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Abstract: Continuous action spaces impose a serious challenge for reinforcement learning agents.
While several off-policy reinforcement learning algorithms provide a universal solution to continuous
control problems, the real challenge lies in the fact that different actuators feature different response
functions due to wear and tear (in mechanical systems) and fatigue (in biomechanical systems). In this
paper, we propose enhancing the actor-critic reinforcement learning agents by parameterising the final
layer in the actor network. This layer produces the actions to accommodate the behaviour discrepancy
of different actuators under different load conditions during interaction with the environment. To
achieve this, the actor is trained to learn the tuning parameter controlling the activation layer (e.g.,
Tanh and Sigmoid). The learned parameters are then used to create tailored activation functions
for each actuator. We ran experiments on three OpenAI Gym environments, i.e., Pendulum-v0,
LunarLanderContinuous-v2, and BipedalWalker-v2. Results showed an average of 23.15% and
33.80% increase in total episode reward of the LunarLanderContinuous-v2 and BipedalWalker-v2
environments, respectively. There was no apparent improvement in Pendulum-v0 environment
but the proposed method produces a more stable actuation signal compared to the state-of-the-art
method. The proposed method allows the reinforcement learning actor to produce more robust
actions that accommodate the discrepancy in the actuators’ response functions. This is particularly
useful for real life scenarios where actuators exhibit different response functions depending on the
load and the interaction with the environment. This also simplifies the transfer learning problem by
fine-tuning the parameterised activation layers instead of retraining the entire policy every time an
actuator is replaced. Finally, the proposed method would allow better accommodation to biological
actuators (e.g., muscles) in biomechanical systems.

Keywords: continuous control; deep reinforcement learning; actor-critic; DDPG

1. Introduction

Deep reinforcement learning (DRL) was used in different domains and achieved
good results on different tasks, such as robotic control, natural language processing, and
biomechanical control of digital human models [1–4].

While DRL is proven to handle discrete problems effectively and efficiently, contin-
uous control remains a challenging task. This is because it relies on physical systems
that are prone to noise due to wear and tear, overheating, and altered actuator response
function depending on the load each actuators bears; this is more apparent in robotic and
biomechanical control problems. In the robotic control domain, for instance, bipedal robots
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robustly perform articulated motor movements in complex environments and with limited
resources. These robust movements are achieved using highly sophisticated model-based
controllers. However, the motor characteristics are highly dependent on the load and the
interaction with the environment. Thus, adaptive continuous control is required to adapt
to new situations.

Biomechanical modelling and simulation present a clearer example. In a biomechani-
cal system, the human movement is performed using muscle models [5,6]. These models
simulate muscle functions, which are complex and dependent on multiple parameters,
such as muscle maximum velocity, muscle optimal length, and muscle maximum isometric
force, to name a few [7].

The common challenge with training DRL agents on continuous action spaces is
the flow of the gradient update throughout the network. The current state of the art is
relying on a single configuration of the activation function producing the actuation signals.
However, different actuators exhibit different transfer functions, and also, noisy feedback
from the environment propagates through the entire actor neural network; thus, a drastic
change is imposed on the learned policy. The solution we are proposing in this work is to
use multiple actuation transfer functions that allow the actor neural network to adaptively
modify the actuation response functions to the needs of each actuator.

In this paper, we present a modular perspective of the actor in actor-critic DRL agents
and propose modifying the actuation layer to learn the parameters defining the activation
functions (e.g., Tanh and Sigmoid). It is important to emphasise the difference between
parameterised action spaces and parameterised activation functions. In reinforcement
learning, a parametrised action space is commonly referred to as a discrete action space
that has one or more accompanying continuous parameters [8]. It was used to solve
problems such as the RoboCup [9], which is a robots world cup soccer game [10]. On
the other hand, parameterised activation functions, such as PReLU [11] and SeLU [12],
were introduced to combat overfitting and saturation problems. In this paper, we propose
parameterised activation functions to improve the performance of the deep deterministic
policy gradient (DDPG) to accommodate the complex nature of real-life scenarios.

The rest of this paper is organised as follows. Related work is discussed in Section 2.
The proposed method is presented in Section 3. Experiments and results are presented
in Section 4 and discussed in Section 5. Finally, Section 6 concludes and introduces
future advancements.

