
Article

Vision Based Drone Obstacle Avoidance by Deep
Reinforcement Learning

Zhihan Xue and Tad Gonsalves *

����������
�������

Citation: Xue, Z.; Gonsalves, T.

Vision Based Drone Obstacle

Avoidance by Deep Reinforcement

Learning. AI 2021, 2, 366–380.

https://doi.org/10.3390/ai2030023

Academic Editor: Rafał Dreżewski

Received: 7 May 2021

Accepted: 12 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information & Communication Sciences, Faculty of Science & Technology, Sophia University,
Tokyo 102-8554, Japan; z-xue-7q0@eagle.sophia.ac.jp
* Correspondence: t-gonsal@sophia.ac.jp

Abstract: Research on autonomous obstacle avoidance of drones has recently received widespread
attention from researchers. Among them, an increasing number of researchers are using machine
learning to train drones. These studies typically adopt supervised learning or reinforcement learning
to train the networks. Supervised learning has a disadvantage in that it takes a significant amount of
time to build the datasets, because it is difficult to cover the complex and changeable drone flight
environment in a single dataset. Reinforcement learning can overcome this problem by using drones
to learn data in the environment. However, the current research results based on reinforcement
learning are mainly focused on discrete action spaces. In this way, the movement of drones lacks
precision and has somewhat unnatural flying behavior. This study aims to use the soft-actor-critic
algorithm to train a drone to perform autonomous obstacle avoidance in continuous action space
using only the image data. The algorithm is trained and tested in a simulation environment built
by Airsim. The results show that our algorithm enables the UAV to avoid obstacles in the training
environment only by inputting the depth map. Moreover, it also has a higher obstacle avoidance rate
in the reconfigured environment without retraining.

Keywords: drone; SAC; Airsim; deep reinforcement learning; VAE

1. Introduction

Also known as unmanned aerial vehicle (UAV), the drone refers to a flying object
without a human pilot aboard. Currently, UAVs mainly rely on remote control in practical
applications. The maintenance cost is high, the response speed is slow, and it is subject to
the transmission quality of the communication channel. Therefore, autonomous motion
planning is urgently required in the UAV sector. One of the major requirements for
the motion planning of drones is obstacle avoidance. Compared to ultrasonic and laser
radar technology, the visual obstacle avoidance technology is more suitable for UAVs,
because visual sensor does not require a transmitting device. In addition, the receiving
device is simple, making it easier for UAVs to achieve small size, light weight, and low
energy consumption. Visual obstacle avoidance technology also does not require signal
transmission. This means that there is no radiation and signal interference. Furthermore, it
is not limited by geographical conditions and locations.

In the visual obstacle avoidance strategy, visual simultaneous localization and map-
ping (VSLAM) is one of the main representative methods applied to land robots [1].

The goal of SLAM is to construct a real-time map of the surrounding environment
based on sensor data and infer its own location based on this map [2]. A SLAM that
uses only a camera as an external sensor is called visual SLAM (VSLAM [3]). Compared
to the traditional SLAM algorithm, it has the advantages of rich visual information and
low hardware cost. Owing to the complexity of the flight environment, VSLAM has no
significant effect on drones. Although the SLAM solution that simultaneously uses cameras,
lidar, and other sensors at the same time can achieve better results [4], it also has some

AI 2021, 2, 366–380. https://doi.org/10.3390/ai2030023 https://www.mdpi.com/journal/ai

https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0001-9424-3078
https://doi.org/10.3390/ai2030023
https://doi.org/10.3390/ai2030023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ai2030023
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai2030023?type=check_update&version=2


AI 2021, 2 367

limitations, such as high dependence on the computing performance of the processing
chip, and difficulty in coping with visual changes in the target area.

With the development of machine learning, many obstacle avoidance solutions based
on deep learning have emerged. Such methods are mainly divided into supervised and
unsupervised learning and deep reinforcement learning. In supervised learning, a large
amount of data must be collected in the training environment of the drone before train-
ing. This method is only feasible if the dataset is sufficiently large and has high-quality
labels. Considering the complexity of the drone operating environment, it is very difficult
to manually create a dataset. Therefore, some studies have used unsupervised learning
methods to label datasets automatically. In the field of UAVs, research related to unsuper-
vised learning mainly tends to assist the model of supervised learning to automate the
production of datasets to reduce the human effort of labeling data [5]. On the other hand,
the deep reinforcement learning (DRL) method can solve the problem of creating a dataset
by making the drones collect data by themselves in the training environment.

In contrast to the discrete action space obstacle avoidance strategy [6] that has achieved
certain results in recent years, in this research we use the soft actor critic algorithm
(SAC) [7,8] to implement the UAV obstacle avoidance scheme based on continuous action
space, so that the UAV can make more accurate and smooth action selection. We use the
depth maps as input and combine SAC with a variational auto-encoder (VAE) to train
the UAV to complete obstacle avoidance tasks in a simulation environment composed of
multiple wall obstacles.

