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Abstract: In CycleGAN, an image-to-image translation architecture was established without the
use of paired datasets by employing both adversarial and cycle consistency loss. The success of
CycleGAN was followed by numerous studies that proposed new translation models. For example,
StarGAN works as a multi-domain translation model based on a single generator–discriminator
pair, while U-GAT-IT aims to close the large face-to-anime translation gap by adapting its original
normalization to the process. However, constructing robust and conditional translation models
requires tradeoffs when the computational costs of training on graphic processing units (GPUs) are
considered. This is because, if designers attempt to implement conditional models with complex
convolutional neural network (CNN) layers and normalization functions, the GPUs will need to secure
large amounts of memory when the model begins training. This study aims to resolve this tradeoff
issue via the development of Multi-CartoonGAN, which is an improved CartoonGAN architecture
that can output conditional translated images and adapt to large feature gap translations between
the source and target domains. To accomplish this, Multi-CartoonGAN reduces the computational
cost by using a pretrained VGGNet to calculate the consistency loss instead of reusing the generator.
Additionally, we report on the development of the conditional adaptive layer-instance normalization
(CAdaLIN) process for use with our model to make it robust to unique feature translations. We
performed extensive experiments using Multi-CartoonGAN to translate real-world face images into
three different artistic styles: portrait, anime, and caricature. An analysis of the visualized translated
images and GPU computation comparison shows that our model is capable of performing translations
with unique style features that follow the conditional inputs and at a reduced GPU computational
cost during training.

Keywords: artificial intelligence; image processing; image generation; generative adversarial network

1. Introduction

Studies exploring deep learning modeling have expanded to the field of image process-
ing. For example, in the field of image recognition, Shutanov et al. [1] explored the possibil-
ity of using convolutional neural networks (CNNs) to recognize traffic signs. Li et al. [2]
trained a humanoid robot to recognize emotions from facial images by combining a CNN
and long short-term memory (LSTM). In an effort to improve image task quality levels,
Tian et al. [3] proposed a guided denoising method that works by extracting latent noise
information through an attention-guided CNN.

Most image recognition and improvement tasks require the preparation of both input
and target paired data, such as classified labels for recognition and cleaned images to
improve noisy input images. However, preparing target images is often a cumbersome task
depending on the image processing method. This is particularly true in the case of image-
to-image translation tasks, such as translating real-world photos into segmented images
under supervised learning conditions, because of the need to search for and generate paired
images.
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Despite this difficulty, the CycleGAN translation model overcame the problem of
preparing paired datasets and made it possible to perform image-to-image (one-to-one
domain) translation learning with unpaired image datasets. Later, Zhu et al. [4] proposed a
method of employing CycleGAN adversarial loss to mimic target domain features and cycle
consistency loss to retain the content image features. After the introduction of CycleGAN,
Choi et al. [5] proposed a multi-domain translation architecture, named StarGAN, that can
translate an image among N domains by utilizing a conditional vector. This multi-domain
translation model eliminated the need to prepare and train N generator-discriminator pairs
when using one-to-one domain translation to output N kinds of translated images.

However, the translation performance of models based on CycleGAN is strongly
dependent on the feature differences between the source and target domain datasets. For
example, as pointed out in [6], previous models (such as CycleGAN) were unable to com-
plete image translation tasks that involved large shape changes. Accordingly, implementing
a translation model for N domains that is robust to extreme appearance changes can be
seen as a new frontier for image-to-image translation. Unfortunately, implementing such a
model is difficult because of the need to consider the GPU computational cost at the start
of conditional translation training.

Another issue is that existing translation models capable of dealing with extreme
appearance changes consume significant amounts of mobile-integrated blockchain (MiB)
on GPUs because of the need to repeatedly use the generator to obtain cycle consistency
loss. This means that, in situations where a generator consists of multiple CNN layers and
complex normalization layers, additional computational resources are required when the
generator is reused.

