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Abstract: DeepSleep 2.0 is a compact version of DeepSleep, a state-of-the-art, U-Net-inspired, fully
convolutional deep neural network, which achieved the highest unofficial score in the 2018 PhysioNet
Computing Challenge. The proposed network architecture has a compact encoder/decoder structure
containing only 740,551 trainable parameters. The input to the network is a full-length multichannel
polysomnographic recording signal. The network has been designed and optimized to efficiently
predict nonapnea sleep arousals on held-out test data at a 5 ms resolution level, while not compro-
mising the prediction accuracy. When compared to DeepSleep, the obtained experimental results
in terms of gross area under the precision–recall curve (AUPRC) and gross area under the receiver
operating characteristic curve (AUROC) suggest a lightweight architecture, which can achieve similar
prediction performance at a lower computational cost, is realizable.

Keywords: deep learning; convolutional neural network; healthcare; sleep arousal; sleep disorder;
EEG; ECG; polysomnography

1. Introduction

Sleep is an important element of our daily life, affecting our health and quality of life.
Estimates [1] suggest that 34.8% of the adult population in the United States suffer from
insufficient sleep (less than 7 h in 24 h). Similarly, about 50 to 70 million of the population
suffers from wakefulness and various types of sleep disorders [2]. Inadequate sleep may be
linked to a wide range of negative outcomes including cardiovascular dysfunction, obesity,
depression, hypotension, irritability, impaired memory, and learning issues [3,4]. Sleep
disorders often track their roots to some type of sleep disturbance. Sleep disturbances are
of various nature. For instance, obstructive sleep apnea (or simply, apnea), characterized by
a complete collapse of the airway, leads to awakening and subsequent sleep disturbance.

While apneas are one of the most common sleep disturbances, they are certainly not
the only ones. Sleep arousals, defined as brief intrusions of wakefulness into sleep [5],
can occur spontaneously as a result of sleep-disordered breathing (e.g., partial airway
obstructions or snoring) or other sleep disorders. Each arousal, lasting 3 to 15 s, triggers a
lighter sleep stage. Humans are usually not aware of sleep arousals; however, they might
be aware of awakenings (sleep arousals lasting more than 15 s). Sleep quality will deteriorate
with the frequent occurrence of sleep arousals. For instance, according to the American
Sleep Apnea Association (ASAA), as few as five arousals per hour can make someone
feel chronically sleepy. Symptoms resulting from frequent sleep arousals are sympathetic
activation, nonrestorative sleep, and daytime sleepiness [4]. While apnea is one of the
better-studied sleep disorders [3], there are only a few studies related to sleep arousals. The
main reasons are expensive research due to the difficulties associated with sleep arousal
detection with traditional methods and, compared with apnea, automated detection of
such sleep arousals has been shown to have low scoring reliability [6].

Early detection of excessive sleep arousals is essential for the diagnosis and treatment
of sleep disorders. Early diagnosis might help reduce the risk of potential complications,
including blood pressure fluctuations and heart disease. The current state-of-the-practice
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(gold standard) in sleep arousal detection consists of human-annotated multichannel
polysomnographic (PSG) recordings. Traditionally, 30 s epochs of PSG recordings are visu-
ally inspected and labeled by certified sleep experts according to the American Academy
of Sleep Medicine’s (AASM) scoring manual [7]. This task requires considerable time and
effort as the amount of data to inspect is tremendous. For instance, an 8 h and 13-channel
sleep recording sampled at 200 Hz contains almost 75 million data points. It may take
hours to manually score a sleep recording of this scale. Moreover, the overall inter-rater
consensus for the AASM standard is only about 80% [2]. Hence, the development of more
efficient and more consistent methods is of high importance.

The main aim of this paper is to realize an efficient and automatic nonapnea sleep
arousal segmentation method based on deep learning methods. A fully convolutional
neural network (CNN) with a compact encoder–decoder structure is proposed together
with various types of preprocessing, data augmentation, and training strategies. The best-
performing variant of the trained model is compared to the current state-of-the-art method
in various ways.

The structure of this paper is as follows: Section 2 provides the necessary background
on mathematical modeling and discusses some related works. The underlying dataset is
introduced and analyzed in Section 3. The proposed CNN architecture is presented in
Section 4 and the obtained experimental results are given in Section 5. Finally, concluding
remarks are provided in Section 7.