Experiments have proved that by using the delay-learning method, our algorithm can
obtain a more stable training effect in the UAV obstacle avoidance task than the general
SAC algorithm. Compared with the traditional DRL algorithm that directly uses images as
input in UAV obstacle avoidance tasks, our model combining VAE and SAC can converge
faster and achieve higher rewards in UAV obstacle avoidance tasks.

In this study, Airsim is used as the simulator, Unreal Engine 4 as the image engine,
and python pytorch as the machine learning framework. The three constitute an integrated
machine learning simulation environment. In the simulation environment, the quadrotor
aircraft acts as the learning agent. The front depth image of the environment collected by
Airsim from the UE4 engine serves as the input data. The output is the flying and obstacle
avoidance action taken by the agent in each time step.

The results show that the trained agent can not only achieve an average obstacle avoid-
ance rate of 90% in the training environment, but also has an average obstacle avoidance
rate of over 80% and over 70% in an environment where obstacles are rearranged and
reconstructed. This means that our model has not only a good obstacle avoidance ability in
the training environment, but also a certain ability to adapt to the new environment.

The rest of this paper is organized as follows: Section 2 describes related works on
the visual based and deep reinforcement learning strategy of drone navigation. Section 3
focuses on the methods used in this research. Section 4 explains the experimental process
of the study in detail. Finally, Section 5 summarizes our research results along with their
limitations and proposes future research plans.

2. Related Work

Recently, several drone algorithms based on deep learning have emerged, and they
have been applied to various drone-related tasks, such as localization and navigation [9].
Among them, supervised learning has many research results on drone control, while the
main results of unsupervised learning are still concentrated on feature extraction tasks such
as action recognition. Deep reinforcement learning has also made certain breakthroughs in
the field of drone control, and it is increasingly becoming mainstream.

2.1. UAV Navigation Based on Supervised Learning

Supervised learning requires a large amount of data as the basis for training. With the
gradual enrichment of datasets, supervised learning can also empower UAVs to complete



AI 2021, 2 368

more complex tasks. With different datasets, the tasks that drones can accomplish under
supervised learning are also different. For example, using convolutional neural networks,
UAVs can be trained to navigate autonomously and find a specific target in small indoor
environments using only monocular vision [10]. By collecting collision and crash data,
drones can be trained to effectively avoid collisions [11]. In contrast, by using a dataset of
gates captured in various environments, drones can be trained to pass through the gate
in a targeted manner [12]. Similarly, by collecting a large amount of data on urban roads,
drones can also navigate in urban environments and avoid common urban obstacles [13].
Because UAV navigation technology that uses supervised learning can solve problems in
various scenarios in a targeted manner, it already has some mature applications in actual
industrial technologies, such as the Internet of Things (loT) systems [14]. Collectively, these
studies outline a critical role for datasets in UAV navigation with supervised learning.
However, supervised learning via datasets has two major drawbacks: (1) Researchers need
to manually collect and label a large amount of data; (2) the data are highly oriented to a
specific environment, so the model needs to be retrained or an entirely new model needs to
be rebuilt when transferred to a new environment.

2.2. The Auxiliary Role of Unsupervised Learning for Drone Navigation

Although unsupervised learning cannot complete the drone navigation task indepen-
dently, it has a certain auxiliary effect on supervised learning and reinforcement learning
models. In addition to helping supervised learning to label data [15], unsupervised learning
models can also estimate depth maps from monocular vision images [5,16]. There are also
examples of using unsupervised learning to train rescue drones for human detection [17].
In this study, we use VAE [18] to process visual perception information, which is also a
method of using unsupervised learning to assist DRL training.

2.3. UAV Navigation Based on Reinforcement Learning

Reinforcement learning adopts the “trial and error” mechanism in human and animal
learning. It emphasizes learning in interaction with the environment and uses evaluative
feedback signals to optimize decision-making. Because reinforcement learning does not
need to be given teacher signals in various states during the learning process, it has broad
application prospects in solving complex optimization decision-making problems, such as
UAV navigation.

Reinforcement learning can be divided into value function-based reinforcement learn-
ing and policy-based reinforcement learning. In reinforcement learning based on the value
function, Q learning algorithm is the most commonly used learning algorithm. Several
studies have applied it to the navigation of mobile robots [19,20]. However, because the
state space and action space of the Q-learning algorithm are both discrete, the planned
route has poor flying ability and finds it difficult to deal with dynamic threats. In response
to these shortcomings, researchers have proposed a combination of deep learning and
reinforcement learning to form a deep reinforcement learning (DRL) algorithm to meet
the needs of state space or action space continuity. The initial DRL was Deep Q Network
(DQN), proposed by DeepMind in 2013 [21]. Some studies [22,23] introduced different
improved DQNs in path planning and achieved satisfactory results. However, since the
action space of the DQN is still in discrete form, there is still room for further improvement
in the quality of the planned path.