2. Background

Deep deterministic policy gradient (DDPG) is a widely adopted deep reinforcement
learning method for continuous control problems [13]. A DDPG agent relies on three main
components: the actor, critic, and experience replay buffer [13].

In the actor-critic approach [14], the actor neural network reads observations from
the environment and produces actuation signals. After training, the actor neural network
serves as the controller, which allows the agent to navigate the environment safely and
to perform the desired tasks. The critic network assesses the anticipated reward based
on the current observation and the actor’s action. In control terms, the critic network
serves as a black-box system identification module, which provides guidance for tuning the
parameters of a PID controller. The observations, actions, estimated reward, and next-state
observation are stored as an experience in a circular buffer. This buffer serves as a pool of
experiences, from where samples are drawn to train the actor and the critic neural networks
to produce the correct action and estimate the correct reward, respectively.

There are different DDPG variations in the literature. In [15], a twin delay DDPG
(TD3) agent was proposed to limit overestimation by using the minimum value between
a pair of critics instead of one critic. In [16], it was proposed to expand the DDPG as a
distributed process to allow better accumulation of experiences in the experience replay
buffer. Other off-policy deep reinforcement learning agents such as soft actor-critic (SAC),
although relying on stochastic parameterisation, are inspired by DDPG [17,18]. In brief,
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SAC adapts the reparameterisation trick to learn a statistical distribution of actions from
which samples are drawn based on the current state of the environment.

DDPG Challenges

Perhaps the most critical challenge of the DDPG, and off-policy agents in general, is
its sample inefficiency. The main reason behind this challenge is that the actor is updated
depending on the gradients calculated during the training of the critic neural network. This
gradient is noisy because it relies on the outcome of the simulated episodes. Therefore, the
presence of outlier scenarios impact the training of the actor, and thus, constantly change
the learned policy instead of refining it. This is the main reason off-policy DRL training
algorithms require maintaining a copy of the actor and critic neural networks to avoid
divergence during training.

While radical changes in the learned policy may provide a good exploratory behaviour
of the agent, it does come at the cost of requiring many more episodes to converge. Addi-
tionally, it is often recommended to have controllable exploratory noise parameters sepa-
rated from the policy either by inducing actuation noise such as Ornstein–Uhlenbeck [19] or
maximising the entropy of the learned actuation distribution [17,18]. Practically, however,
for very specific tasks, and most continuous control tasks, faster convergence is often a crit-
ical aspect to consider. Another challenge, which stems from practical applications, is the
fact that actuators are physical systems and are susceptible to having different characterised
transfer functions in response to the supplied actuation signals. These characterisation
discrepancies are almost present in every control system due to wear and tear, fatigue, over-
heating, and manufacturing factors. While minimal discrepancies are easily accommodated
with a PID controller, they impose a serious problem with deep neural networks. This
problem, in return, imposes a serious challenge during deployment and scaling operations.

3. Proposed Method

To address the aforementioned challenges, we propose parameterising the final acti-
vation function to include scaling and translation parameters k, x0. In our case, we used
tanh(kx− kx0) instead of tanh(x) to allow the actor neural network to accommodate the
discrepancies of the actuator characteristics by learning k and x0. The added learnable
parameters empower the actor with two additional degrees of freedom.

3.1. Modular Formulation

In a typical DRL agent, an actor consists of several neural network layers. While the
weights of all layers collectively serve as a policy, they do serve different purposes based
on their interaction with the environment. The first layer encodes observations from the
environment, and thus, we propose to call it the observer layer. The encoded observations
are then fed into several subsequent layers, and thus, we call them the policy layers. Finally,
the output of the policy layers are usually fed to a single activation function. Throughout
this paper, we denote the observer, policy, and action parts of the policy neural network
as πO, πP, πA, respectively. We also denote the observation, the premapped action space,
and the final action space as O, Ã and A, respectively. To that end, the data flow of the
observation ot ∈ O through the policy π to produce an action at ∈ A can be summarised as;

at = π(ot) = πA ◦ πP ◦ πO(ot), (1)

= πA
(

πP
(

πO(ot)
))

, (2)

where πO : O→ Ã, πP : Õ→ Ã and πA : Ã→ A.
In a typical actor neural network, there is no distinction between the observer and

policy layers. Also, the actuation layer is simply regarded as the final activation function
πA(x) = tanh(x), and thus, the actor is typically modelled as one multilayer perceptron
neural network (MLP). The problem with having πA as tanh (Sigmoid is also a popular
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activation function where A = [0, 1].) is that it assumes that all actuators in the system
exhibit the same actuation-torque characterisation curves under all conditions.

