
Article

Memory-Efficient AI Algorithm for Infant Sleeping Death
Syndrome Detection in Smart Buildings

Qian Huang 1,* , Chenghung Hsieh 2, Jiaen Hsieh 2 and Chunchen Liu 2

����������
�������

Citation: Huang, Q.; Hsieh, C.;

Hsieh, J.; Liu, C. Memory-Efficient AI

Algorithm for Infant Sleeping Death

Syndrome Detection in Smart

Buildings. AI 2021, 2, 705–719.

https://doi.org/10.3390/ai2040042

Academic Editors:

Antonio Fernaández-Caballero,

Byung-Gyu Kim and Hugo

Pedro Proença

Received: 8 November 2021

Accepted: 5 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Architecture, Southern Illinois University, Carbondale, IL 62901, USA
2 Kneron Inc., San Diego, CA 92121, USA; Samuel.hsieh@kneron.us (C.H.); Andy.hsieh@kneron.us (J.H.);

albert@kneron.us (C.L.)
* Correspondence: qhuang@siu.edu

Abstract: Artificial intelligence (AI) is fundamentally transforming smart buildings by increasing
energy efficiency and operational productivity, improving life experience, and providing better
healthcare services. Sudden Infant Death Syndrome (SIDS) is an unexpected and unexplained death
of infants under one year old. Previous research reports that sleeping on the back can significantly
reduce the risk of SIDS. Existing sensor-based wearable or touchable monitors have serious drawbacks
such as inconvenience and false alarm, so they are not attractive in monitoring infant sleeping
postures. Several recent studies use a camera, portable electronics, and AI algorithm to monitor the
sleep postures of infants. However, there are two major bottlenecks that prevent AI from detecting
potential baby sleeping hazards in smart buildings. In order to overcome these bottlenecks, in this
work, we create a complete dataset containing 10,240 day and night vision samples, and use post-
training weight quantization to solve the huge memory demand problem. Experimental results verify
the effectiveness and benefits of our proposed idea. Compared with the state-of-the-art AI algorithms
in the literature, the proposed method reduces memory footprint by at least 89%, while achieving
a similar high detection accuracy of about 90%. Our proposed AI algorithm only requires 6.4 MB
of memory space, while other existing AI algorithms for sleep posture detection require 58.2 MB to
275 MB of memory space. This comparison shows that the memory is reduced by at least 9 times
without sacrificing the detection accuracy. Therefore, our proposed memory-efficient AI algorithm has
great potential to be deployed and to run on edge devices, such as micro-controllers and Raspberry
Pi, which have low memory footprint, limited power budget, and constrained computing resources.

Keywords: SIDS; memory-efficient; convolutional neural networks; false detection

1. Introduction

Information technology, especially the Internet of Things (IoT) and artificial intelli-
gence (AI), becomes increasingly popular in smart building applications, such as occupancy
estimation for energy-efficient building operations [1,2], and demand-oriented air condi-
tioners [3]. For example, with the help of distributed household IoT devices, AI algorithms
have been widely used to model the energy consumption characteristics of smart buildings
and find the optimal solutions of parameter thresholds and control parameters. AI algo-
rithms have also been studied to intelligently interpret the visual contents of surveillance
cameras and identify the number of residents and their locations in smart buildings. Thus,
the operation of air conditioners is adjusted to provide “just-right” heating or cooling
services. In addition, smart buildings can adjust the indoor thermal environment, such
as temperature, humidity, or airflow, to improve the comfort of building occupants [4].
Large companies, such as IBM or Intel, are also committed to developing AI algorithms for
building performance optimization.

In the United States, Sudden Infant Death Syndrome (SIDS) is one of the leading
causes of sudden and unexpected death in babies under one year of old. Many studies

AI 2021, 2, 705–719. https://doi.org/10.3390/ai2040042 https://www.mdpi.com/journal/ai

https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0002-6795-5261
https://doi.org/10.3390/ai2040042
https://doi.org/10.3390/ai2040042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ai2040042
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai2040042?type=check_update&version=1

AI 2021, 2 706

point out that letting babies sleep on their stomachs can easily lead to SIDS [5,6]. Therefore,
the American Academy of Pediatrics recommends that babies should sleep on their backs
because this can keep the airway open. It is reported that babies have the lowest risk when
sleeping on their backs, followed by sleeping on their sides. Sleeping on the stomach is
at the highest risk, because it compresses a baby’s chin, narrows the airway, and restricts
breathing. However, in practice, it is difficult to let babies always sleep on their backs
because it is easy for them to roll over to sleep on their stomachs.

In order to monitor sleeping status, a series of sensor-based wearable or touchable
monitors have been developed [7–12]. For example, IoT-based smart posture detection
systems have been developed in [10–12], where a pressure sensing mattress is used to
collect body pressure data that are processed for posture recognition. Sleep experiments
were conducted on an infant in [10], and the reported classification of baby sleep posture
reached 88%. In [11], pressure sensors are placed in a sensing cushion, which is used to
collect ten children’s sitting pressure data. Although infant sleep posture is not involved
to detect in [11], the average classification accuracy for children sitting posture is 95%.
In [12], the authors proposed to recognize sleep positions with body pressure images and
achieved a high recognition accuracy. When various sensors are placed on babies, these
baby monitors can track the breathing, body temperature, heart rate of sleeping babies,
etc. Then, if a baby monitor observes some abnormal activity, such as stopping breathing
or slowing down heart rates, it will send a warning alert to parents. Although it sounds
attractive, these wearable or touchable baby monitors suffer from two limitations. First,
these monitor systems include various electrodes or sensors located on a crib mattress
or the waist and feet of an infant’s body. In order to collect reliable data, these pads
and sensors need to fit or touch a baby’s body well at any time of sleep. In fact, it is
inconvenient for babies to always wear these pads or sensors correctly when they sleep.
Second, these baby monitors often send out false alarms, which can increase the anxiety of
many parents [13,14]. Therefore, parents are most likely to suffer from increased stress or
even depression, which affects their sleep quality and emotion.

In order to get rid of the shortcomings of wearable sensor-based baby monitors, re-
searchers began to investigate contactless camera-based monitoring, which detects sleeping
postures through cameras and AI algorithms. The researchers in [15] predict that future
research on sleep health will be data-driven and AI algorithms will play a critical role.
Instead of using wearable body sensors or electrodes for signal collection, AI algorithms
analyze the output of cameras and classify sleeping postures. Compared with sensor-
based baby monitors, this approach is user convenient and cost-effective. In [16], infrared
cameras and depth sensors were used to collect data, and then a convolutional neural
network (CNN) classifies sleeping postures with an accuracy of 94%. However, this idea
was only verified on a small dataset containing 1880 samples, and this approach has not
been validated in the baby sleep scenarios. Furthermore, due to the use of depth sensors
and infrared cameras, its hardware cost is expensive. Later, in order to reduce the system
cost, the researchers in [17] used 4250 daytime baby sleep images from ordinary cameras to
explore eight different CNN architectures. The highest classification accuracy of 87.8% is
achieved in a CNN consisting of four convolutional layers and two dense layers. To further
increase the classification accuracy, the researcher in [18] explored three CNN architectures.
Inspired by GoogLeNets and ResNets, the researcher proposed to add skip connections
to standard CNN architectures. Skipping effectively simplifies the network by using an
average pool on each feature at the end, so keeps fairly low parameters. The dataset for
baby sleep images is the same as [17]. Besides, in order to accommodate his CNN architec-
tures in portable electronics, the researcher [18] proposed to reduce the number of feature
maps. Thus, based on a ResNet network with 16 convolution layers and 3 dense layers,
the corresponding classification accuracy is 89%. Recently, the researcher [19] proposed to
use DenseNet-121 for baby sleep posture classification. DenseNet, also known as dense
convolutional network, is a type of convolutional neural networks, in which each layer is
connected to all subsequent layers. Since each layer in DenseNets receives collective knowl-