In response to these issues, this study aims to construct an N domain translation model
that deals with extreme appearance translations by saving computational costs at the start
of the training. In our experiments, we attempted to train a single model to translate a
real-world face into three different artistic face styles: portrait, anime, and caricature, each
of which has unique features such as painting brushstrokes and coloring. Here, it should
be noted that translating to anime and caricature styles is particularly demanding because
the appearance gaps between these styles and real-world faces are extremely large.

Hence, when considering the most appropriate model to address these issues, inspired
by the low computational cost of CartoonGAN [7], we decided to develop a model that
could perform conditional N domain translations and be adaptable to extreme translations.
The result was our novel adaptation of CartoonGAN, named Multi-CartoonGAN.

Our proposed Multi-CartoonGAN model not only employs the VGG19 pretraining
method of CartoonGAN to prevent calculating content loss and save parameter training
computational costs, but also implements an original normalization function called con-
ditional adaptive layer-instance normalization (CAdaLIN) for use in the generator. This
normalization process was inspired by AdaLIN in U-GAT-IT [6], which is a normalization
process that summarizes the instance-normalized and layer-normalized results. The affine
parameters of AdaLIN were obtained from pooled feature maps using adaptive average
and adaptive max pooling.

Our study utilizes a conditional vector as the affine parameter for AdaLIN, which is
calculated via linear layers by the input conditional vector. This method not only outputs
affine parameters, but also reports the content of the conditional input to the generator
instead of inserting a conditional vector directly.

Taken together, the contributions of our proposed model can be summarized as
follows:

• In addition to performing suitable artistic translations of low-appearance translations,
such as translating real-world faces to portrait style, our proposed Multi-CartoonGAN
can also handle large appearance gap changes such as face-to-anime and face-to-
caricature translations;
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• Our proposed CAdaLIN normalization method contributes to conditional large ap-
pearance translations better than other processes, such as inserting a conditional vector,
similar to in StarGAN;

• The computational cost of training on GPUs and the time required to complete one
training epoch using our model can be reduced to less than that possible with U-GAT-IT;

• By using t-SNE clustering to classify results, our model produces more significant
variations between the portrait and anime styles than are possible with CycleGAN,
Single GAN, StarGAN, and U-GAT-IT;

• Our N-to-N domains translation model can solve the trade-off problem between
extreme appearance translation that necessarily requires a great deal of technical
layers, and the GPU computational cost along with memory consumption required
for robust training.

2. Related Studies
2.1. Neural Style Transfer

Gaty et al. [8,9] proposed an image translation method that uses a pretrained VGG16
to mix spatial content features and style design features [10]. This neural style transfer
method aims to find the best image synthesis by repeated backpropagation. However,
the optimization process for this neural style transfer method tends to take a long time.
Johnson et al. [11] addressed the optimization time problem by training feed-forward
translation networks through perceptual loss functions.

In the latest research arena, image-to-image translation via neural style transfer is
not only useful for developing networks, but can also be used to propose normalization
functions for image synthesis. For example, Ulynov and Vedaldi [12] proposed a process
called instance normalization, which calculates the mean and variance from each channel
of a feature map and showed that the performance could be improved by replacing batch
normalization with instance normalization. Dumoulin [13] expanded the diversity of avail-
able painting styles by utilizing a process called conditional instance normalization, which
selects units in the layers for use as affine parameters (scaling and shifting) during instance
normalization. Huang et al. [14] also attempted to expand the diversity of style synthesis
availability by a process known as adaptive instance normalization, which computes affine
parameters for instance normalization based on the input style.

The flexibility of the neural style transfer method makes it possible to mix any image
content and style simply by completing the optimization process or training feed-forward
networks. However, the neural style transfer process translates the entire area of the content
image and lacks the ability to specify the information that determines which area should
be translated. This means that, if users want to attempt a particular area translation task,
such as a real face to portrait style, the model needs to use other criteria to ensure that
some features of the translated image in particular areas, such as the entire face area of the
subject, are maintained.

2.2. One-to-One Domain Translation

For translation learning of a particular area, it is necessary to strike a balance between
the limited spatial content features to be retained and the likely target domain features
to be reflected. The architectures discussed below attempt to use adversarial training to
perform learning translation for a particular area (or the whole area) of a content image.