To achieve a continuous state space and action space, researchers further combined
another branch of reinforcement learning with deep learning: policy-based reinforcement
learning and proposed a policy-based DRL algorithm, including the deep deterministic
policy gradient algorithm (deep deterministic policy gradient, DDPG) [24] and distributed
proximal policy optimization (DPPO) [25].



AI 2021, 2 369

2.4. Visual Perception

Although some studies have attempted to apply policy-based DRL algorithms to the
path planning of UAVs and unmanned vehicles [26], the scenarios involved in these studies
are still far from the complex operating environment of UAVs. In fact, the training of end-
to-end vision-based DRL navigation strategy is very time-consuming, because the CNN
used to learn vision-based functions involves multiple matrix operations. Moreover, CNN
models require millions of images, and several days of training to acquire an adequate DRL
policy [27,28]. In addition, because there are many constraints in a complex environment,
compared with discrete space-based methods, such as Q learning and DQN, the policy-
based DRL algorithm may not easily converge [29]. For policy-based DRL algorithms,
obtaining feature-rich and compact visual perception information from images is a very
important research direction.

In the field of UAV navigation, some studies tend to simplify the image to achieve
the effect of compressing information and retaining features. For example, in [30], while
training the actor-critic algorithm, a U-net is skillfully trained to convert the RGB image
into a dense optical flow, and then the dense optical flow matrix is flattened as the state of
DRL training.

VAE-based models are often used to extract low-dimensional feature information
from images [18,31]. Microsoft recently used a framework called cross modal variational
autoencoder (CM-VAE) to generate tightly bridged representations to simulate the reality
gap [32]. The perception module of the system compresses the input image into the
above-mentioned low-dimensional representation, from 27,648 variables to the most basic
10 variables that can describe it. These 10 variables that can be decoded into blurred
images are used to replace the image itself for supervised learning and output the position
information of the gate that the drone needs to pass through and the drone’s velocity. Using
only the dataset processed by CM-VAE to train in a simulated environment can achieve the
effect of completing the same task in a real environment. This makes it possible to use VAE
for visual perception in the field of UAV DRL obstacle avoidance.

In this research, we attempt to combine VAE as an unsupervised learning auxiliary
role with a policy-based DRL algorithm. We use VAE to compress image information, and
then use the compressed image information as a state to participate in the training of the
SAC algorithm. This method makes the network structure in the DRL algorithm more
lightweight, so that the UAV visual obstacle avoidance algorithm can converge faster while
utilizing less hardware resources. In the next section, we introduce the model composition
and algorithm structure in detail.

3. Simulation Experiment Method
3.1. Simulation Environment

Airsim is an open-source drone and unmanned vehicle simulator launched by Mi-
crosoft [33]. It supports Unity 3D and Unreal 4 graphic engines. In this study, we chose
Unreal 4, which has a variety of drawing tool libraries. Researchers can construct detailed
scenes and obstacles with minimal effort. This study utilizes a rectangular closed corridor
built by the Unreal Engine as the flying environment of the drone.

Binocular depth cameras can obtain high-resolution depth maps of immediate scenes.
Owing to their small size and low power consumption, they are suitable for scene recogni-
tion when used with forward moving drones. In Airsim, we can directly retrieve the front
depth map generated by the binocular depth camera. In the experiment, we used these
depth maps as input to the deep reinforcement learning network.

3.2. Soft-Actor-Critic Framework

Among the DRL algorithms for continuous control, currently there are three main-
stream algorithms. PPO [34] is an algorithm that requires a large amount of sampling to
learn, and it is difficult to adapt it to the complex working environment of drones. DDPG
is a deterministic strategy, that is, only the optimal action is considered in each state. When



AI 2021, 2 370

using DDPG, we found that it has a strong dependence on the parameters. The optimal
solution depends on the tuning of a large number of parameters and repeated training.
SAC cleverly combines the actor-critic algorithm with maximum-entropy reinforcement
learning. Compared with DDPG, SAC is a random strategy that can explore a variety of
optimal routes in complex environments.

For a general DL, the learning goal is straightforward, which is to learn a policy to
maximize the accumulated reward expectation:

π∗= argmax
x

E(st, at) ∼ ρπ

[
∑

t
R(st, at)

]
(1)

In maximum entropy reinforcement learning, in addition to the above basic require-
ments, the entropy of each action output of each policy is required to be the maximum:

π∗ = argmax
x

E(st, at) ∼ ρπ

[
∑

t
R(st, at) + αH(π(·|st ))

]
(2)

Under such a strategy, the probability of each action output will be dispersed as
much as possible, rather than concentrated on one action, such that the agent has stronger
exploration ability and robustness.