3.2. Parameterising πA

Because actuation characterisation curves differ based on their role and interaction
with the environment, using a single activation function forces the feedback provided by
the environment to propagate throughout the gradients of the entire policy. Therefore, we
chose to use a parameterised πA(kx− kx0) to model the scaling and the translation of the
activation function, and thus, the data flow in Equation (2) can be expanded as;

kt = πK
(

πP
(

πO(ot)
))

, (3)

a0
t = πa0

(
πP

(
πO(ot)

))
, (4)

at = πA
(

ktπ
P
(

πO(ot)
)
− kta0

t

)
, (5)

where πa0 , πk are simple fully connected layers and πA remains an activation function
(i.e., tanh), as shown in Figure 1. Adjusting the activation curves based on the interaction
with the environment allows the policy to remain intact, and thus, leads to a more stable
training as discussed in the following section.

While the automatic differentiation engines are capable of adjusting the flow of gradi-
ent updates, there are two implementation considerations to factor in the design of the actor.
Firstly, the scale degree of freedom parameterised by k, in the case of tanh and sigmoid,
does affect the slope of the activation function. A very small k < 0.1 will render πA to be
almost constant while a very high k > 25 produces a square signal. Both extreme cases
impose problems to the gradient calculations. On one hand, a constant signal produces
zero gradients and prevents the policy neural network from learning. On the other hand,
a square signal produces unstable exploding gradients. Another problem also occurs
when k < 0, which usually changes the behaviour of the produced signals. Therefore, we
recommend using a bounded activation function after πk when estimating kt.

FCi FCn FCã

FCk

FCa0

tanh (kã − ka0)FC0
ã

k

a0

ACTIONSTATE

Figure 1. Proposed modification to actor. Final fully connected layer branches into two fully
connected layers to learn x0 and k parameters of tanh(kx− kx0).

Secondly, the translation degree of freedom parameterised by a0, allows translating
the activation function to an acceptable range, which prevents saturation. However, this
may, at least theoretically, allow the gradients of the policy πP and observer πO layers
to have monotonically increasing gradients as long as the a0

t can accommodate. This in
return may cause an exploding gradient problem. To prevent this problem, we recommend
employing weight normalisation after calculating the gradients [20].
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4. Experiments and Results

To test the efficacy and stability of the proposed method, we trained a DDPG agent
with and without the proposed learnable activation parameterisation. Both models were
trained and tested on three OpenAI gym environments, shown in Figure 2, that are
Pendulum-v0, LunarLanderContinous-v2, and BipedalWalker-v2. For each environment,
six checkpoint models were saved (best model for each seed). The saved models were then
tested for 20 trials with new random seeds (10 episodes with 500 steps each). The total num-
ber of test episodes is 1,200 for each environment. The results of the three environments
are tabulated in Tables 1 and 2.

(a) Inverted Pendulum (b) Lunar Lander (c) Bipedal Walker

Figure 2. OpenAI gym environments used for testing.

4.1. Models and Hyperparameters

The action mapping network is where the proposed and classical models differ. The
proposed model branches the final layer of into two parallel fully connected layers to infer
the parameters of k, x0 in tanh(kx − kx0) activation function. The classical model adds
two more fully connected layers separated by tanh activation function. The added layers
ensures that the number of learnable parameters is the same in both models to guarantee a
fair comparison.

Both models were trained on the three environments for the same number of episodes
(200 steps each). However, number of steps may vary depending on early termination
cases. The models were trained with 5 different pseudo-random number generator (PRNG)
seeds. We set the experience replay buffer to 106 samples. We chose ADAM optimiser for
the back-propagation optimisation and set the learning rate of both the actor and the critic
to 1E-3 with first and second moments set to 0.9, 0.999, respectively. We set the reward
discount γ = 0.99 and the soft update of the target neural networks τ = 0.005. We also
added a simple Gaussian noise with σ = 0.25 to allow exploration. During the training
we saved the best model (i.e., checkpoint). DDPG hyper-parameters tuning is thoroughly
articulated in [13].
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Table 1. Episode Reward (mean ± std). Higher mean is better.