AI 2021, 2 707

edge from all preceding layers, the information flow among different layers is enhanced.
Therefore, this type of network is thinner and more compact [20]. Compared with other AI
algorithms, fewer parameters and higher accuracy can be potentially achieved through
dense connection. As a result, DenseNet-121 tends to have fewer parameters and a smaller
memory footprint. Unfortunately, the researcher [19] only demonstrated his AI algorithm
function very well with baby doll pictures, but did not evaluate the classification accuracy
using real infant sleep images. Moreover, in [21], a CNN architecture (i.e., Inception-v3 [22])
with transfer learning is used for sleep posture classification. As a widely used image
recognition model, Inception-v3 improves the computational efficiency and meanwhile
keeps fewer parameters. Although the classification of adult sleep scenes shows an accu-
racy of around 90% on a dataset with only 1200 non-baby sleep images, the effectiveness of
this Inception-v3 architecture has not been tested on real infant sleep datasets.

Table 1 summarizes the accuracy and disadvantages of these existing AI algorithms.
From the above discussion and Table 1, it is clear that these existing contactless camera-
based baby sleep monitoring studies have not fully met the requirements of AI for edge
computing in smart buildings [23–25]. To date, two major bottlenecks are preventing AI
from detecting potential infant sleep hazards in smart buildings. First, current datasets of
baby sleep posture are not large or diverse. Generally speaking, the performance of AI
algorithms is improved by adding more training samples [26], and a high-diversity dataset
can maximize the information contained [27]. However, the researchers [16] use 1880 data
samples, the researchers [17,18] use 4250 daytime baby sleep images, the researchers [21]
use 1200 data samples, while the researcher [19] uses baby doll pictures to approximate
real baby sleep images. Although babies sleep at night most of the time, existing datasets
do not contain night-vision sleep images. Therefore, it is necessary to generate a large and
diverse baby sleep posture dataset to train and evaluate AI algorithms. Second, as stated
in [18,19], memory constraint is a major challenge for using deep learning AI algorithms in
edge computing systems. AI algorithms must not only fit in the program memory of edge
computing systems (such as micro-controllers, Raspberry Pi), but also leave space in the
memory so that operating systems or CPU kernels can run smoothly. For example, under
the Raspberry Pi 3 A+’s maximum memory constraint of 512 MB, it can run lightweight
programs and scripts. Therefore, if an AI algorithm requires several hundred Megabytes of
memory, it may not be able to run on edge computing systems. To deal with this challenge,
AI algorithms must be optimized to a small memory footprint for real-time operations on
edge systems.

Table 1. Summary of Existing AI Algorithms for Contactless Camera-Based Sleep Posture Detection.

Existing Work Year AI Algorithm Accuracy Disadvantages

[16] 2016 CNN with 3 convolution and 2 dense layers 94%

1. Expensive due to using a combination of depth
sensors and infrared camera;

2. A small dataset (1880 samples)
3. Does not consider minimizing memory footprint

[17] 2020 CNN with 4 convolution and 2 dense layers 88%
1. A small dataset (4250 samples)
2. Diversity issue: all samples are daytime images
3. A large memory footprint (275 MB)

[18] 2021 ResNet with 16 convolution and 3 dense layers 89%
1. A small dataset (4250 samples)
2. Diversity issue: all samples are daytime images
3. A large memory footprint (147 MB)

[19] 2021 DenseNet-121 N/A
1. A small dataset with baby doll images
2. Lack of real baby sleep images
3. A large memory footprint (58.2 MB)

[21] 2021 Inception-V3 90%
1. A small dataset (1200 samples)
2. Lack of real baby sleep images
3. A large memory footprint (175.7 MB)

This work 2021 CNN with post-training weight quantization 90% 1. Post-training weight quantization may cause a
slight decrease in accuracy

AI 2021, 2 708

In order to solve the aforementioned two research bottlenecks, in this work, we
investigate and propose an optimized AI algorithm for infant sleep posture classification.
Regarding the contribution of the body of knowledge, this work makes the following two
contributions: (1) we have generated a large and diverse dataset for training and evaluating
AI algorithms. This dataset contains 10,240 day and night-vision baby sleep images. (2) We
propose a new AI algorithm and use the post-training weight quantization technique
to minimize memory usage. In this way, the data type of weight parameters in our AI
algorithm is converted from 32-bit floating points to 8-bit integers. Thus, these quantized
weights are easy to store and run in many edge computing devices (e.g., 8-bit ATmega328P
micro-controller). In order to evaluate the proposed AI algorithm, we have implemented
it in a Python program and run it on TensorFlow and Keras platforms. The experimental
results show that with a very small memory footprint of 6.4 MB, a classification accuracy of
about 90% is obtained. Compared with the state-of-the-art AI algorithms in the literature,
the proposed idea achieves a comparable detection accuracy, while the memory footprint
decreases from at least 58.2 MB to 6.4 MB, a reduction of at least 9 times. Therefore, our
proposed memory-efficient AI algorithm has great potential to be deployed and to run
on edge devices, such as micro-controllers and Raspberry Pi, which have low memory
footprint, limited power budget, and constrained computing resources.

2. AI Algorithm
2.1. Proposed AI Algorithm—Convolutional Neural Networks (CNNs)

In this work, we choose CNN because it is the simplest neural network architecture
that transforms input images into output classification results. CNN has been utilized to
recognize heavy construction equipment [28], safety hardhats [29], and baby movement
tracking [30]. Figure 1 shows the proposed AI algorithm for infant sleep posture classi-
fication. This CNN consists of a series of stacked layers, including convolutional layers,
pooling layers, and dense layers. Input images are infant sleeping pictures with a dimen-
sion of 256 × 256 × 3, which indicates a width of 256 pixels, a height of 256 pixels, and
3 color channels of RGB. In this AI algorithm, input images undergo multiple convolutions
to obtain advanced features for binary classification.