In Equation (2), temperature α is the weight of entropy. Because of the constant change
of reward, the use of a fixed temperature will make training unstable, so it is necessary to
adjust this temperature automatically. Here, SAC constructs a constrained optimization
problem, so that the average entropy weight is limited, but the entropy weight is variable
in different states:

max
π0 :T

Eρπ

[
∑T

t=0 R(st, at)
]
s.t E(st, at) ∼ ρπ[− log(πt(at |s t))] ≥ H∀t (3)

By automatically adjusting the temperature, the agent can at first increase it when
exploring a new area to explore more space. After becoming familiar with a given area, it
gradually decreases the temperature to stabilize the strategy choice.

During the SAC training period, we use strategy and environment interaction and
store the data of each interaction, the current state st, the behavior at, the reward rt, and
the post-action state st+1 into the buffer. After that, we sample (st, st+1, rt, at) from the
buffer and estimate its quality (Q value) for the transition st→at → st+1 . We use this Q
value to weigh our strategy and optimize the strategy in the direction of maximizing it.
The workflow of the entire reinforcement learning system is illustrated in Figure 1. We
simultaneously train a VAE to generate the same depth map as the input depth map. Then,
we use VAE’s encode network to convert the depth map into latent code to participate
in training as a state. Different from DDPG, SAC also uses two sets of critic networks to
estimate the Q value. In our study, the smaller one is chosen as a candidate for updating.

3.3. Variational Auto-Encoder

The policy-based DRL algorithm requires an algorithm to achieve high accuracy
owing to the continuous action space, while DRL needs to use the newly trained model
immediately after a few seconds of training. This means that this type of DRL can only
use a relatively shallow network to ensure fast fitting. Moreover, the training data of
reinforcement learning is not as stable as supervised learning, and it is not possible to
divide the training and test sets to avoid overfitting. Therefore, such a DRL cannot be used
in wide networks.

The policy-based DRL algorithm falls into a dilemma when faced with visual input.
On the one hand, image recognition networks such as AlexNet [35] and ResNet [36] are too
complicated for such algorithms, while on the other hand, using too lightweight networks
is not sufficient to deal with complex image information. In order to solve this problem, we



AI 2021, 2 371

train a VAE synchronously during the first 10,000 steps of training. We let the same depth
map be used as both the input of the VAE and the label map, so that the VAE can generate
the depth map itself. When the VAE converges, the latent code generated in the VAE
encode part is a code with a length of 32 and retains the original depth map features. Using
such code as the state to participate in DRL training can make the state not only contain
the effective information of the original image, but also light enough to use simple fully
connected layers to achieve rapid convergence. The structure of the VAE we used is shown
in Figure 2. The input depth map is a 128 × 72 grayscale image with a channel number of 1.
The encode network is composed of a four-layer convolutional neural network, and each
convolutional layer uses a (4 × 4) convolution kernel. Before decoding, we unflatten the
latent code as data with a size of 1024 × 1 × 3. In order to successfully restore the data to
its original size, we use convolution kernels with sizes (5 × 7), (6 × 8), (7 × 8), and (8 × 6)
in the decode section.

3.4. The Structure of the Actor Network and the Critic Network

The structure of the actor and critic network is shown in the Figure 3. The actor
network is a neural network composed of four fully connected layers. The 32-length latent
code generated by the VAE is input into the actor network as the state. The output of the
actor network has two values ranging from −1 to 1, representing the velocity of the drone
in the y direction (left and right directions) and z direction (up and down directions).

Figure 1. Flow diagram of training of the whole system.

The critic network consists of three fully connected layers. Its function is to estimate
the Q value that can be obtained when a certain action value is selected in a certain state.
Therefore, the input value of the critic network is a combination of state and action, that is,
a code with a length of 34. At the same time, to prevent the overestimation of the Q value,
the SAC critic network uses two fully connected layers in the output layer to output two
different Q values and take the smallest value in each update.



AI 2021, 2 372

Figure 2. The structure of the VAE.

Figure 3. Structure of the actor network and the critic network.

3.5. Replay Buffer

The size of the replay buffer is set to 217, which means that 217 number of actions,
rewards, states, and next states are stored and sampled for training. However, unlike the



AI 2021, 2 373

replay buffer in traditional deep reinforcement learning, we divide the replay buffer into
two parts:

(1) Success buffer area that stores the success of avoiding obstacles; and
(2) Regular buffer area for recording regular movements.

Dividing the replay buffer data into two categories is necessary because the data of
normal flight and collision occupies a large proportion of the data collected by the drone,
while the experience of avoiding obstacles only accounts for a small proportion. Especially
at the very beginning of training, the UAV can hardly complete obstacle avoidance suc-
cessfully. If all the data are stored in a single replay buffer and a certain amount of data
are randomly extracted from it every time the model is updated, it will be difficult for the
agent to learn successful experience.

Each time the model updates the learning networks, we extract data from the two
buffers for training at a ratio of 0.125:0.875. Doing so ensures that a certain amount of
successful experience can be learned every time the model is updated.