Pendulum-v0Pendulum-v0Pendulum-v0 LunarLanderContinuous-v2LunarLanderContinuous-v2LunarLanderContinuous-v2 BipedalWalker-v2BipedalWalker-v2BipedalWalker-v2

Classic Tanh −269.20 ± 167.43 114.25 ± 41.20 125.27 ± 15.78
Learnable Tanh (proposed) −268.39 ± 166.32 140.69 ± 45.21 167.60 ± 8.45
Improvement 0.30% 23.15% 33.80%

Table 2. Step Reward (mean ± std). Higher mean is better.

Pendulum-v0Pendulum-v0Pendulum-v0 LunarLanderContinuous-v2LunarLanderContinuous-v2LunarLanderContinuous-v2 BipedalWalker-v2BipedalWalker-v2BipedalWalker-v2

Classic Tanh −0.54 ± 0.34 0.40 ± 0.28 0.23 ± 0.09
Learnable Tanh (proposed) −0.54 ± 0.34 0.67 ± 0.35 0.29 ± 0.16
Improvement 0.26% 65.59% 26.76%

4.2. Inverted Pendulum Results

In the inverted pendulum problem (Figure 3), the improvement is marginal because
the environment featured only one actuator. However, the policy adapted by the proposed
agent features a fine balance of actuation signals. In contrast, the classical MLP/Tanh
model exerts additional oscillating actuation signals to maintain the achieved optimal state,
as shown in Figure 3e. This oscillation imposes a wear and tear challenge on mechanical
systems and fatigue risks in biomechanical systems. While this difference is reflected with
minimal difference in the environment reward, it is often a critical decision to make in
practical applications.
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Figure 3. Inverted pendulum results. Both methods show similar training performance curves (a).
Best models from both methods reported similar reward progression patterns (b–d). Proposed
method achieves a more stable control, whereas classic method oscillates actions to maintain con-
trol (e).

4.3. Lunar Lander Results

Figure 4 shows the training and reward curves of the lunar landing problem. The in-
stant reward curve of the lunar landing problem demonstrates an interesting behaviour in
the first 100 steps. The classic method adopts an energy-conservative policy by shutting
down the main throttle and engaging in free falling for 25 steps to a safe margin, and
then keeps hovering above ground to figure out a safe landing. The conserved energy
contributes to the overall reward at each time step. While this allows for faster reward
accumulation, this policy becomes less effective with different initial conditions. Depend-
ing on the speed and the attack angle, the free-falling policy requires additional effort
for manoeuvring the vehicle to the landing pad. The proposed agent, on the other hand,
accommodates the initial conditions and slows down the vehicle in the opposite direction
to the entry angle to maintain a stable orientation, and thus, allows for a smoother lateral
steering towards a safe landing as shown in Figure 5a,c. Both agents did not perform any
type of reasoning or planning. The main difference is the additional degrees of freedom
the proposed parametrised activation function offers. These degrees of freedom allow the
proposed actor neural network to adopt different response functions to accommodate the
initial conditions.
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Figure 4. Lunar lander results. Proposed method converges faster to a solution and does not suffer
from reward drops due to policy changes (a). Agents with proposed method outperform classical
method in terms of reward progression (b,c).

4.4. Bipedal Walker Results

Training and reward curves of the bipedal walking problem are illustrated in Figure 6.
In general, the agent with the proposed action mapping outperforms the classical agent in
the training step and episode reward curves as shown in Figure 6a–c. The spikes in the
step reward curves show instances where agents lost stability and failed to complete the
task. The episode reward curve shows that the proposed method allows the agent to run
and complete the task faster. This is due to a better coordination between the left- and
right-leg while taking advantage of the gravity to minimise the effort. This is demonstrated
in Figure 6d, where the proposed agent maintains a pelvis orientation angular velocity
and vertical velocity close to zero. This, in return, dedicates the majority of the spent
effort towards moving forward. This is also reflected in Figure 6e, where the actuation of
the proposed agent stabilises faster around zero, and thus, exploits the gravity force. In
contrast, the classical agent spends more effort to balance the pelvis, and thus, takes longer
to stabilise actuation. Finally, the locomotion actuation patterns in Figure 6e demonstrate
the difference between the adapted policies. The classical agent relies more on locomoting
using Knee2, while the proposed agent provides more synergy between joint actuators.
This difference in exploiting the gravity during locomotion is an essential key in successful
bipedal locomotion as a “controlled falling” [21].
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Figure 5. Lunar lander results. Proposed and classical actors adopt different landing trajectories (a).
Actors without the proposed method preserve effort by engaging in free falling to a safe altitude
(b-bottom), and then exert more effort to perform safe landing (c-bottom). Actors with the proposed
method decelerate and engage in manoeuvring to a safe landing (b–d).
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Figure 6. Bipedal walker results. Proposed method records higher episode reward (a). Actors with proposed method
outperform classical method in terms of reward progression (b,c), are more stable (d), and perform the task faster (d) and
with minimal effort (e).