The first architecture we will discuss is pix2pix [15], which is a pioneering image-to-
image translation method that implements the L1 norm and adversarial loss. To accomplish
this, the architecture first prepares a paired dataset containing real-world photos for input
and target images that correspond to each of those photos. Next, during translation training,
the pix2pix generator learns how to generate a translated image from an input photo. Then,
by comparing the L1 norm and deceiving the discriminator via adversarial loss, it becomes
possible to generate an image that closely approaches the target image. However, this
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one-to-one domain translation model requires manually preparing a paired dataset for the
comparison of outputs and targets.

Other architectures, such as CycleGAN [4], DualGAN [16], and DiscoGAN [17], at-
tempt to resolve this preparation problem by training both mapping models (both genera-
tors), thus combining adversarial loss and cycle consistency loss. As a result, the translated
images can be reconstructed by inputting the images into another mapping model.

Generators learn output images by maintaining source input content features and
deceiving the discriminators so that the generated images are judged as real and belonging
to the target domain.

Kim et al. [6] proposed the AdaLIN process, in which parameters can be trained by
adaptively selecting the ratio between the instance and layer normalization processes, thus
making it possible to construct robust translation models capable of handling tasks that
require large shape gap changes, such as selfie-to-anime translations. New architectures
have also been developed [7,18] that utilize a pretrained VGG19 [10] to calculate the
content loss.

However, even though these novel one-to-one domain translation models can operate
using unpaired datasets, if the users desire to obtain N-style translated images with these
models, they must still train N × (N − 1) models. As a result, it takes a long time to
complete the translation training.

2.3. Multi Domains Translation

As a potential way to reduce the required number of translation models for N domains,
ComboGAN [19] combines encoder and decoder methods. In this architecture, if users want
to translate x in domain X to y indomain Y, the generator combines the indexed x encoder
and the indexed y decoder and outputs the translated images. However, this method also
requires users to train N ComboGANs consisting of an N generator and discriminator pairs
to output the N-style-translated images.

A pertinent research question is whether it is possible to control the output form of an
image with a single architecture. One potential solution is the use of the conditional GAN
architecture (cGAN) [20], in which a conditional vector that relates to the targeted category
is provided as an additional input data to the generator and discriminator.

The StarGAN [5] translation process, for example, utilizes a conditional vector in which
the input image and the resized conditional vector are concatenated and input into the
generator. In this architecture, the generator trains the translated image output by following
the conditional input, and the discriminator attempts to determine whether the output is
real or fake through the output feature map patches and to classify the domains to which
the input image belongs. AttGAN [21] also employs an encoder–decoder-based generator
that is extended to consider the relationship between latent representation (conditional
input) and the attribution that is output from the discriminator. IcGAN [22] is a version of
cGAN that has been expanded by including an encoder that compresses the input content
image to achieve latent representation, after which the cGAN outputs the conditional
translated image through inputs.

RelGAN [23] employs a conditional vector that represents the differences between the
original and target domain attributions. This vector is then input into the generator along
with the input image. To upload the conditional input into the generator, StarGAN and
RelGAN inject concatenated data (the content image and the conditional vector that has
been resized to the channel size) directly into the generator. However, other related studies
have proposed methods that do not involve data injection. For example, Chen et al. [24]
proposed Gated-GAN, which uses different branches between the encoder and decoder
at the generator to perform N-style translations. Yu et al. [25] pointed out that injection
methods can lead to mode collapses when used with existing normalization methods,
such as batch or instance normalization, and proposed an alternative central biasing
normalization (CBN) process as the latent code injection method.
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In (CBN), the conditional input is input as a bias and added to the normalized feature
map. Multi-domain translation models have attempted conditional translations by chang-
ing the conditional input insertion method. For example, SingleGAN [26] employed CBN
for conditional translations. Constructing a multi-domain translation model with technical
normalization layers can solve extreme appearance gap translation tasks. However, if we
stack an ever-increasing number of layers in a translation model, the computational cost of
training on GPUs will increase. This makes it difficult to set a small batch size at the start of
training and drastically increase the time required to complete a single training epoch.