3.6. Reward Function

At the end of each step, the system gives the corresponding rewards or penalties based
on whether it is a collision, whether it has been upgraded or whether it has reached the
destination. Every time the drone moves, it records the center of the depth map ahead.
The action reward takes the normalized average of the pixel values in the central 16 × 16
portion of the depth map matrix and subtracts normalized average value of the entire
depth map matrix. The result will be multiplied by a parameter k. If the action reward is
positive, it proves that the drone is moving away from the obstacle, that is, avoiding the
obstacle, it is rewarded at this time. If the obstacle avoidance reward is negative, it means
that the drone is approaching the obstacle and receives a certain penalty.

The specific reward values are presented in Table 1. The solution process of action
reward is shown in the fourth row of Table 1 and Figure 4. The action reward is the
difference between the normalized mean value of the central part of the depth map and
the normalized mean value of the entire depth map.

Table 1. Reward function.

Reward Type Reward Value

Collision −2.0
Level Up 2.0

Reach Destination 2.0
Action Reward Mean (depth map center (16× 16)/255)−Mean (depth map/255)

3.7. Delay Learning

The original actor-critic type algorithm often uses a direct update scheme in the
learning process, in which the critic and actor networks are updated at each time step.
Theoretically, direct update will generate more training steps, thereby accelerating conver-
gence. However, in practical applications, we found that this method frequently changes
the policy selection plan during training, which confuses the agent about the strategy
selection during learning and causes policy jittering.

In order to solve this shortcoming, we designed a delayed learning scheme in which
we delayed the update of the network until after the end of each epoch. This ensures that
every complete flight of the drone follows the same policy. This method stabilizes the
training process to a certain extent. To compare the differences between the two algorithms,
we trained the two algorithms in the same environment for 4000 epochs and recorded
their average obstacle avoidance times in the last 50 epochs. It can be seen from Figure 5
that although the difference in the results is not large, the conventional SAC has greater
volatility in our task than the SAC with delayed learning.



AI 2021, 2 374

Figure 4. The calculation process of action rewards.

Figure 5. SAC and delayed learning SAC are trained for 4000 epochs under our experimental task.

4. Experiments
4.1. Learning Environment

The settings of the workstation and simulation environment are listed in Table 2:

Table 2. Workstation and simulation environment settings.

Hardware/Frameworks Parameters and Versions

CPU AMD Ryzen Threadripper 3970 × 3.69 GHz
GPU 2 × NVIDIA RTX 3090
RAM 32 GB

Operating System Windows 10
Program Language Python 3.6

ML Library Pytorch 1.9
CV Library OpenCV 4.4
Simulator Airsim 1.2.8

Game Engine Unreal Engine 4.24.3



AI 2021, 2 375

In this experiment, we used Unreal Engine to build a closed corridor with length 60 m,
width 6 m, and height 7 m as the flying environment of the drone. Every ten meters in
the corridor, a wall with different opening positions was used as an obstacle, as shown in
Figure 6. We use these obstacles to divide the corridor into 5-level areas. Every time the
drone crosses an obstacle in a single test, it is considered as a level-up. We consider the
drone to take off from one end of the corridor and avoid all obstacles (passing through all
the openings in the walls) as passing the test.

Figure 6. Five walls with different opening positions serve as obstacles in the experimental environment.

4.2. Training Process

The purpose of this experiment is to determine whether the soft-actor-critic network
designed in Section 3 can train the UAV to attain obstacle avoidance capabilities. According
to our reward function setting, the drone accumulates more rewards when it continuously
avoids obstacles. These rewards will finally be settled as epoch rewards, that is, the rewards
accumulated from take-off to crash or reach the end.

To enable the UAV to collect adequately diverse data during the training process, we
used a segmented training method. After every 10 epochs, the drone takes off from the
starting point of a new level. The switching of the starting point follows the order from
level 1 to level 5 and returns to level 1 after training for 10 epochs in the level 5 environment.

4.3. Test Process

During the test, the drone takes off only at the initial starting point and attempts to
avoid obstacles without any noise. The drone that passes the five obstacles safely and
touches the end wall is deemed to have passed the test. To verify whether the drone can
adapt to certain environmental changes, we repeatedly changed the order of the walls for
testing, as shown in Figure 7. The test environment contained three different obstacles
arranged sequentially. They are a training environment (the obstacle order is 12345) and
two reconfigured environments (the obstacle order is 34125 and 53412).

After training, we tested the model with the highest average number of obstacle
avoidances in the above three different environments. The drone flies 1000 epochs in these
three environments under the control of the trained model. We recorded the number of
successful avoidances of each obstacle and the average obstacle avoidance success rate
after the tests.

To further verify the adaptability of the trained agent to the new environment, we
constructed a test environment composed of five non-rectangular gates. In this test envi-
ronment, the five obstacles are arranged in sequence according to the numbers shown in



AI 2021, 2 376

Figure 8, and the length, width, and height of the corridor are the same as those of the
training environment.

