = −c23(c4c5s6 + s4c6) + s23s5s6
ax = c1(−s23c4s5 + c23c5)− s1s4s5
ay = s1(−s23c4s5 + c23c5) + c1s4s5

az = −c23c4s5 − s23c5
px = c1[(−s23c4s5 + c23c5)l5 + c23l3 + s2l2]− s1s4s5l5
py = s1[(−s23c4s5 + c23c5)l5 + c23l3 + s2l2] + c1s4s5l5

pz = −(c23c4s5 + s23c5)l5 − s23l3 + c2l2 + base

, (A11)

Here, s23 is sin(θ2 + θ3), and c23 is cos(θ2 + θ3).
In the reverse solving process, using the inverse transformation 0

6T, we can obtain:

θ1 = atan2
(

py − l5ay, px − l5ax
)

(A12)

or
θ1 = atan2

(
l5ay − py, l5ax − px

)
, (A13)

θ2 = atan2
(

pz − b− l5az,
(
c1ax + s1ay

)
l5 − c1 px − s1 py

)
− atan2(

l2 − s3l3
ρ

,± 2

√
1−

(
l2 − s3l3

ρ

)2
) (A14)

where

s3 =
l2
3 + l2

2 −
[
−
(
c1ax + s1ay

)
l5 + c1 px + s1 py

]2 − (−azl5 + pz − b)2

2l2l3
, (A15)

θ3 = atan2

(
c2l2 + azl5 − pz + b

l3
,
−
(
c1ax + s1ay

)
l5 + c1 px + s1 py − s2l2

l3

)
− θ2 (A16)

θ4 = atan2
(
−s1ax + c1ay,−

[
s23
(
c1ax + s1ay

)
+ c23az

])
(A17)

θ4 = atan2
(
s1ax − c1ay, s23

(
c1ax + s1ay

)
+ c23az

)
(A18)

θ5 = atan2
(
s4
(
−s1ax + c1ay

)
− c4

[
s23
(
c1ax + s1ay

)
+ c23az

]
, c23

(
c1ax + s1ay

)
− s23az

)
(A19)

θ6 = atan2(−s4
[
s23
(
c1nx + s1ny

)
+ c23nz

]
− c4

(
−s1nx + c1ny

)
,−s4

[
s23
(
c1ox + s1oy

)
+ c23oz

]
− c4

(
−s1ox + c1oy

)
(A20)

A.3. Sequential Instruction Communication Protocol

To solve the transmission problem of the sequential motion instruction of the robot on
the half-duplex port, we adopted a sequential instruction communication protocol based
on a semaphore. Six steps complete the motion command communication and execution.
Send and Finish are used to control the two semaphores between CodeSys and the robot
controller program, where Send indicates whether new instructions were sent and Finish
indicates whether the robot completed an action. The CodeSys program communicates
with the user’s Python program through a socket and with the robot controller program
through a port.

Steps (shown in Figure A2.)
Send and Finish have initial values of F. Send is sent on port 4 and Finish on port 5.
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1. When the CodeSys program detects that Send = F and Finish = F, it sends “ready” to
the Python program.

2. When Python receives the ready signal, it sends data to CodeSys.
3. CodeSys receives the data sent by the Python program and then parses the data and

passes it to the robot controller program. Set Send to T and write to port 4.
4. When the robot controller detects Send = T and Finish = F, after executing the move-

ment command, set Finish to T and write to port 5.
5. When CodeSys detects Send = T and Finish = T, set Send to F and write to port 4.
6. When the robot controller detects Send = F and Finish = T, set Finish to F and write to

port 5.

Return to step 1.
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