2. Background
2.1. Problem Formulation

Let x ∈ RC×S be a signal (e.g., a PSG sleep record) with C ∈ Z+ physiological channels
and a total length of S = T/∆t data points. Here, T ∈ Z+ stands for the total length of
the recorded signal in seconds and ∆t > 0 is the per-second sampling resolution. The
aim is to find a model f (x, θ) which maps the input signal x into the prediction space
ŷ = [ŷ1, . . . , ŷS] ∈ RS. Here, ŷi corresponds to a predicted sleep arousal probability, i.e.,
ŷi ∈ [0, 1], or to a sleep arousal state, i.e., ŷi ∈ {0, 1}, at time instance ti = i∆t, and is
associated with xi ∈ RC, a slice from the overall recording signal x = [x1, . . . , xi, . . . , xS].
Similarly, i ∈ R is a discrete time instance andR = {1, . . . , S} represents a set of all discrete
time instances of the record x.

The problem described in this section is also known as sleep segmentation and can be
mathematically defined as an optimization problem:

min
θ
D(ŷ− y), (1)

subject to
ŷ = f (x, θ). (2)

Here, y ∈ RS represents the vector of true labels, i.e., the expert-segmented signal for
the presence of nonapnea arousals; D(·) is some distance measure; f (·) is, in general, a
nonlinear function, hereafter referred to as model, which maps the input space RC×S to the
target sleep arousal space, i.e., RC×S → RS. The set of parameters defining the mapping
function is denoted by θ. In this work, f (·) is constructed using a deep neural network
architecture andD is approximated by a binary cross-entropy (BCE) loss function for model
training purposes.

From the deep learning perspective, the problem can be formulated as a nonapnea
sleep arousal classification (i.e., arousal/nonarousal) or as a continuous prediction problem
(i.e., arousal probability). The aim is to use the inherent patterns from the available PSG
signals to correctly classify or predict target arousal regions. The classification problem
will be considered as a benchmark case as target labels are usually available for it (i.e.,
expert labeled arousal/nonarousal recordings). The prediction problem can be viewed as
an extension or potential use-case of the final, trained, model.
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2.2. Related Works

One of the first steps in sleep disorders diagnosis is sleep stage classification. There
has been a great deal of attention in developing computational methods for automatic sleep
staging based on PSG recordings and/or radiofrequency (RF) signals. Neural-network-
based approaches tend to greatly outperform “classical” machine learning (ML) methods
such as logistic regression, random forest, and support vector machines (SVMs). Particu-
larly, deep learning techniques such as CNN and recurrent neural network (RNN), or their
combination, show very good results in sleep stage classification, see [8] for RF-signal-based
and [8–14] for PSG-signal-based approaches.

When it comes to sleep disorders detection, the majority of published works is ded-
icated to apnea detection. Apnea can be relatively easily detected from the rapid fall in
the blood oxygen saturation level. However, changes in physiological signals are very
subtle when sleep arousals occur. This is one of the reasons why some researchers argue
that automatic sleep arousal segmentation is considerably more challenging than sleep
stage scoring [4]. Early works in sleep arousal detection include standard signal processing
techniques for feature extraction and subsequent label classification using standard classi-
fiers, such as SVM, Fisher’s linear and quadratic discriminants, and simple feedforward
neural networks [15]. State-of-the-art signal processing methods designed for automatic
sleep stage scoring, such as short-time Fourier transform (STFT) or Thomson’s multita-
per, were shown in [4] to not be well-suited when adopted and applied to an arousal
detection problem.

The 2018 “You Snooze, You Win” PhysioNet Computing in Cardiology Challenge [3]
triggered a great deal of interest in developing ML-based computational methods for
automatic sleep arousal detection. Among the first ten highest scored submissions in the
PhysioNet challenge, the last two submissions employed classical ML techniques [9,16],
while the remaining eight employed a variant of deep neural networks. Particularly, four
models employed a pure CNN method [4,17–19], two used the pure RNN method [20,21],
while two submissions leveraged both CNN and RNN methods [22,23]. Interestingly
enough, the highest scored submission [4] leveraged pure CNN, while the second-highest
score was achieved by a combination of CNN and RNN techniques [22].