Next, let us describe the network layers of this CNN. Generally speaking, these
convolution and pooling layers are for feature extraction, while these dense layers are
for object classification. Convolution refers to sliding convolution kernels (i.e., filters) on
inputs to sweep over the full inputs and perform linear matrix multiplications. As shown
in Figure 1, in our algorithm, the size of each filter is 3 × 3, and the number of filters
is 16, 32, 64, and 64, respectively. Since the convolution layer is the core building block,
these four filters involve a lot of matrix multiplications to extract image features. Pooling
layers are used to effectively down sample the output dimension of the prior layer (i.e.,
convolution layer). As a result, the pooling operation reduces the number of parameters
to be trained as well as the amount of computation performed by the following layer. In
our algorithm, we choose a pooling size of 2 × 2 to take the maximum value in a 2 × 2
pooling window. In this way, the most present features after convolution are retained and
highlighted. As listed in Table 2, the pooling operation halves each dimension. For example,
the output shape of the first convolution layer is 256 × 256 × 16, in contrast, the output
shape of the first pooling layer is 128 × 128 × 16. The purpose of batch normalization
is to normalize the outputs of the previous layer. Specifically, values are normalized by
subtracting the mean and then dividing by the standard deviation. In this way, all the
values lie on a common scale between 0 and 1. Thus, the gradient explosion problem is
alleviated by using batch normalization [31,32], and extreme gradients accumulated from
the previous convolution and pooling layers are eliminated. Batch normalization helps to
make our algorithm more stable during training, thereby accelerating the training process
and reducing the overfitting phenomena [33]. The flatten layer converts input data into
a one-dimensional array to facilitate the next layer (i.e., dense layer). Here, the output of
the last pooling layer is transformed into a single long feature vector. The dense layer, also

AI 2021, 2 709

known as a fully-connected layer, serves the actual classification function. In our algorithm,
there are three dense layers with 384, 128, and 1 neuron, respectively. Each dense layer
multiplies the input by a weight matrix and then is adjusted by adding a bias vector. Since
there are two possible classification results for output prediction, the sigmoid function is
used to map any input to an output ranging from 0 to 1. In our algorithm, the loss function
is binary_crossentropy, which computes the cross-entropy loss between true labels and
predicted labels. In short, through these stacked layers, this CNN converts pixel values of
input images layer by layer to final classification.

AI 2021, 2, FOR PEER REVIEW 4

[19] 2021 DenseNet-121 N/A
1.A small dataset with baby doll images
2.Lack of real baby sleep images
3.A large memory footprint (58.2 MB)

[21] 2021 Inception-V3 90%
1.A small dataset (1200 samples)
2.Lack of real baby sleep images
3.A large memory footprint (175.7 MB)

This work 2021 CNN with post-training weight quantization 90%
1. Post-training weight quantization may
cause a slight decrease in accuracy

In order to solve the aforementioned two research bottlenecks, in this work, we in-
vestigate and propose an optimized AI algorithm for infant sleep posture classification.
Regarding the contribution of the body of knowledge, this work makes the following two
contributions: (1) we have generated a large and diverse dataset for training and evaluat-
ing AI algorithms. This dataset contains 10,240 day and night-vision baby sleep images.
(2) We propose a new AI algorithm and use the post-training weight quantization tech-
nique to minimize memory usage. In this way, the data type of weight parameters in our
AI algorithm is converted from 32-bit floating points to 8-bit integers. Thus, these quan-
tized weights are easy to store and run in many edge computing devices (e.g., 8-bit AT-
mega328P micro-controller). In order to evaluate the proposed AI algorithm, we have im-
plemented it in a Python program and run it on TensorFlow and Keras platforms. The
experimental results show that with a very small memory footprint of 6.4 MB, a classifi-
cation accuracy of about 90% is obtained. Compared with the state-of-the-art AI algo-
rithms in the literature, the proposed idea achieves a comparable detection accuracy,
while the memory footprint decreases from at least 58.2 MB to 6.4 MB, a reduction of at
least 9 times. Therefore, our proposed memory-efficient AI algorithm has great potential
to be deployed and to run on edge devices, such as micro-controllers and Raspberry Pi,
which have low memory footprint, limited power budget, and constrained computing
resources.

2. AI Algorithm
2.1. Proposed AI Algorithm—Convolutional Neural Networks (CNNs)

In this work, we choose CNN because it is the simplest neural network architecture
that transforms input images into output classification results. CNN has been utilized to
recognize heavy construction equipment [28], safety hardhats [29], and baby movement
tracking [30]. Figure 1 shows the proposed AI algorithm for infant sleep posture classifi-
cation. This CNN consists of a series of stacked layers, including convolutional layers,
pooling layers, and dense layers. Input images are infant sleeping pictures with a dimen-
sion of 256 × 256 × 3, which indicates a width of 256 pixels, a height of 256 pixels, and 3
color channels of RGB. In this AI algorithm, input images undergo multiple convolutions
to obtain advanced features for binary classification.

Convolution

Pooling

Convolution

Pooling

Dense
Dense

OutputInput
Image

Batch
Normalization

Convolution

Pooling

Convolution

Pooling Flatten

Sigmoid

Batch
Normalization

256×256×3

16@3×3 32@3×3 64@3×3 64@3×3

384
128

Dense
1

Figure 1. Proposed AI algorithm for infant sleep posture classification.

Table 2 lists detailed information on the model layer, type, number of filters, output
shape, and number of parameters. The total number of trainable parameters is about
6.4 million. We can see that most of the parameters are located at the big fully connected
layer after the flatten layer (about 6.3 million of the total 6.4 million parameters). Compared
with the existing CNN algorithm [17], this CNN is composed of fewer filters and greatly
reduces the size of dense layers, thereby reducing the memory footprint. In addition, batch
normalization layers are proposed to mitigate the gradient explosion problem and improve
classification accuracy.

Table 2. Summary of existing AI algorithms for contactless camera-based sleep posture detection.

Layer Name Layer Type Number of Filters Output Shape Number of Parameters

Conv2d Conv2D 16 (256, 256, 16) 448

Max_pooling2d MaxPooling2D (128, 128, 16) 0

Conv2d_1 Conv2D 32 (128, 128, 32) 4640

Max_pooling2d_1 MaxPooling2D (64, 64, 32) 0

Batch_normalization Batch Normalization (64, 64, 32) 128

Conv2d_2 Conv2D 64 (64, 64, 64) 18,496

Max_pooling2d_2 MaxPooling2D (32, 32, 64) 0

Conv2d_3 Conv2D 64 (32, 32, 64) 36,928

Max_pooling2d_3 Maxpooling2D (16, 16, 64) 0

Batch_normalization Batch Normalization (16, 16, 64) 256

Flatten Flatten 16,384 0

Dense Dense 384 6,291,840

Dropout Dropout 384 0

Dense_1 Dense 128 49,280

Dense_2 Dense 1 129

AI 2021, 2 710

2.2. Post–Training Weight Quantization

When the 6.4 million floating-point parameters in Table 2 are implemented in edge
systems, they occupy 51.3 MB of memory space, which is expensive and often is not
available to use. In order to make the proposed CNN run smoothly in memory-constrained
edge systems, we propose to apply post-training weight quantization to our pre-trained AI
algorithms. There are two benefits of weight quantization: (a) reducing memory footprint
to save parameters, and (b) accelerating computation to enable smooth and fast running AI
algorithms on edge systems.

Figure 2a shows a traditional convolution operation that does not involve weight
quantization, so the weight defaults to 32-bit floating-point data. As illustrated in Figure 2b,
instead of the 32-bit floating-point type, each weight of the pre-trained AI algorithm is
converted to an 8-bit integer type. Thus, it is estimated that the memory usage of AI
algorithms can be reduced a lot through weight quantization.