Figure 7. The test environment. The test environment contained three different obstacles arranged
sequentially. They are a training environment (a), the obstacle order is 12345 and two reconfigured
environments (b,c), the obstacle order is 34125 and 53412.

Figure 8. Five non-rectangular obstacles in the new reconstructed test environment.

4.4. Results

In our experiments, the network was updated after each epoch. Figure 9 shows the
graph with the training epochs on the horizontal axis and episode rewards on the vertical
axis. It can be seen from Figure 9 that after about 200 epochs (only collecting data in the
first 2000 steps without updating the network), episode rewards began to grow gradually.
Since the use of reward to reflect the obstacle avoidance ability is not intuitive enough, we
recorded the average number of obstacle avoidance times of the agent within 50 epochs
during training. Fifty epochs were used to calculate the average value because the agent
changed the starting point to the next level every 10 epochs. After 50 epochs, the starting
point passed through all levels and then returned to level 1. In an ideal state, if the UAV
completes all obstacle avoidance without any collision in 50 epochs, the average number of
obstacle avoidances should be 3. As can be seen in Figure 10, as the training progresses,



AI 2021, 2 377

the average number of obstacle avoidances can gradually stabilize above 1 and approach 2
after 4000 epochs training.

Figure 9. The episode rewards graph.

Figure 10. The average obstacle avoidance times in 50 epochs.

We number the five obstacles from 1 to 5 in the order of the training environment.
During the training progress, we save the model with the highest average number of
obstacle avoidances. After completing the training, we test it in the training environment
(the obstacles are arranged in the order of 12345), the two rearranged environments (the
obstacles are in the order of 34125 and 53412, respectively), and a reconstructed environ-
ment (the shape of the obstacles is shown in Figure 8) for 100 epochs test. We record the
number of times the drone reached each level in the three environments and calculate the
obstacle avoidance rate of the drone using the following equation:

R =
t1 ÷ 100 + t2 ÷ 100 + t3 ÷ 100 + t4 ÷ 100 + t5 ÷ 100

5
(4)

where R is the average obstacle avoidance rate, and tn is the number of times the nth
obstacle has been avoided in 100 epochs. Refer to Table 3 for the specific data:



AI 2021, 2 378

Table 3. Test results.

Obstacle Sequence 1 2 3 4 5 3 4 1 2 5 5 3 4 1 2 Environment
Reconstructed

Level 1 96 90 85 72
Level 2 87 68 75 62
Level 3 74 56 60 44
Level 4 67 53 45 35
Level 5 59 46 33 24

Average obstacle avoidance rate 90.1% 85.9% 80.3% 75.4%

The experimental results show that as the number of training epochs increases, our
model can finally achieve an obstacle avoidance rate of more than 90% in the training
environment. After a long period of training, it can achieve an obstacle avoidance rate of
over 80% in a rearranged environment and more than 70% in a reconstructed environment.
This proves that when the training environment is sufficiently diverse, the model not only
has the ability to learn quickly, but also has certain adaptability to the new environment.

At the same time, when comparing other similar research results horizontally, we
can find that the UAV obstacle avoidance algorithm using TD3 needs 50,000 updates to
reach more than 90% obstacle avoidance rate in the test environment when directly using
the convolutional neural network as the policy network [37]. The actor critic algorithm
that uses U-net for image data compact requires 2,000,000 updates to converge [22]. Our
algorithm can achieve relatively ideal results in both the training environment and the
reconfigured environment with only 8000 updates. This proves that our model can indeed
solve the problem of slow convergence of the policy-based DRL algorithm on the UAV
visual obstacle avoidance problem to a certain extent.

In order to compare the superiority of the model, we also conducted 4000 epochs train-
ing on our model and the TD3 algorithm in an experimental environment and compared
the reward values obtained. As shown in Figure 11, the improved SAC in our experimental
task is significantly better than the TD3 algorithm in both the growth rate and the peak
value of the reward value.

Figure 11. The episode rewards graph of TD3 and SAC+VAE.

5. Conclusions

In this study, we proposed a deep reinforcement learning method using VAE to
preprocess image data. This method enables UAVs to learn quickly and efficiently to avoid
obstacles and does not need to rely on any sensors other than the depth camera. Compared



AI 2021, 2 379

to other visual obstacle avoidance algorithms, our method can complete obstacle avoidance
in a continuous action space and does not require complex image recognition networks to
perform DRL training.

However, this method still has room for improvement. We found that the trained
VAE can indeed preserve the image features to a large extent while greatly simplifying
the complex image information. In the next stage of research, we want to try to train VAE
in a test environment to generate a depth map containing depth information or even a
dense optical flow containing both depth and speed information from a given RGB image
and test whether the latent code in this case as a state participating in DRL training has
a good effect. If the RGB image can directly generate code that retains depth and even
speed information, it means that the obstacle avoidance task of the UAV can be completed
with a monocular camera, which makes the UAV lighter than the algorithm that requires a
binocular camera.