3. Our Proposed Model

As stated above, our study focused on the CartoonGAN translation architecture [7],
which utilizes a pretrained VGGNet and has been shown to require much less training
time than CycleGAN. Although CartoonGAN is a one-to-one domain translation model,
we further developed this model into a multi-domain translation model by employing
CAdaLIN. This section introduces an overview of our model and describes the full loss
objectives used for learning conditional translation.

3.1. Overview of Our Multi-Cartoongan

Figures 1 and 2 show the construction of the generator (G) and discriminator (D) in
Multi-CartoonGAN. Here, G aims to output translated artistic face images G(x, c) from an
input real-world photo x by following c, which is the conditional input that relates to the
selected artistic style. The construction of our D is inspired by NICE-GAN, a one-to-one
domain architecture whose discriminator work as encoder for its generator [27]. NICE-
GAN constructs multi-scale discriminators that output different scales of the receptive field.
Here, D attempts to determine whether the image is real or fake using two different scales
of output feature maps and the logit of class activation maps (CAM). We employed the
CAM logit to discriminate the feature units extracted by the pooling layers. Additionally,
D classifies the input images into appropriate artistic styles.
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Figure 2. Overview of the discriminator in the Multi-CartoonGAN.

In the training phase, G outputs the translated image G(x, c) by following the content
of conditional vector c. Meanwhile, D outputs the feature map, the CAM logit, and the
classified units. Discrimination is performed on the feature map patches to determine
whether the input image is from the real artistic domain images or a fake translated image
from G. Discrimination is also performed on the CAM logit from the attention feature maps
via the adaptive pooling layers. The classified units provide the criteria that determine the
artistic style that the input image belongs to.

3.2. Conditional Adaptive Layer-Instance Normalization in the Generator

As pointed out in [25], conditional input injections directly into the generator can lead
to unstable conditional training. To address this problem, a conditional vector is employed
as the layer hyperparameter in our generator. This idea was inspired by AdaLIN [6], which
controls the affine parameters so that scaling and shifting through the extracted feature
maps is performed by the adaptive max-pooling of the adaptive average pooling layers.
Our results suggest that, assuming that a different input for the fully connected layers
provides a different output, the affine parameters from the conditional vector can also be
used to control flexible scaling and shifting.

Figure 3 presents an overview of the proposed CAdaLIN. In the normalization process,
the conditional input c ∈ C is input to the linear layers, and each layer outputs the affine
parameter for scaling and shifting to the normalized feature maps.

3.3. Full Objectives

Equations (1)–(8) show the G and D loss objectives of our Multi-CartoonGAN. Equation (1)
is the learning loss objective function for G, which includes content loss, adversarial loss,
classification loss, and adversarial loss with the CAM logit. Equation (2) is the objective
function for D and includes adversarial loss, classification loss, adversarial loss with CAM
logit, and gradient penalty loss.

Based on Equation (1), our model obtains a content loss that compares the differences
between x and G(x, c) through the output from conv4-4 in the pretrained VGG19 following
the CartoonGAN [7] method. The adversarial loss in Equation (4), the classification loss
in Equation (5), and the adversarial loss with the CAM logit in Equation (7) are calcu-
lated for D. The adversarial loss in Equation (4) and the CAM logit adversarial loss in
Equation (5) are discriminated as real or fake by the least-squares generative adversarial
loss (LSGAN) method [28], which adopts the least squares loss when discriminating and
performs stable training.
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CAM logits are output through adaptive average-pooling and adaptive max-pooling
layers. G seeks to deceive D so that both the feature patches and the CAM logit are treated
as real data. In contrast, the classification loss for G seeks to be recognized by the classifying
network in D such that G(x, c) belongs to domain c.