As quantization noise occurs when a continuous random variable is converted to a
discrete one, quantization noise reduces the precision of weights, it may lead to a decrease
in classification accuracy. Fortunately, researchers have found that weight precision is not
very sensitive for deep learning AI algorithms. As a result, deep AI algorithms can get
along well with small changes in weights due to quantization. Prior studies have reported
that 8-bit post-training weight quantization may slightly reduce the accuracy of the model,
while significantly improving the hardware computation latency [34,35].

AI 2021, 2, FOR PEER REVIEW 7

Figure 2. An example illustrating the post-training weight quantization process of the proposed AI
algorithm.

3. Experiments and Discussion
3.1. Datasets Generation

Datasets are critical in deep learning since AI algorithms rely heavily on data [36,37].
The rule of thumb is that a sufficient dataset needs to contain at least 10 times the number
of trainable parameters in an AI algorithm. To meet this condition, we generated three
datasets (i.e., daytime dataset, night-vision dataset, and mixed dataset in Table 3). The
mixed dataset is a large and diverse dataset containing 10,240 day and night vision sam-
ples. As illustrated in Figure 3, these night-vision images are converted from daytime im-
ages, so this mixed dataset covers both daytime and night-vision scenes. Each dataset is
randomly spitted into 70% for the training set, 20% for the validation set, and 10% for the
testing set. The training and validation sets are used for training, tuning, and evaluation
of AI algorithms, while the testing set is used to estimate the final prediction performance
after completing the training phase.

Figure 3. An example of converting a daytime image into a night-vision image for infant sleep pos-
ture detection. The child’s face is hidden for privacy.

Input

Convolution

Weights
(float)

+
biases

ReLU

Output
(float)

(a) Convolution without
quantization

Quantized
Weights
(8-bit)

(b) Convolution with weight
quantization

Input

Convolution

+
biases

ReLU

Output
(float)

Figure 2. An example illustrating the post-training weight quantization process of the proposed
AI algorithm.

3. Experiments and Discussion
3.1. Datasets Generation

Datasets are critical in deep learning since AI algorithms rely heavily on data [36,37].
The rule of thumb is that a sufficient dataset needs to contain at least 10 times the number
of trainable parameters in an AI algorithm. To meet this condition, we generated three
datasets (i.e., daytime dataset, night-vision dataset, and mixed dataset in Table 3). The
mixed dataset is a large and diverse dataset containing 10,240 day and night vision samples.
As illustrated in Figure 3, these night-vision images are converted from daytime images, so
this mixed dataset covers both daytime and night-vision scenes. Each dataset is randomly
spitted into 70% for the training set, 20% for the validation set, and 10% for the testing
set. The training and validation sets are used for training, tuning, and evaluation of AI
algorithms, while the testing set is used to estimate the final prediction performance after
completing the training phase.

AI 2021, 2 711

AI 2021, 2, FOR PEER REVIEW 7

Figure 2. An example illustrating the post-training weight quantization process of the proposed AI
algorithm.

3. Experiments and Discussion
3.1. Datasets Generation

Datasets are critical in deep learning since AI algorithms rely heavily on data [36,37].
The rule of thumb is that a sufficient dataset needs to contain at least 10 times the number
of trainable parameters in an AI algorithm. To meet this condition, we generated three
datasets (i.e., daytime dataset, night-vision dataset, and mixed dataset in Table 3). The
mixed dataset is a large and diverse dataset containing 10,240 day and night vision sam-
ples. As illustrated in Figure 3, these night-vision images are converted from daytime im-
ages, so this mixed dataset covers both daytime and night-vision scenes. Each dataset is
randomly spitted into 70% for the training set, 20% for the validation set, and 10% for the
testing set. The training and validation sets are used for training, tuning, and evaluation
of AI algorithms, while the testing set is used to estimate the final prediction performance
after completing the training phase.

Figure 3. An example of converting a daytime image into a night-vision image for infant sleep pos-
ture detection. The child’s face is hidden for privacy.

Input

Convolution

Weights
(float)

+
biases

ReLU

Output
(float)

(a) Convolution without
quantization

Quantized
Weights
(8-bit)

(b) Convolution with weight
quantization

Input

Convolution

+
biases

ReLU

Output
(float)

Figure 3. An example of converting a daytime image into a night-vision image for infant sleep
posture detection. The child’s face is hidden for privacy.

Table 3. Summary of three datasets generated for AI algorithms in this work.

Dataset Subset Number of Samples Percentage

Daytime dataset (5120 daytime images)

Training Set 3584 70%

Validation Set 1024 20%

Testing Set 512 10%

Night-vision dataset (5120 night-vision images)

Training Set 3584 70%

Validation Set 1024 20%

Testing Set 512 10%

Mixed dataset (10,240 daytime and night vision images)

Training Set 7168 70%

Validation Set 2048 20%

Testing Set 1024 10%

3.2. Experimental Environment and Setup

In this work, we use TensorFlow and Keras to train and evaluate our proposed AI
algorithm. TensorFlow is an open-source software platform for machine learning [38],
and it supports a variety of attractive programming features in deep learning, such as
the efficient execution of tensor operations on GPUs. Keras is an open-source application
programming interface (API) written in Python that can run on the TensorFlow platform.
By providing a user-friendly interface and functions, Keras facilitates us to explore the
potential and scalability of TensorFlow. In this study, TensorFlow and Keras API run on
a hardware computing system, which consists of a 64-bit Ubuntu operating system and
four NVIDIA TITAN XP graphics processors (GPUs). The memory size of each GPU is
12 GB and the operating frequency is 1582 MHz. Therefore, the device memory bandwidth
reaches 578 GB/s, which is enough to support 12.15 TFLOPs of full-precision floating-point
(32-bit) computing performance. To accelerate deep learning and model training, we use
NVIDIA CUDA toolkit 11.0 that includes GPU-accelerated libraries, compilers, runtime
libraries for debugging and optimization. Figure 4a shows the traditional AI training and
evaluation process without weight quantization. The AI algorithm is trained with the
stochastic gradient descent (SGD) optimizer on the training and validation sets. Then,
the well-trained AI model is evaluated with the testing set to obtain the classification
accuracy. In contrast, as shown in Figure 4b, the weight post-quantization process is added.
Through it, the well-trained AI model becomes a quantized AI model for evaluation. In
this work, Google’s TensorFlow Lite tool is adopted to perform the post-training weight
quantization process.

AI 2021, 2 712

AI 2021, 2, FOR PEER REVIEW 8

Table 3. Summary of three datasets generated for AI algorithms in this work.