SAC is a mature algorithm that does not rely on hyperparameters, but the quality of
the reward function has a great impact on its learning efficiency. In the current experiment,
in order to simplify the reward function, we fixed the advancement speed of the UAV to 1.
This makes the UAV’s obstacle avoidance task in the simulation environment simpler than
in the real world. The limitation of this method is that the drone cannot avoid obstacles
that need forward speed adjustment or backward movement (reversing) to avoid collision.
It will be our main task in the next stage of research to make a complete and accurate
UAV obstacle avoidance in the full coordinate direction. In a completely reconstructed
environment, the UAV’s obstacle avoidance capability shows some decline. Enhancing the
ability of drones to adapt to the new environment will also be an important goal of our
further research.

Author Contributions: Z.X.: Methodology, Programming, Validation, Writing—original draft prepa-
ration; T.G.: Supervision, Validation, Writing—review and editing. Both authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Matsuki, H.; von Stumberg, L.; Usenko, V.; Stueckler, J.; Cremers, D. Omnidirectional DSO: Direct Sparse Odometry With Fisheye

Cameras. IEEE Robot. Autom. Lett. 2018, 3, 3693–3700. [CrossRef]
2. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110.

[CrossRef]
3. Fuentes-Pacheco, J.; Ruiz-Ascencio, J.; Rendon-Mancha, J.M. Visual simultaneous localization and mapping: A survey.

Artif. Intell. Rev. 2015, 43, 55–81. [CrossRef]
4. Lynen, S.; Sattler, T.; Bosse, M.; Hesch, J.; Pollefeys, M.; Siegwart, R. Get Out of My Lab: Large-scale, Real-Time Visual-Inertial

Localization. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015; Volume 1.
5. Huang, T.; Zhao, S.; Geng, L.; Xu, Q. Unsupervised Monocular Depth Estimation Based on Residual Neural Network of

Coarse–Refined Feature Extractions for Drone. Electronics 2019, 8, 1179. [CrossRef]
6. Kang, K.; Belkhale, S.; Kahn, G.; Abbeel, P.; Levine, S. Generalization through Simulation: Integrating Simulated and Real

Data into Deep Reinforcement Learning for Vision-Based Autonomous Flight. In Proceedings of the 2019 IEEE International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6008–6014. [CrossRef]

7. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. arXiv 2018, arXiv:1801.01290.

8. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic
algorithms and applications. arXiv 2018, arXiv:1812.05905.

9. Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Campoy, P. A Review of Deep Learning Methods and Applications for Unmanned
Aerial Vehicles. J. Sens. 2017, 2017, 3296874. [CrossRef]

http://doi.org/10.1109/LRA.2018.2855443
http://doi.org/10.1109/MRA.2006.1638022
http://doi.org/10.1007/s10462-012-9365-8
http://doi.org/10.3390/electronics8101179
http://doi.org/10.1109/ICRA.2019.8793735
http://doi.org/10.1155/2017/3296874


AI 2021, 2 380

10. Kim, D.K.; Chen, T. Deep neural network for real-time autonomous indoor navigation. arXiv 2015, arXiv:1511.04668.
11. Gandhi, D.; Pinto, L.; Gupta, A. Learning to fly by crashing. In Proceedings of the 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3948–3955. [CrossRef]
12. Jung, S.; Hwang, S.; Shin, H.; Shim, D.H. Perception, Guidance, and Navigation for Indoor Autonomous Drone Racing Using

Deep Learning. IEEE Robot. Autom. Lett. 2018, 3, 2539–2544. [CrossRef]
13. Loquercio, A.; Maqueda, A.I.; Del-Blanco, C.R.; Scaramuzza, D. DroNet: Learning to Fly by Driving. IEEE Robot. Autom. Lett.

2018, 3, 1088–1095. [CrossRef]
14. Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on Collaborative Smart Drones and Internet of Things for Improving

Smartness of Smart Cities. IEEE Access 2019, 7, 128125–128152. [CrossRef]
15. Bah, M.D.; Hafiane, A.; Canals, R. Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV

Images. Remote Sens. 2018, 10, 1690. [CrossRef]
16. Godard, C.; Mac Aodha, O.; Brostow, G.J. Unsupervised Monocular Depth Estimation with Left-Right Consistency. In Proceedings

of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019;
pp. 1621–1625. [CrossRef]

17. Lygouras, E.; Santavas, N.; Taitzoglou, A.; Tarchanidis, K.; Mitropoulos, A.; Gasteratos, A. Unsupervised Human Detection with
an Embedded Vision System on a Fully Autonomous UAV for Search and Rescue Operations. Sensors 2019, 19, 3542. [CrossRef]
[PubMed]

18. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
19. Low, E.S.; Ong, P.; Cheah, K.C. Solving the optimal path planning of a mobile robot using improved Q-learning. Robot. Auton. Syst.