Using Equation (2), the adversarial losses in Equations (4) and (7) are discriminated as
real or fake based on the judgments from two outputs: the feature map and the CAM logit.
The classification loss in Equation (6) means that D is trained to recognize the artistic style
from real artistic input images in the collection. To stabilize the adversarial training, we
placed spectral normalization [29] in each layer of D and the gradient penalty [30].

LG = λconLVGG + λGAN LGAN(G, D) + LG
cls + LD

cam(G, D) (1)

LD = λGAN LGAN(G, D) + LD
cls + LD

cam(G, D) + λgpLgp (2)

LVGG = Ex∼pdata(x), c‖Fconv4_4(G(x, c))− Fconv4_4(x)‖1 (3)

LGAN(G, D) = Ey∼pdata(y)

[
(D(y))2

]
+Eyblur∼pdata(yblur)

[
(1− D(yblur))

2
]

+Ex∼pdata(x),c[(1− D(G(x, c)))2]

(4)

LG
cls = Ex∼pdata(x),c[− log(Dcls(c|G(x, c)))] (5)

LD
cls = Ey∼pdata(y),c[− log(Dcls(c|y))] (6)

LD
cam(G, D) = Ey∼pdata(y)

[
(Dcam(y))

2
]

+Eyblur∼pdata(yblur)

[
(1− Dcam(yblur))

2
]

+Ex∼pdata(x),c

[
(1− Dcam(G(x, c)))2

] (7)

Lgp = E[(‖∇x̂D(x̂)‖2 − 1)2] (8)

4. Experimental Setup
4.1. Real-World Face Image Dataset

As the source domain of this study, we employed the CelebA-HQ dataset [31], which
consists of 28,000 cropped face images for training and 2000 similar images for testing. Our
study used a conditional translation training dataset based on a deep learning model and a
testing dataset that performs evaluations by visualizing a translated image from a testing
image and then evaluating the computational performance.
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4.2. Artistic Face Images Dataset

As explained above, we evaluated our proposed model by translating real-world face
images into three artistic styles: portrait, anime, and caricature. For each artistic style, we
employed the MetFaces portrait dataset [32], which consists of facial artworks obtained
from the New York Metropolitan Museum of Art. We also used an additional anime face
dataset [6], which consists of a collection of animation character images. For caricatures,
we selected an additional dataset WebCaricature [33,34]. Before conducting experiments,
the face images from the original data were cropped by referring to an annotation file that
indicates the axis of the facial points. Regarding the number of images in each art category,
we could collect 1336 portrait images, 3400 anime girl images, and 6042 caricature images.

4.3. Training Setup

When loading images from the source and target domains, they were resized to
286 × 286 pixels, after which some of those images, selected at random, were cropped
to 256 × 256 pixels. For the training optimizer, we employed the Adam optimization
algorithm [35] with the learning rate set to 0.0001 and (β1, β2) = (0.5, 0.999). In addition,
the optimizer weight decay was set to 0.0001. During the training phase, we trained the
model for 50 epochs with a batch size of 15.

4.4. Enviroment about Software and Hardware

We implemented Multi-CartoonGAN and performed the training phase using the
open-source PyTorch deep learning library. To speed up training, we employed an NVIDIA
GeForce RTX 3090 GPU.

5. Results

This section introduces three aspects of the results obtained: visualizing translated
images using the trained Multi-CartoonGAN, comparing the time needed to complete
one training epoch with the GPU MiB training cost, and using k-means clustering [36] to
determine whether the model could output each translated image style by differentiating
appropriately among the target artistic domains.

After conditional translation training, we tested whether our model could output
appropriately translated results that followed the conditional inputs and reflected the
correct artistic style domain. Figure 4 shows the results of inputting real-world face images
for translation.
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Figure 4. Visualizing conditional artistic face translation using the trained Multi-CartoonGAN. 

Viewing the entire field of translated images, it can be seen that each image has 
unique features that maintain the structure of the content image, such as the face location. 
By evaluating the features of each translated image, we can see that each image has unique 
features that reflect the intended artistic style. For example, translating to the portrait-style 
results in images that show paintbrush strokes and subdued colors, while anime-style re-
sults have unique eye designs that are much bigger than real-world faces. Interestingly, 
when translating image into anime style, the male face images are forcibly translated into 
girly faces because we employed an anime face image dataset which consists of almost 
animation girl characters. Finally, the caricature style results show design exaggerations 
that reflect particular facial characteristics. 