Dataset Subset Number of Samples Percentage

Daytime dataset (5120 daytime images)
Training Set 3584 70%

Validation Set 1024 20%
Testing Set 512 10%

Night-vision dataset (5120 night-vision images)
Training Set 3584 70%

Validation Set 1024 20%
Testing Set 512 10%

Mixed dataset (10,240 daytime and night vision images)
Training Set 7168 70%

Validation Set 2048 20%
Testing Set 1024 10%

3.2. Experimental Environment and Setup
In this work, we use TensorFlow and Keras to train and evaluate our proposed AI

algorithm. TensorFlow is an open-source software platform for machine learning [38], and
it supports a variety of attractive programming features in deep learning, such as the ef-
ficient execution of tensor operations on GPUs. Keras is an open-source application pro-
gramming interface (API) written in Python that can run on the TensorFlow platform. By
providing a user-friendly interface and functions, Keras facilitates us to explore the po-
tential and scalability of TensorFlow. In this study, TensorFlow and Keras API run on a
hardware computing system, which consists of a 64-bit Ubuntu operating system and four
NVIDIA TITAN XP graphics processors (GPUs). The memory size of each GPU is 12 GB
and the operating frequency is 1582 MHz. Therefore, the device memory bandwidth
reaches 578 GB/s, which is enough to support 12.15 TFLOPs of full-precision floating-
point (32-bit) computing performance. To accelerate deep learning and model training,
we use NVIDIA CUDA toolkit 11.0 that includes GPU-accelerated libraries, compilers,
runtime libraries for debugging and optimization. Figure 4a shows the traditional AI
training and evaluation process without weight quantization. The AI algorithm is trained
with the stochastic gradient descent (SGD) optimizer on the training and validation sets.
Then, the well-trained AI model is evaluated with the testing set to obtain the classifica-
tion accuracy. In contrast, as shown in Figure 4b, the weight post-quantization process is
added. Through it, the well-trained AI model becomes a quantized AI model for evalua-
tion. In this work, Google’s TensorFlow Lite tool is adopted to perform the post-training
weight quantization process.

Figure 4. (a) Traditional AI training and evaluation process without weight quantization, and (b) Proposed AI training
and evaluation process with post-training weight quantization.

Training
with SGD

Evaluation with
Testing Set

AI algorithm

Training and
Validation Sets

Trained AI
model

Classification
Accuracy

Training
with SGD

AI algorithm

Training and
Validation Sets

Trained AI
model

Weight Post-
Quantization

Quantized AI
model

Evaluation with
Testing Set

Classification
Accuracy

(a) Traditional AI algorithm training and test process without weight post-quantization

(b) Proposed AI algorithm training and test process with weight post-quantization

Figure 4. (a) Traditional AI training and evaluation process without weight quantization, and (b) Proposed AI training and
evaluation process with post-training weight quantization.

3.3. Experimental Results and Discussion

All the weights of the AI algorithm are trained by the SGD optimizer [39,40]. The
learning rate is a hyper-parameter that controls the speed at which the SGD optimizer
updates weights to their best values. Therefore, the learning rate is viewed as an important
hyper-parameter to tune for training deep neural networks. If the learning rate is fixed,
a large learning rate may learn faster, but there is a risk of reaching sub-optimal weight
values. Although the training process is slow, it is necessary to set a very small learning
rate so that weights are stable at their global optimal values. In contrast, learning rate
decay can dynamically adapt learning steps to reduce training time and help the network
converge near the minimum [41]. Deep network training usually starts from a relatively
large learning rate in the beginning, then decreases the learning rate during training to
allow more fine-grained weight updates. Therefore, in this work, we use the exponential
decay function in Keras to gradually reduce the learning rate over time. We set up an initial
learning rate of 0.001 and a learning rate decay parameter of 10−6. In our experiments,
we found the initial learning rate and its decay parameter are not sensitive to the datasets.
Moreover, the number of epochs is set to 250, which is long enough to allow network
training to converge well. Instead of training individual input images, a mini-batch size of
64 is selected so that 64 input images are learned as a group.

Let us first look at the experimental results of our AI algorithms before applying weight
quantization. In order to check if our generated datasets are good, we run experiments
on the daytime dataset, night-vision dataset, and mixed dataset, respectively. Figure 5
shows the experimental results of the loss and classification accuracy on the training
and validation sets. We can see that the validation loss has an initial high value and
then gradually decreases. After 200 epochs, the validation loss becomes very flat, which
indicates the AI model fits well without overfitting. In addition, the training accuracy
and validation accuracy are finally stabilized at around 0.99 and 0.92, respectively. Note
that the validation set is used to fine-tune the weights of the AI algorithm for accuracy
improvement. Figures 6 and 7 show similar loss curves and accuracy curves. The validation
accuracy on the night-vision dataset is around 0.9, slightly lower than the training on the
daytime dataset.

Next, we perform weight quantization on these well-trained AI models. Then, we
run experiments on the testing sets to obtain the final test accuracy after completing the
training phase. Since the existing works in the literature only provide experimental results
on datasets containing daytime baby sleep images, we compare our AI algorithm on
the daytime dataset with them for a fair comparison. As shown in Table 4, the memory
footprints in [17–19,21] are 275 MB, 174 MB, 58.2 MB, and 175.7 MB, respectively. Due to
memory limitations, these AI algorithms may not fit on edge computing systems, such

AI 2021, 2 713

as microcontrollers, smaller FPGAs, or low-end Raspberry PIs. Without applying weight
quantization, our proposed AI algorithm results in a memory footprint of 51.3 MB, which
saves at least 12% of memory space compared to these existing works. Thanks to the
weight quantization, the memory footprint can be further decreased by 44.9 MB, which
means another 88% reduction. Meanwhile, due to weight quantization, the test accuracy
is slightly improved from 90.8% to 91.6%. As a result, our proposed AI algorithm only
consumes 6.4 MB of memory.

Table 4. Comparison with existing contactless camera-based AI algorithms for baby sleep posture detection on the
daytime dataset.

Existing Work Dataset Weight Quantization Memory Footprint Test Accuracy

[17] 4250 daytime images No 275 MB 88%

[18] 4250 daytime images No 174 MB 89%

[19] Baby doll pictures instead of real baby pictures No 58.2 MB N/A

[21] 1200 non-baby sleep images No 175.7 MB 90.2%

This work Daytime dataset (5120 images)
No 51.3 MB 90.8%

Yes 6.4 MB 91.6%

AI 2021, 2, FOR PEER REVIEW 10

Figure 5. Simulation results of our AI algorithm on the daytime dataset before weight quantization.

Figure 6. Simulation results of our AI algorithm on the night-vision dataset before weight quantization.

Figure 7. Simulation results of our AI algorithm on the mixed dataset before weight quantization.

The researchers [19,21] only reported that their AI algorithms are DenseNet-121 and

Inception-v3, but did not evaluate the classification accuracy using real baby sleep images.

Therefore, in order to make a fair comparison, we evaluated these existing AI algorithms

[17–19,21] on the same dataset (i.e., the mixed dataset), plotted their experimental results

Figure 5. Simulation results of our AI algorithm on the daytime dataset before weight quantization.

AI 2021, 2, FOR PEER REVIEW 10

Figure 5. Simulation results of our AI algorithm on the daytime dataset before weight quantization.

Figure 6. Simulation results of our AI algorithm on the night-vision dataset before weight quantization.

Figure 7. Simulation results of our AI algorithm on the mixed dataset before weight quantization.

The researchers [19,21] only reported that their AI algorithms are DenseNet-121 and

Inception-v3, but did not evaluate the classification accuracy using real baby sleep images.

Therefore, in order to make a fair comparison, we evaluated these existing AI algorithms

[17–19,21] on the same dataset (i.e., the mixed dataset), plotted their experimental results

Figure 6. Simulation results of our AI algorithm on the night-vision dataset before weight quantization.

AI 2021, 2 714

AI 2021, 2, FOR PEER REVIEW 10

Figure 5. Simulation results of our AI algorithm on the daytime dataset before weight quantization.