5. Discussion

The main advantage of introducing a parameterised activation function for the ac-
tuation layer in an actor neural network is minimising policy change. This is achieved
by unlocking two degrees of freedom in the the activation functions (i.e., translation
x0 and scaling k), and thus, isolating control refinement from policy training. This is
demonstrated by the training performance curves of the LunarLanderContinuous-v2 and
in the BipedalWalker-v2 problems in Figures 4a and 6a, respectively. For example, in
the LunarLanderContinuous-v2 problem, the average performance of the state-of-the-art
method dropped by 100% between episodes 125 and 250 while searching for the best policy.
A similar pattern occurred again with less magnitude between episodes 1125 and 1250. On
the other hand, the proposed actor neural network sustained a positive average episode
reward from episode 750 as shown in Figure 4a. A similar behaviour is also observed
with the BipedalWalker-v2 problem in episodes 1500–2000 yet the proposed methods
performed generally better in terms of episode reward as shown in Figure 6a.

The proposed method has one major limitation that is imposed by the translation
degree of freedom x0, which adjusts the location of the tanh function on the x-axis. This
allows the actor neural network to tailor the tanh activation function to accommodate
a wider dynamic range of actuation produced by the policy neural network. However,
in doing so, it may allow for exploding gradients during the back propagation if the
environment features a wide dynamic range of scenarios. This limitation can be addressed
by employing weight normalisation after calculating the gradients [20]. This problem
becomes more apparent when using the proposed parameterised tanh with soft-actor-critic
models (SAC) [17,18]. Because SAC models rely on randomly sampling the action from
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a learned statistical distribution, it is susceptible to sampling outliers, which may cause
exploding gradients or steer the gradients of x0 and k in the wrong direction.

The advantage of the proposed method in the bipedal walking problem and the wide
variety of activation functions demonstrated (Figure 7) a promising potential for solving
several biomechanics problems where different muscles have different characteristics and
response functions, as highlighted in [22]. Applications such as fall detection and preven-
tion [23], ocular motility and the associated cognitive load, and motion sickness [24–31], as
well as intent prediction of pedestrians and cyclists [32,33]. Training stability, when using
the parameterised tanh in an actor-critic architecture, can potentially be used for advancing
Generative Adversarial Networks (GANs) research for image synthesis [34].
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Figure 7. Resulting parameterisation of the tanh(kx− kx0) activation function. Allowing extra
degrees of freedom empowers actor neural network to accommodate outlier scenarios with minimal
update to actual policy. Results here are from proposed actor trained and tested on bipedal walker
environment. Colour brightness indicates different stages throughout episode from start (bright) to
finish (dark).

6. Conclusions

In this paper, we discussed the advantages of adding learnable degrees of freedom
to the actor in the DDPG actor-critic agent. The proposed method is simple and straight-
forward, yet it outperforms the classical actor, which utilises the standard tanh activation
function. The main advantage of the proposed method lies in producing stable actuation
signals, as demonstrated in the inverted pendulum and bipedal walker problems. Another
advantage that was apparent in the lunar landing problem is the ability to accommodate
changes in initial conditions. This research highlights the importance of a parameterised
activation functions. While the discussed advantage may be minimal for the majority
of supervised learning problems, they are essential for dynamic problems addressed by
reinforcement learning. This is because reinforcement learning methods, especially the
off-policy ones, rely on previous experiences during training. These advantages do al-
low for more stability in deploying DRL models in critical applications, such as nuclear
engineering [35–38].