2019, 115, 143–161. [CrossRef]
20. Konar, A.; Chakraborty, I.G.; Singh, S.J.; Jain, L.C.; Nagar, A. A Deterministic Improved Q-Learning for Path Planning of a Mobile

Robot. IEEE Trans. Syst. Man Cybern. Syst. 2013, 43, 1141–1153. [CrossRef]
21. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.;

Petersen, S.; et al. Human-level control through deep reinforcement learning. Nature 2015, 7540, 518–529. [CrossRef]
22. Lv, L.; Zhang, S.; Ding, D.; Wang, Y. Path Planning via an Improved DQN-Based Learning Policy. IEEE Access 2019, 7, 67319–67330.

[CrossRef]
23. Yan, C.; Xiang, X.; Wang, C. Towards Real-Time Path Planning through Deep Reinforcement Learning for a UAV in Dynamic

Environments. J. Intell. Robot. Syst. 2019, 98, 297–309. [CrossRef]
24. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
25. Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S.M.; et al. Emergence of

locomotion behaviours in rich environments. arXiv 2017, arXiv:1707.02286.
26. Qie, H.; Shi, D.; Shen, T.; Xu, X.; Li, Y.; Wang, L. Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on

Multi-Agent Reinforcement Learning. IEEE Access 2019, 7, 146264–146272. [CrossRef]
27. Savva, M.; Kadian, A.; Maksymets, O.; Zhao, Y.; Wijmans, E.; Jain, B.; Straub, J.; Liu, J.; Koltun, V.; Malik, J.; et al. Habitat:

A Platform for Embodied AI Research. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 9338–9346. [CrossRef]

28. Kolve, E.; Mottaghi, R.; Han, W.; VanderBilt, E.; Weihs, L.; Herrasti, A.; Gordon, D.; Zhu, Y.; Gupta, A.; Farhadi, A. Ai2-thor:
An interactive 3d environment for visual ai. arXiv 2017, arXiv:1712.05474.

29. Wijmans, E.; Kadian, A.; Morcos, A.; Lee, S.; Essa, I.; Parikh, D.; Savva, M.; Batra, D. DD-PPO: Learning near-perfect pointgoal
navigators from 2.5 billion frames. arXiv 2019, arXiv:1911.00357.

30. Shin, S.-Y.; Kang, Y.-W.; Kim, Y.-G. Reward-driven U-Net training for obstacle avoidance drone. Expert Syst. Appl. 2020,
143, 113064. [CrossRef]

31. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. Beta-Vae: Learning Basic
Visual Concepts with a Constrained Variational Framework. In Proceedings of the 5th International Conference on Learning
Representations, Toulon, France, 24–26 April 2017.

32. Bonatti, R.; Madaan, R.; Vineet, V.; Scherer, S.; Kapoor, A. Learning Visuomotor Policies for Aerial Navigation Using Cross-Modal
Representations. arXiv 2019, arXiv:1909.06993.

33. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field
and Service Robotics; Hutter, M., Siegwart, R., Eds.; Springer Proceedings in Advanced Robotics; Springer: Cham, Switzerland,
2018; Volume 5. [CrossRef]

34. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 1–26 July 2016; pp. 770–778. [CrossRef]

37. He, L.; Aouf, N.; Whidborne, J.F.; Song, B. Deep reinforcement learning based local planner for UAV obstacle avoidance using
demonstration data. arXiv 2020, arXiv:2008.02521.

http://doi.org/10.1109/IROS.2017.8206247
http://doi.org/10.1109/LRA.2018.2808368
http://doi.org/10.1109/LRA.2018.2795643
http://doi.org/10.1109/ACCESS.2019.2934998
http://doi.org/10.3390/rs10111690
http://doi.org/10.1109/ICCT46805.2019.8947220
http://doi.org/10.3390/s19163542
http://www.ncbi.nlm.nih.gov/pubmed/31416131
http://doi.org/10.1016/j.robot.2019.02.013
http://doi.org/10.1109/TSMCA.2012.2227719
http://doi.org/10.1038/nature14236
http://doi.org/10.1109/ACCESS.2019.2918703
http://doi.org/10.1007/s10846-019-01073-3
http://doi.org/10.1109/ACCESS.2019.2943253
http://doi.org/10.1109/ICCV.2019.00943
http://doi.org/10.1016/j.eswa.2019.113064
http://doi.org/10.1007/978-3-319-67361-5_40
http://doi.org/10.1109/cvpr.2016.90

	Introduction 
	Related Work 
	UAV Navigation Based on Supervised Learning 
	The Auxiliary Role of Unsupervised Learning for Drone Navigation 
	UAV Navigation Based on Reinforcement Learning 
	Visual Perception 

	Simulation Experiment Method 
	Simulation Environment 
	Soft-Actor-Critic Framework 
	Variational Auto-Encoder 
	The Structure of the Actor Network and the Critic Network 
	Replay Buffer 
	Reward Function 
	Delay Learning 

	Experiments 
	Learning Environment 
	Training Process 
	Test Process 
	Results 

	Conclusions 
	References