Figure 6. Simulation results of our AI algorithm on the night-vision dataset before weight quantization.

Figure 7. Simulation results of our AI algorithm on the mixed dataset before weight quantization.

The researchers [19,21] only reported that their AI algorithms are DenseNet-121 and

Inception-v3, but did not evaluate the classification accuracy using real baby sleep images.

Therefore, in order to make a fair comparison, we evaluated these existing AI algorithms

[17–19,21] on the same dataset (i.e., the mixed dataset), plotted their experimental results

Figure 7. Simulation results of our AI algorithm on the mixed dataset before weight quantization.

The researchers [19,21] only reported that their AI algorithms are DenseNet-121 and
Inception-v3, but did not evaluate the classification accuracy using real baby sleep im-
ages. Therefore, in order to make a fair comparison, we evaluated these existing AI
algorithms [17–19,21] on the same dataset (i.e., the mixed dataset), plotted their experi-
mental results in Figures 8–11, and listed their performance results in Table 5. We can see
that the best test accuracy of 91.0% corresponds to [21]. Compared with these existing AI
algorithms, this work reduces memory footprint by at least 89%, while maintaining similar
classification accuracy. In our proposed AI algorithm, the use of weight quantization leads
to a negligible degradation in test accuracy (i.e., 0.2%). The experimental results in Table 5
are also plotted and visualized in Figure 12, where the x-axis and y-axis represent memory
usage and test accuracy, respectively. Compared with the existing work [18], this work
has achieved a 27-fold reduction in memory footprint and a 0.7% improvement in test
accuracy. Compared with the existing work [19], this work has achieved a 9-fold reduction
in memory usage with a 1.3% drop in test accuracy.

AI 2021, 2, FOR PEER REVIEW 11

in Figures 8–11, and listed their performance results in Table 5. We can see that the best

test accuracy of 91.0% corresponds to [21]. Compared with these existing AI algorithms,

this work reduces memory footprint by at least 89%, while maintaining similar classifica-

tion accuracy. In our proposed AI algorithm, the use of weight quantization leads to a

negligible degradation in test accuracy (i.e., 0.2%). The experimental results in Table 5 are

also plotted and visualized in Figure 12, where the x-axis and y-axis represent memory

usage and test accuracy, respectively. Compared with the existing work [18], this work

has achieved a 27-fold reduction in memory footprint and a 0.7% improvement in test

accuracy. Compared with the existing work [19], this work has achieved a 9-fold reduction

in memory usage with a 1.3% drop in test accuracy.

Figure 8. Simulation results of the AI algorithm [17] on the mixed dataset.

Figure 9. Simulation results of the AI algorithm [18] on the mixed dataset.

Figure 8. Simulation results of the AI algorithm [17] on the mixed dataset.

AI 2021, 2 715

AI 2021, 2, FOR PEER REVIEW 11

in Figures 8–11, and listed their performance results in Table 5. We can see that the best

test accuracy of 91.0% corresponds to [21]. Compared with these existing AI algorithms,

this work reduces memory footprint by at least 89%, while maintaining similar classifica-

tion accuracy. In our proposed AI algorithm, the use of weight quantization leads to a

negligible degradation in test accuracy (i.e., 0.2%). The experimental results in Table 5 are

also plotted and visualized in Figure 12, where the x-axis and y-axis represent memory

usage and test accuracy, respectively. Compared with the existing work [18], this work

has achieved a 27-fold reduction in memory footprint and a 0.7% improvement in test

accuracy. Compared with the existing work [19], this work has achieved a 9-fold reduction

in memory usage with a 1.3% drop in test accuracy.

Figure 8. Simulation results of the AI algorithm [17] on the mixed dataset.

Figure 9. Simulation results of the AI algorithm [18] on the mixed dataset. Figure 9. Simulation results of the AI algorithm [18] on the mixed dataset.

AI 2021, 2, FOR PEER REVIEW 12

Figure 10. Simulation results of the AI algorithm [19] on the mixed dataset.

Figure 11. Simulation results of the AI algorithm [21] on the mixed dataset.

Figure 10. Simulation results of the AI algorithm [19] on the mixed dataset.

AI 2021, 2, FOR PEER REVIEW 12

Figure 10. Simulation results of the AI algorithm [19] on the mixed dataset.

Figure 11. Simulation results of the AI algorithm [21] on the mixed dataset. Figure 11. Simulation results of the AI algorithm [21] on the mixed dataset.

AI 2021, 2 716
AI 2021, 2, FOR PEER REVIEW 13

Figure 12. Performance comparison of test accuracy vs. memory footprint between this work and

the existing state-of-the-art works in the literature.

Table 5. Comparison with existing contactless camera-based AI algorithms for baby sleep posture detection on the mixed

dataset.

Dataset
Weight Quantiza-

tion

Memory

Footprint
Test Accuracy Comments

Mixed dataset (10,240 images)

[17] No 275 MB 89.5% Compared with these ex-

isting AI algorithms, this

work reduces memory

footprint by at least 89%,

while maintaining similar

classification accuracy.

[18] No 174 MB 89.3%

[19] No 58.2 MB 91.0%

[21] No 175.7 MB 91.1%

This work
No 51.3 MB 89.9%

Yes 6.4 MB 89.7%

The confusion matrix of each AI algorithm is also plotted in Table 6. The probability

for true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)

are listed in this table. We can see that our algorithm leads to a much lower false-negative

rate (i.e., 11%), while the false-negative rate of other algorithms is at least 13%. Note the

FN error is a test result that incorrectly indicates baby sleep hazard does not hold, but in

fact the baby’s sleep posture is not safe. That means no threat is observed even though a

threat exists. In baby sleep monitoring applications, it is desirable to have a lower false-

negative rate, because a lower false-negative rate allows parents to trust the detection per-

formance of our AI algorithm more, and thus helps parents reduce fear, worry, and anxi-

ety.

Table 6. Confusion matrix comparison with existing contactless camera-based AI algorithms for

baby sleep posture detection on the mixed dataset.

[17] Negative (predicted) Positive (predicted)

Negative (actual) TN = 0.93 FP = 0.07

Positive (actual) FN = 0.13 TP = 0.87

[18] Negative (predicted) Positive (predicted)

Figure 12. Performance comparison of test accuracy vs. memory footprint between this work and
the existing state-of-the-art works in the literature.

Table 5. Comparison with existing contactless camera-based AI algorithms for baby sleep posture detection on the
mixed dataset.

Dataset Weight Quantization Memory Footprint Test Accuracy Comments

Mixed dataset (10,240 images)

[17] No 275 MB 89.5%
Compared with these
existing AI algorithms,

this work reduces
memory footprint by at

least 89%, while
maintaining similar

classification accuracy.

[18] No 174 MB 89.3%

[19] No 58.2 MB 91.0%

[21] No 175.7 MB 91.1%

This work
No 51.3 MB 89.9%

Yes 6.4 MB 89.7%

The confusion matrix of each AI algorithm is also plotted in Table 6. The probability
for true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
are listed in this table. We can see that our algorithm leads to a much lower false-negative
rate (i.e., 11%), while the false-negative rate of other algorithms is at least 13%. Note the FN
error is a test result that incorrectly indicates baby sleep hazard does not hold, but in fact
the baby’s sleep posture is not safe. That means no threat is observed even though a threat
exists. In baby sleep monitoring applications, it is desirable to have a lower false-negative
rate, because a lower false-negative rate allows parents to trust the detection performance
of our AI algorithm more, and thus helps parents reduce fear, worry, and anxiety.