The trend of leveraging CNN and/or RNN techniques remained present also in works
investigated in the follow-up phase of the 2018 challenge, see the recent review paper
by Qian et al. [24]. For instance, the originally proposed hybrid scattering transform—
bidirectional long short-term memory (BiLSTM) network [21]—was extended in [25].
The authors leveraged four different neural layer types: a second-order ST with Morlet
wavelets, convolutional layers, BiLSTM layers, and dense layers. A classification through
multiple CNN layers and a random forest module for ensemble voting was proposed
in [26]. A comparative study of five recent state-of-the-art CNN models for sleep arousal
detection, originally devised for image or speech processing applications, was presented
in [27]. A lightweight CNN architecture has recently been proposed in [28] for downsam-
pled and nonoverlapping windowed segments of PSG signals. The authors used a special
data augmentation technique to improve the large class imbalance ratio.

3. Data
3.1. Data Source

The underlying data considered in this work were made publicly available for the You
Snooze You Win - The PhysioNet Computing in Cardiology Challenge 2018, hereafter referred
to as the PhysioNet dataset. In this challenge, computational methods were evaluated for
predicting nonapnea sleep arousals on large unseen test data.

The PhysioNet dataset includes 1983 unique subjects with an average age of 55 years
and a 65% male population. The data are split into a training set (n = 994) and test set
(n = 989). With a Kolmogorov–Smirnov test p-value of 0.97, the data were partitioned in a
balanced way to ensure a uniform distribution of apnea-hypopnea indices in both sets [3].
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The arousal labels for the test dataset (n = 989 records) were retained for the challenge
purposes and were not released to the public after the competition. Therefore, only the
complete (containing both recordings and labels) training dataset (n = 994 records) is
considered in this work. The dataset and the challenge are described in more detail in [3].
For completeness, some important aspects are recalled and further analyzed below.

3.2. Data Description

Each record in the dataset contains 13 physiological measurements, including six-
channel electroencephalography (EEG) at F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, and
O2-M1; one single-channel electrooculography (EOG) at E1-M2; three-channel electromyo-
graphy (EMG) of the chin, abdominal (ABD), and chest movements; one measurement of
respiratory airflow; one measurement of oxygen saturation (SaO2); and one single-lead
electrocardiogram (ECG).

All PSG recordings were measured in microvolts and collected by technicians follow-
ing the AASM standards. Except for SaO2, all signals were sampled at a resolution of 5 ms
(1/200 Hz = 5 ms). To synchronize the measurements, the SaO2 was upsampled using a
sample and follow method to 200 Hz and was expressed as a percentage. Subsequently, certi-
fied sleep technologists annotated each recording for the presence of arousals interrupting
the sleep of the subject [3].

For the PhysioNet challenge purposes, the nonapnea arousals were precomputed and
defined as regions,Ra, where either of the following conditions were met [3]:

C1: From 2 s before a respiratory-effort-related arousal begins, up to 10 s after it ends or,
C2: From 2 s before a nonrespiratory-effort-related arousal, nonapnea arousal begins, up

to 2 s after it ends.

Nonscored regions, Rns, were defined as regions falling within 10 s before or af-
ter a subject woke up, had a hypopnea arousal, or an apnea arousal (labels marked by
yi = −1, i ∈ Rns). Otherwise, arousal regions were labeled as yi = 1, i ∈ Ra, and
nonarousal regions as yi = 0, i ∈ Rna, whereRna , R \ (Ra ∪Rns).

3.3. Data Analysis

The average sleep duration in the (training) dataset is 7.7 h, while the majority of
subjects slept 7–8 h. Arousal regions only account for about 4.6% of the entire dataset, while
nonarousal regions and nonscoring regions account for about 61.5% and 33.9%, respectively.
Additionally to arousals scarcity, arousals are also often sparsely and heterogeneously
distributed during sleep for most subjects, see Figure 1 for illustration.
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Figure 1. Illustration of sparse and heterogeneous distribution of sleep arousals in 20 randomly
selected sleep records (before postprocessing).