These results show that the trained Multi-CartoonGAN can perform conditional 
translations that reflect the unique features of the three ordered artistic style domains. As 
for the translation quality of image visualization among various translation models, Fig-
ure 5 shows the results of comparing the three styles using the same input image for Multi-
CartoonGAN, CycleGAN, U-GAT-IT, NICE-GAN, and StarGAN. 
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Figure 4. Visualizing conditional artistic face translation using the trained Multi-CartoonGAN.

Viewing the entire field of translated images, it can be seen that each image has unique
features that maintain the structure of the content image, such as the face location. By
evaluating the features of each translated image, we can see that each image has unique
features that reflect the intended artistic style. For example, translating to the portrait-style
results in images that show paintbrush strokes and subdued colors, while anime-style
results have unique eye designs that are much bigger than real-world faces. Interestingly,
when translating image into anime style, the male face images are forcibly translated into
girly faces because we employed an anime face image dataset which consists of almost
animation girl characters. Finally, the caricature style results show design exaggerations
that reflect particular facial characteristics.

These results show that the trained Multi-CartoonGAN can perform conditional
translations that reflect the unique features of the three ordered artistic style domains.
As for the translation quality of image visualization among various translation models,
Figure 5 shows the results of comparing the three styles using the same input image for
Multi-CartoonGAN, CycleGAN, U-GAT-IT, NICE-GAN, and StarGAN.
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Figure 5. Comparing conditional artistic face translation results among translation models. 

In the translation results using trained CycleGAN and NICE-GAN, the portrait style 
results show appropriate painting styles that maintain the subject’s features, while the 
anime style results show typical anime coloring and facial characteristics. However, when 
translating to caricature style, the results did not change the shape of the subject’s face 
line, such as Multi-CartoonGAN. Instead, only the coloring was changed, much like a film 
negative, thus producing coloring results that were much different from the original im-
age. In the translation results using U-GAT-IT, the images translated into portrait style 
and anime style show the likely coloring and shade painting. However, the images 

Figure 5. Comparing conditional artistic face translation results among translation models.

In the translation results using trained CycleGAN and NICE-GAN, the portrait style
results show appropriate painting styles that maintain the subject’s features, while the
anime style results show typical anime coloring and facial characteristics. However, when
translating to caricature style, the results did not change the shape of the subject’s face
line, such as Multi-CartoonGAN. Instead, only the coloring was changed, much like a film
negative, thus producing coloring results that were much different from the original image.
In the translation results using U-GAT-IT, the images translated into portrait style and
anime style show the likely coloring and shade painting. However, the images translated
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to the caricature style did not drastically change considering the face shape feature. This
phenomenon is also visible in SingleGAN’s results.

As for StarGAN, the image translation results show coloring changes and feature
distortions that are radically different from the intended artistic style. Therefore, we can
conclude that our proposed model performs better than StarGAN.

5.1. Comparing Computational Cost and Time to Complete One Poch

This section introduces the performance results related to the computational cost of
training on a GPU and the time required to complete one training epoch using our prepared
datasets (the iteration number is up to 28,000 based on the real-world face image number).

Figure 6 shows a graph comparing the computational cost of training on a GPU
among the translation models. Because Multi-CartoonGAN employs CartoonGAN, which
calculates content loss using a pretrained VGGNet, our model could reduce the calculation
costs to less than those for U-GAT-IT and NICE-GAN, and Nice-Gan light, even when
adopting CAdaLIN for technical normalization.
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As for the time required to complete one training epoch, Figure 7 shows a graph with 
the comparison results for the counting time when the batch size was set to 1. Here, it can 
be seen that the identity mapping loss (Idt) for our model was similar to that for StarGAN 
but faster than that for CycleGAN, U-GAT-IT, SingleGAN, and NICE-GAN, because it 
was necessary for those models to reuse the generator when calculating content losses. 