Table 6. Confusion matrix comparison with existing contactless camera-based AI algorithms for baby
sleep posture detection on the mixed dataset.

[17] Negative (predicted) Positive (predicted)

Negative (actual) TN = 0.93 FP = 0.07

Positive (actual) FN = 0.13 TP = 0.87

AI 2021, 2 717

Table 6. Cont.

[18] Negative (predicted) Positive (predicted)

Negative (actual) TN = 0.93 FP = 0.07

Positive (actual) FN = 0.15 TP = 0.85

[19] Negative (predicted) Positive (predicted)

Negative (actual) TN = 0.95 FP = 0.05

Positive (actual) FN = 0.14 TP = 0.86

[21] Negative (predicted) Positive (predicted)

Negative (actual) TN = 0.94 FP = 0.06

Positive (actual) FN = 0.14 TP = 0.86

This work Negative (predicted) Positive (predicted)

Negative (actual) TN = 0.92 FP = 0.08

Positive (actual) FN = 0.11 TP = 0.89

To our best knowledge, this work is the first to construct a night-vision baby sleep
dataset and use the daytime and night-vision hybrid dataset to train AI algorithms. We
expect this work will promote parent-child interaction. Thanks to the smaller memory
requirement and higher detection accuracy, the proposed AI algorithm can be easily
integrated into a baby monitor, which usually supports two-way audio transmission. Since
the proposed design automatically monitors baby sleep posture and sends warnings or
captured baby images to the parents’ mobile phones, parents do not need to stand next to
their baby, especially at night, to understand their baby’s sleep status. As a result, parents
can relieve stress and even depression to a large extent, thereby improving their sleep
quality and mood.

4. Conclusions

In order to deal with Sudden Infant Death Syndrome (SIDS), it is desirable to develop
and optimize AI algorithms for contactless camera-based infant sleep posture detection.
In this work, we generate a large and diverse dataset for AI training and evaluation. This
dataset contains 10,240 day and night-vision baby sleep images. In addition, we propose a
CNN AI algorithm and use the post-training weight quantization technique to minimize
memory usage. In this way, the data type of weight parameters in our AI algorithm is
converted from 32-bit floating points to 8-bit integers. Experiments demonstrate that the
proposed AI algorithm achieves high classification accuracy with a small memory footprint.
Compared with the existing state-of-the-art works in the literature, our proposed memory-
efficient AI algorithm supports comparable test accuracy of around 90% and consumes
only 6.4 MB memory, which means at least a 9-fold memory reduction compared to other
existing AI algorithms.

Although post-weight quantization can significantly reduce memory footprint, some
information is lost when floating-point weights are converted into integer weights during
the quantization process. In order to reduce this negative impact, in future work, we plan
to integrate quantization-aware training into our proposed AI algorithm. Quantization-
aware training is to simulate the quantization behavior and save integer parameters in
training, and use quantized weights for output inference. Therefore, generally speaking,
quantization-aware training is prone to higher detection accuracy than post-weight quan-
tization in this work. Furthermore, since our proposed AI algorithm does not require
substantial memory space or computing capacity, in future work, we plan to implement
and run our developed AI algorithm in edge computing devices, such as micro-controllers
or Raspberry Pi.

AI 2021, 2 718

Author Contributions: Conceptualization, Q.H. and C.L.; methodology, Q.H. and C.L.; software, C.H.
and J.H.; validation, Q.H.; formal analysis, Q.H.; investigation, Q.H.; resources, Q.H.; data curation,
Q.H.; writing—original draft preparation, Q.H.; writing—review and editing, Q.H.; visualization,
Q.H.; supervision, Q.H.; project administration, Q.H.; funding acquisition, Q.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank Shadman Rashik (the author of [18])’s advisor
at Southern Illinois University Carbondale for providing his algorithm for repeating experimental
results on the newly developed datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, Q. Review: Energy-Efficient Smart Buildings Driven by Emerging Sensing, Communication, and Machine Learning

Technologies. Eng. Lett. 2018, 26, 320–332.
2. Huang, Q.; Rodrigeuz, K.; Whestone, N.; Habel, S. Rapid Internet of Things (IoT) Prototype for Accurate People Counting

Towards Energy Efficient Buildings. J. Inf. Technol. Constr. 2019, 24, 1–13. [CrossRef]
3. Huang, Q.; Hao, K. Development of CNN-based visual recognition air conditioner for smart buildings. J. Inf. Technol. Constr.

2020, 25, 361–373. [CrossRef]
4. Huang, Q.; Lu, C.; Chen, K. Smart Building Applications and Information System Hardware Co-Design. In Big Data Analytics for

Sensor-Network Collected Intelligence; Elsevier BV: London, UK, 2017; pp. 225–240.
5. Gilbert, R.; Salanti, G.; Harden, M.; See, S. Infant sleeping position and the sudden infant death syndrome: Systematic review of

observational studies and historical review of recommendations from 1940 to 2002. Int. J. Epidemiol. 2005, 34, 874–887. [CrossRef]
[PubMed]

6. Alfleesy, O. Right-Side Sleeping Position Prevents Sudden Infant Death Syndrome a Literature Review. J. Forensic. Sci. Criminol.
2016, 4, 204. [CrossRef]

7. Zhu, Z.; Liu, T.; Li, G.; Li, T.; Inoue, Y. Wearable Sensor Systems for Infants. Sensors 2015, 15, 3721–3749. [CrossRef] [PubMed]
8. Bonafide, C.; Localio, A.; Ferro, D.; Orenstein, D.; Lavanchy, C.; Foglia, E. Accuracy of Pulse Oximetry-Based Home Baby

Monitors. J. Am. Med Assoc. 2018, 320, 717–719. [CrossRef]
9. Hasan, M.; Negulescu, I. Wearable Technology for Baby Monitoring: A Review. J. Text. Eng. Fash. Technol. 2020, 6, 112–120.

[CrossRef]
10. Boughorbel, S.; Bruekers, F.; Breebaart, J. Baby-Posture Classification from Pressure-Sensor Data. In Proceedings of the 2010 20th

International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 556–559.
11. Kim, Y.M.; Son, Y.; Kim, W.; Jin, B.; Yun, M.H. Classification of Children’s Sitting Postures Using Machine Learning Algorithms.