This research can be expanded in several directions. Firstly, the parameterisation of
tanh can be extended from being deterministic (presented in this paper) to a stochastic
parameterisation by inferring the distributions of k and x0. Secondly, the separation
between the policy and the action parts of the proposed actor neural network allows
preserving the policy part while fine tuning only the action part to accommodate actuator
characterisation discrepancies due to wear and tear during operations. Finally, the modular
characterisation of different parts of the proposed actor neural network into observer, policy,
and action parts requires investigating scheduled training to lock and unlock both parts
alternatively to further optimise the dedicated function each part of the actor carries out.
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2. Kidziński, Ł.; Mohanty, S.P.; Ong, C.F.; Hicks, J.L.; Carroll, S.F.; Levine, S.; Salathé, M.; Delp, S.L. Learning to run challenge:
Synthesizing physiologically accurate motion using deep reinforcement learning. In The NIPS’17 Competition: Building Intelligent
Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 101–120.

3. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529. [CrossRef] [PubMed]

4. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
5. Thelen, D.G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech.

Eng. 2003, 125, 70–77. [CrossRef] [PubMed]
6. Millard, M.; Uchida, T.; Seth, A.; Delp, S.L. Flexing computational muscle: Modeling and simulation of musculotendon dynamics.

J. Biomech. Eng. 2013, 135, 021005. [CrossRef]
7. Zajac, F.E. Muscle and tendon: Properties , models, scaling and application to biomechanics and motor control. Crit. Rev.

Biomed. Eng. 1989, 17, 359–411.
8. Masson, W.; Ranchod, P.; Konidaris, G. Reinforcement learning with parameterized actions. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, Phoenix, AR, USA, 12–17 February 2016.
9. Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; Osawa, E.; Matsubara, H. RoboCup: A challenge problem for AI. AI Mag. 1997,

18, 73.
10. Hausknecht, M.; Stone, P. Deep reinforcement learning in parameterized action space. arXiv 2015, arXiv:1511.04143.
11. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the 2015 International Conference on Computer Vision, ICCV, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.
[CrossRef]

12. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-Normalizing Neural Networks. arXiv 2017, arXiv:1706.02515.
13. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
14. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, UK, 1998; Volume 2
15. Fujimoto, S.; Van Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. arXiv 2018,

arXiv:1802.09477.
16. Barth-Maron, G.; Hoffman, M.; Budden, D.; Dabney, W.; Horgan, D.; Dhruva, T.; Muldal, A.; Heess, N.; Lillicrap, T. Distributed

distributional deterministic policy gradients. arXiv 2018, arXiv:1804.08617.
17. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with

a Stochastic Actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1861–1870.

18. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic
algorithms and applications. arXiv 2018, arXiv:1812.05905.

19. Uhlenbeck, G.E.; Ornstein, L.S. On the Theory of the Brownian Motion. Phys. Rev. 1930, 36, 823–841. [CrossRef]
20. Salimans, T.; Kingma, D. Weight normalization: A simple reparameterization to accelerate training of deep neural networks.

arXiv 2016, arXiv:1602.07868.
21. Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [CrossRef]
22. Hossny, M.; Iskander, J. Just Don’t Fall: An AI Agent’s Learning Journey Towards Posture Stabilisation. AI 2020, 1, 286–298.

[CrossRef]
23. Abobakr, A.; Hossny, M.; Nahavandi, S. A Skeleton-Free Fall Detection System From Depth Images Using Random Decision

Forest. IEEE Syst. J. 2018, 12, 2994–3005. [CrossRef]

http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1115/1.1531112
http://www.ncbi.nlm.nih.gov/pubmed/12661198
http://dx.doi.org/10.1115/1.4023390
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1103/PhysRev.36.823
http://dx.doi.org/10.1016/S0966-6362(97)00038-6
http://dx.doi.org/10.3390/ai1020019
http://dx.doi.org/10.1109/JSYST.2017.2780260


AI 2021, 2 476

24. Iskander, J.; Hossny, M.; Nahavandi, S.; Del Porto, L. An Ocular Biomechanic Model for Dynamic Simulation of Different Eye
Movements. J. Biomech. 2018, 71, 208–216. [CrossRef]

25. Iskander, J.; Hossny, M.; Nahavandi, S. A Review on Ocular Biomechanic Models for Assessing Visual Fatigue in Virtual Reality.
IEEE Access 2018, 6, 19345–19361. [CrossRef]

26. Iskander, J.; Attia, M.; Saleh, K.; Nahavandi, D.; Abobakr, A.; Mohamed, S.; Asadi, H.; Khosravi, A.; Lim, C.P.; Hossny, M. From
car sickness to autonomous car sickness: A review. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 716–726. [CrossRef]

27. Iskander, J.; Hanoun, S.; Hettiarachchi, I.; Hossny, M.; Saleh, K.; Zhou, H.; Nahavandi, S.; Bhatti, A. Eye behaviour as a hazard
perception measure. In Proceedings of the Systems Conference (SysCon), 2018 Annual IEEE International, Vancouver, BC,
Canada, 23–26 April 2018; pp. 1–6.