Figure 6. Comparing the GPU computational cost (Idt refers to the model learned identity mapping
for preventing extreme color tinting).

As for the time required to complete one training epoch, Figure 7 shows a graph with
the comparison results for the counting time when the batch size was set to 1. Here, it can
be seen that the identity mapping loss (Idt) for our model was similar to that for StarGAN
but faster than that for CycleGAN, U-GAT-IT, SingleGAN, and NICE-GAN, because it was
necessary for those models to reuse the generator when calculating content losses.
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5.2. Clustering by t-SNE 
Using trained versions of image-to-image translation models, we experimented to 

determine if the models could output images with appropriate differences among the re-
quested target domains. To evaluate these differences, we used t-SNE clustering, which 
visualizes the similarities over the entire dataset by converting a high-dimensional dataset 
into a matrix [36]. An advantage of using t-SNE clustering is that it projects high-dimen-
sional data onto a low-dimensional space by preserving the clustering in a high-dimen-
sional space, which helps to visualize the clusters. 

Figure 8 shows the clustering results for each image-to-image translation model. In 
the CycleGAN, Single GAN, StarGAN and U-GAT-IT results, it can be seen that the three 
clusters were nearly mixed, thus indicating that the translated images for each style had 
the same features and no major differences. 
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Figure 7. Comparing the time to complete one training epoch (Idt refers to the model learned identity
mapping for preventing extreme color tinting).

5.2. Clustering by t-SNE

Using trained versions of image-to-image translation models, we experimented to
determine if the models could output images with appropriate differences among the re-
quested target domains. To evaluate these differences, we used t-SNE clustering, which visu-
alizes the similarities over the entire dataset by converting a high-dimensional dataset into
a matrix [36]. An advantage of using t-SNE clustering is that it projects high-dimensional
data onto a low-dimensional space by preserving the clustering in a high-dimensional
space, which helps to visualize the clusters.

Figure 8 shows the clustering results for each image-to-image translation model. In
the CycleGAN, Single GAN, StarGAN and U-GAT-IT results, it can be seen that the three
clusters were nearly mixed, thus indicating that the translated images for each style had
the same features and no major differences.

AI 2022, 3,  12 
 

 
Figure 7. Comparing the time to complete one training epoch (Idt refers to the model learned iden-
tity mapping for preventing extreme color tinting). 

5.2. Clustering by t-SNE 
Using trained versions of image-to-image translation models, we experimented to 

determine if the models could output images with appropriate differences among the re-
quested target domains. To evaluate these differences, we used t-SNE clustering, which 
visualizes the similarities over the entire dataset by converting a high-dimensional dataset 
into a matrix [36]. An advantage of using t-SNE clustering is that it projects high-dimen-
sional data onto a low-dimensional space by preserving the clustering in a high-dimen-
sional space, which helps to visualize the clusters. 

Figure 8 shows the clustering results for each image-to-image translation model. In 
the CycleGAN, Single GAN, StarGAN and U-GAT-IT results, it can be seen that the three 
clusters were nearly mixed, thus indicating that the translated images for each style had 
the same features and no major differences. 

  

(a) (b) 

Figure 8. Cont.



AI 2022, 3 49

AI 2022, 3,  13 
 

  

(c) (d) 

  

(e) (f) 

Figure 8. Results of K-means clustering using three translation models. (a) t-SNE with our Multi-
CartoonGAN, (b) t-SNE clustering with CycleGAN, (c) t-SNE clustering with U-GAT-IT, (d) t-SNE 
clustering with NICE-GAN, (e) t-SNE clustering with StarGAN, (f) t-SNE clustering with Sin-
gleGAN. 