Appl. Sci. 2018, 8, 1280. [CrossRef]
12. Liu, Z.; Wang, X.; Su, M.; Lu, K. A Method to Recognize Sleeping Position Using an CNN Model Based on Human Body Pressure

Image. In Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS),
Shenyang, China, 12–14 July 2019; pp. 219–224. [CrossRef]

13. Malik, A.; Ehsan, Z. Media Review: The Owlet Smart Sock—A “must have” for the baby registry? J. Clin. Sleep Med. 2020, 16,
839–840. [CrossRef]

14. Moon, R.Y.; Syndrome, T.F.O.S.I.D. SIDS and Other Sleep-Related Infant Deaths: Evidence Base for 2016 Updated Recommenda-
tions for a Safe Infant Sleeping Environment. Pediatrics 2016, 138, e20162940. [CrossRef] [PubMed]

15. Perez-Pozuelo, I.; Zhai, B.; Palotti, J.; Mall, R.; Aupetit, M.; Garcia-Gomez, J.M.; Taheri, S.; Guan, Y.; Fernandez-Luque, L. The
future of sleep health: A data-driven revolution in sleep science and medicine. NPJ Digit. Med. 2020, 3, 42. [CrossRef]

16. Grimm, T.; Martinez, M.; Benz, A.; Stiefelhagen, R. Sleep position classification from a depth camera using Bed Aligned Maps.
In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016;
pp. 319–324. [CrossRef]

17. Huang, Q.; Hao, K. The Development of Artificial Intelligence (AI) Algorithms to Avoid Potential Baby Sleep Hazards in Smart
Buildings. ASCE Constr. Res. Congr. 2020, 278–287. [CrossRef]

18. Shadman, R. The Development of Neural Network Architectures for Image Classification to Prevent Sudden Infant Death in
Smart Buildings. Master’s Thesis, Southern Illinois University Carbondale, Carbondale, IL, USA, 2021.

19. Khan, T. An Intelligent Baby Monitor with Automatic Sleeping Posture Detection and Notification. Artif. Intell. (AI) 2021, 2,
290–306. [CrossRef]

20. Huang, G.; Liu, Z.; Maaten, L.; Weinberger, K. Densely Connected Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

http://doi.org/10.36680/j.itcon.2019.001
http://doi.org/10.36680/j.itcon.2020.021
http://doi.org/10.1093/ije/dyi088
http://www.ncbi.nlm.nih.gov/pubmed/15843394
http://doi.org/10.15744/2348-9804.4.204
http://doi.org/10.3390/s150203721
http://www.ncbi.nlm.nih.gov/pubmed/25664432
http://doi.org/10.1001/jama.2018.9018
http://doi.org/10.15406/jteft.2020.06.00239
http://doi.org/10.3390/app8081280
http://doi.org/10.1109/icpics47731.2019.8942566
http://doi.org/10.5664/jcsm.8400
http://doi.org/10.1542/peds.2016-2940
http://www.ncbi.nlm.nih.gov/pubmed/27940805
http://doi.org/10.1038/s41746-020-0244-4
http://doi.org/10.1109/icpr.2016.7899653
http://doi.org/10.1061/9780784482865.030
http://doi.org/10.3390/ai2020018

AI 2021, 2 719

21. Tang, K.; Kumar, A.; Nadeem, M.; Maaz, I. CNN-Based Smart Sleep Posture Recognition System. IoT 2021, 2, 119–139. [CrossRef]
22. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
23. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge

Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]
24. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and

Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]
25. Nasr, M.; Islam, M.; Shehata, S.; Karray, F.; Quintana, Y. Smart Healthcare in the Age of AI: Recent Advances, Challenges, and

Future Prospects. IEEE Access 2021, 9, 145248–145270. [CrossRef]
26. Althnian, A.; AlSaeed, D.; Al-Baity, H.; Samha, A.; Bin Dris, A.; AlZakari, N.; Elwafa, A.A.; Kurdi, H. Impact of Dataset Size on

Classification Performance: An Empirical Evaluation in the Medical Domain. Appl. Sci. 2021, 11, 796. [CrossRef]
27. Gong, Z.; Zhong, P.; Hu, W. Diversity in Machine Learning. IEEE Access 2019, 7, 64323–64350. [CrossRef]
28. Fang, W.; Ding, L.; Zhong, B.; Love, P.E.; Luo, H. Automated detection of workers and heavy equipment on construction sites:

A convolutional neural network approach. Adv. Eng. Inform. 2018, 37, 139–149. [CrossRef]
29. Wu, J.; Cai, N.; Chen, W.; Wang, H.; Wang, G. Automatic detection of hardhats worn by construction personnel: A deep learning

approach and benchmark dataset. Autom. Constr. 2019, 106, 102894. [CrossRef]
30. Airaksinen, M.; Räsänen, O.; Ilén, E.; Häyrinen, T.; Kivi, A.; Marchi, V.; Gallen, A.; Blom, S.; Varhe, A.; Kaartinen, N.; et al.

Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors. Sci. Rep. 2020, 10, 1–13. [CrossRef]
[PubMed]

31. Bjorck, J.; Gomes, C.; Selman, B.; Weinberger, K. Understanding Batch Normalization. In Proceedings of the International
Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 7705–7716.

32. Yang, G.; Pennington, J.; Rao, V.; Dickstein, J.; Schoenholz, S. A Mean Field Theory of Batch Normalization. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019; pp. 1–15.

33. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

34. Banner, R.; Hubara, I.; Hoffer, E.; Soudry, D. Scalable Methods for 8-bit Training of Neural Networks. In Proceedings of the
International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2018, 3–8 December; pp. 5151–5159.

35. Wu, S.; Li, G.; Chen, F.; Shi, L. Training and Inference with Integers in Deep Neural Networks. In Proceedings of the International
Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–14.

36. Zhu, X.; Vondrick, C.; Fowlkes, C.C.; Ramanan, D. Do We Need More Training Data? Int. J. Comput. Vis. 2016, 119, 76–92.
[CrossRef]

37. Zheng, J.; Lu, C.; Hao, C.; Chen, D.; Guo, D. Improving the Generalization Ability of Deep Neural Networks for Cross-Domain
Visual Recognition. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 607–620. [CrossRef]

38. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:
A System for Large-Scale Machine Learning. In Proceedings of the ACM USENIX Conference on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

39. Baldi, P. Gradient descent learning algorithm overview: A general dynamical systems perspective. IEEE Trans. Neural Netw. 1995,
6, 182–195. [CrossRef]

40. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

41. Senior, A.; Heigold, G.; Ranzato, M.; Yang, K. An empirical study of learning rates in deep neural networks for speech recognition.
In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,
26–31 May 2013; pp. 6724–6728. [CrossRef]

http://doi.org/10.3390/iot2010007
http://doi.org/10.1109/JPROC.2019.2918951
http://doi.org/10.1109/JIOT.2020.2984887
http://doi.org/10.1109/ACCESS.2021.3118960
http://doi.org/10.3390/app11020796
http://doi.org/10.1109/ACCESS.2019.2917620
http://doi.org/10.1016/j.aei.2018.05.003
http://doi.org/10.1016/j.autcon.2019.102894
http://doi.org/10.1038/s41598-019-56862-5
http://www.ncbi.nlm.nih.gov/pubmed/31932616
http://doi.org/10.1007/s11263-015-0812-2
http://doi.org/10.1109/TCDS.2020.2965166
http://doi.org/10.1109/72.363438
http://doi.org/10.1109/5.726791
http://doi.org/10.1109/icassp.2013.6638963

	Introduction
	AI Algorithm
	Proposed AI Algorithm—Convolutional Neural Networks (CNNs)
	Post–Training Weight Quantization

	Experiments and Discussion
	Datasets Generation
	Experimental Environment and Setup
	Experimental Results and Discussion

	Conclusions
	References