28. Attia, M.; Hettiarachchi, I.; Hossny, M.; Nahavandi, S. A time domain classification of steady-state visual evoked potentials using
deep recurrent-convolutional neural networks. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical
Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; Volume 2018-April, pp. 766–769. [CrossRef]

29. Iskander, J.; Hossny, M. An ocular biomechanics environment for reinforcement learning. arXiv 2020, arXiv:2008.05088.
30. Iskander, J.; Attia, M.; Saleh, K.; Abobakr, A.; Nahavandi, D.; Hossny, M.; Nahavandi, S. Exploring the Effect of Virtual Depth on

Pupil Diameter. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy,
6–9 October 2019; pp. 1849–1854.

31. Iskander, J.; Hossny, M.; Nahavandi, S. Using biomechanics to investigate the effect of VR on eye vergence system. Appl. Ergon.
2019, 81, 102883. [CrossRef] [PubMed]

32. Saleh, K.; Hossny, M.; Nahavandi, S. Intent Prediction of Pedestrians via Motion Trajectories Using Stacked Recurrent Neural
Networks. IEEE Trans. Intell. Veh. 2018, 3, 414–424. [CrossRef]

33. Saleh, K.; Hossny, M.; Nahavandi, S. Spatio-temporal DenseNet for real-time intent prediction of pedestrians in urban traffic
environments. Neurocomputing 2020, 386, 317–324. [CrossRef]

34. Attia, M.; Hossny, M.; Zhou, H.; Nahavandi, S.; Asadi, H.; Yazdabadi, A. Realistic hair simulator for skin lesion images: A novel
benchemarking tool. Artif. Intell. Med. 2020, 108, 101933. [CrossRef] [PubMed]

35. Hossny, K.; Hossny, A.; Magdi, S.; Soliman, A.Y.; Hossny, M. Detecting shielded explosives by coupling prompt gamma neutron
activation analysis and deep neural networks. Sci. Rep. 2020, 10, 13467. [CrossRef]

36. Hegazy, A.H.; Skoy, V.R.; Hossny, K. Optimization of Shielding—Collimator Parameters for ING-27 Neutron Generator Using
MCNP5. EPJ Web Conf. 2018, 177, 02003. [CrossRef]

37. Hossny, K.; Magdi, S.; Nasr, F.; Yasser, Y.; Magdy, A. Neutron depth profile calculations using artificial neural networks. EPJ Web
Conf. 2021, 247, 06046. [CrossRef]

38. Hossny, K.; Magdi, S.; Soliman, A.Y.; Hossny, A.H. Detecting explosives by PGNAA using KNN Regressors and decision tree
classifier: A proof of concept. Prog. Nucl. Energy 2020, 124, 103332, doi: 10.1016/j.pnucene.2020.103332. [CrossRef]

http://dx.doi.org/10.1016/j.jbiomech.2018.02.006
http://dx.doi.org/10.1109/ACCESS.2018.2815663
http://dx.doi.org/10.1016/j.trf.2019.02.020
http://dx.doi.org/10.1109/ISBI.2018.8363685
http://dx.doi.org/10.1016/j.apergo.2019.102883
http://www.ncbi.nlm.nih.gov/pubmed/31422246
http://dx.doi.org/10.1109/TIV.2018.2873901
http://dx.doi.org/10.1016/j.neucom.2019.12.091
http://dx.doi.org/10.1016/j.artmed.2020.101933
http://www.ncbi.nlm.nih.gov/pubmed/32972662
http://dx.doi.org/10.1038/s41598-020-70537-6
http://dx.doi.org/10.1051/epjconf/201817702003
http://dx.doi.org/10.1051/epjconf/202124706046
doi: doi: 10.1016/j.pnucene.2020.103332
http://dx.doi.org/10.1016/j.pnucene.2020.103332

	Introduction
	Background
	Proposed Method
	Modular Formulation
	Parameterising A

	Experiments and Results
	Models and Hyperparameters
	Inverted Pendulum Results
	Lunar Lander Results
	Bipedal Walker Results

	Discussion
	Conclusions
	References