In contrast, the NICE-GAN and Multi-CartoonGAN translation results show clear 
demarcations between the anime and other styles. The portrait and caricature clusters are 
somewhat mixed because the art style forms are very similar in terms of describing paint-
ings based on image content. The fact that most anime cluster areas did not mix with the 
others indicates that the translated anime-style images had the intended characteristic fea-
tures. 
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In this study, we proposed a conditional translation model capable of handling large 

appearance changes when the forms of the content and target domains are radically dif-
ferent. Additionally, the model was designed with the aim of keeping the GPU computa-
tional costs as low as possible. In our proposed model, which we named Multi-Car-
toonGAN, we implemented a new conditional input insertion method, named CAdaLIN, 
and found that our normalization function could perform conditional translations that 
produced appropriate differences between the intended styles. 

Based on the results of our experiments, the following observations can be made: 
• The t-SNE cluster results for our model show that more improvements could be seen 

in the differences between the portrait and caricature styles; 
• If the pose and shade features in the real-world face domain are different from those 

in the target domain, our model tends to output corrupted images; 
• Because our model outputs a single translated image from a single content image and 

a single conditional vector signal, there is little translation diversity from a single 
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Figure 8. Results of K-means clustering using three translation models. (a) t-SNE with our Multi-
CartoonGAN, (b) t-SNE clustering with CycleGAN, (c) t-SNE clustering with U-GAT-IT, (d) t-SNE
clustering with NICE-GAN, (e) t-SNE clustering with StarGAN, (f) t-SNE clustering with SingleGAN.

In contrast, the NICE-GAN and Multi-CartoonGAN translation results show clear
demarcations between the anime and other styles. The portrait and caricature clusters
are somewhat mixed because the art style forms are very similar in terms of describing
paintings based on image content. The fact that most anime cluster areas did not mix with
the others indicates that the translated anime-style images had the intended characteris-
tic features.

6. Conclusions

In this study, we proposed a conditional translation model capable of handling large
appearance changes when the forms of the content and target domains are radically differ-
ent. Additionally, the model was designed with the aim of keeping the GPU computational
costs as low as possible. In our proposed model, which we named Multi-CartoonGAN,
we implemented a new conditional input insertion method, named CAdaLIN, and found
that our normalization function could perform conditional translations that produced
appropriate differences between the intended styles.

Based on the results of our experiments, the following observations can be made:

• The t-SNE cluster results for our model show that more improvements could be seen
in the differences between the portrait and caricature styles;

• If the pose and shade features in the real-world face domain are different from those
in the target domain, our model tends to output corrupted images;

• Because our model outputs a single translated image from a single content image
and a single conditional vector signal, there is little translation diversity from a single
input image.
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Regarding the first point above, we note that our model often outputs translated
caricature style images with blurred colors similar to brush paintings. This causes the
translated features results of the portrait and caricature styles to appear nearly mixed.

The second point is the problem between the form of content domains that include a
variety of face patterns and directions and the artistic image style domains, which collect
face images that are oriented primarily in the front direction. This corruption problem often
appeared when attempting translations to anime and caricature styles.

Finally, from our visualization results, we found that some translated images had
quite similar designs. This occurs when using a fixed conditional input because there is no
additional auxiliary information to tell the generator that it should output different forms
of the translated images.

To overcome these issues, we intend to further develop our model based on the
following ideas:

• Adding an adversarial loss function that compares the extracted edge features of the
target domain images with those of the translated images using a Canny edge filter;

• Concatenating the face mask images in the generator so that the face information can
be described in detail;

• Developing our model into a guided multimodal translation architecture, such as
StarGAN v2 [37] and MUNIT [38], using appropriate content and style images, and
then training the model to output translated images that retain the spatial features of
the content image and the painting features of the style image.

N-N domains translations dealing with three different artistic styles ended up lim-
iting the current study to small datasets. In the future, the authors plan to further test
the applicability of their model to larger and more diversified datasets. Moreover, the
translation evaluation was primarily of a qualitative nature by subjects that are well versed
with artistic styles. In the future, the authors plan to extend the qualitative evaluation
using the collective intelligence available on Amazon Mechanical Turk to further validate
the results, apart from using the Fréchet Inception Distance (FID) and Kernel Inception
Distance (KID) quantitative metrics.
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