By definition, sleep arousals are short events (less than 15 s). Therefore, it is expected
that a longer accumulated arousal time will yield to an increased number of arousal events,
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see Figure 2 (left). A quite significant correlation can be observed. On the other hand, no
significant correlation with the total length of sleep and the accumulated length of sleep
arousals can be observed in the available data, see Figure 2 (right). This is also expected, as
longer sleep does not necessarily guarantee a better quality of sleep.
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Figure 2. Relationship between the percentage of accumulated arousal time over the sleep record and
the total number of sleep arousal events (left). Relationship between the accumulated sleep arousal
time and the length of the sleep record (right). The green lines, green histogram plots, and Pearson’s
correlation values (r, with associated p-value) represent, respectively, a linear regression fit, marginal
distribution, and correlation considering both sex data combined (n = 994).

All the above-mentioned aspects pose a significant challenge in creating accurate and
efficient automatic sleep arousal detection algorithms.

4. Methods
4.1. Network Architecture

The core of the proposed network architecture is inspired by the state-of-the-art
DeepSleep architecture. To the author’s knowledge, DeepSleep stands currently as a
benchmark for sleep arousal segmentation from PSG signals. Its main building blocks are
recalled in the following section.

4.1.1. DeepSleep Architecture

DeepSleep was inspired by the pioneering U-Net [29] architecture which was originally
proposed for biomedical image segmentation. DeepSleep is a fully convolutional deep
neural network (the authors of DeepSleep concluded that integrating an LSTM or gated
recurrent unit into DeepSleep did not improve the performance) for time sleep arousal
segmentation. The input to the DeepSleep is a multichannel PSG signal of fixed length
S = 223, which is then mapped into a dense segmented output in a single forward pass. The
key differentiating factor of the DeepSleep architecture is its ability to leverage long-range
and short-range interdependencies across different time scales (second, minute, and hours)
of the entire sleep record and its ability to detect sleep arousals at the millisecond level.

DeepSleep consists of two modules, an encoder and a decoder module. The encoder
module contains several encoder blocks. Each block consists of two convolutional layers
with kernel size 7, no kernel dilatation, stride 1, and rectified linear unit (ReLU) activa-
tion. The number of output channels increases with each double convolution. A batch
normalization follows each convolution. After the double convolution, the signal length is
reduced by a max pooling (kernel size 2 or 4, stride 2 or 4). The decoder module is built up
of individual decoder blocks. These blocks mirror the encoder blocks’ operation, i.e., each
decoder block first performs an upsampling operation (with kernel size 2 or 4 and stride 1)
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using the so-called transposed convolution. The upscaled signal is then concatenated with
the output of the mirrored encoder block. This operation is then followed by a double
convolution with the same parameters as above, however, the number of output channels
is decreasing this time.

The encoder/decoder blocks are constructed in such a way that the output of the final
decoder has the same temporal resolution as the input signal, but contains only one channel.
In other words, the encoder and decoder modules map an input signal in RC×S into an
output in RS. Note that the authors of DeepSleep have performed extensive experiments to
find the optimal convolutional kernel size, number of encoder/decoder blocks (i.e., shallow
vs. deep architecture), max pooling vs. average pooling.

4.1.2. Proposed Architecture

Large parts of the proposed model architecture, hyperparameters, and data augmen-
tation strategies were adopted from its predecessor DeepSleep [4], which was shown to
outperform other computational methods in the PhysioNet Challenge. The aim was to
leverage the extensive design considerations, supported by exhaustive empirical analyses,
in the design of a new lightweight version of DeepSleep, referred to in this work as Deep-
Sleep 2.0. The proposed architecture is illustrated in Figure 3 and its technical backbone is
summarized in Table 1.
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Figure 3. The proposed DeepSleep 2.0 architecture. The structure is a 1D adaptation of the well-
known 2D U-Net architecture [29]. Compared to DeepSleep [4], the proposed architecture only has a
depth of 5, while DeepSleep has a depth of 11.

The major differences are the number of encoder/decoder blocks. While in the original
design, in total ten symmetric encoder/decoder blocks were used, in the proposed compact
version, only four blocks are considered. Additionally, the transposed convolution is
implemented as a linear interpolation (upsampling in Table 1). The authors of DeepSleep
have empirically shown that longer recording lengths lead to better performance. This
premise has been strictly adopted in this work and DeepSleep 2.0 also processes the
entire sleep record. Therefore, other means for reducing the complexity of the network
were explored.

DeepSleep 2.0 downsamples the input signal (see Section 4.2) and subsequent feature
maps much more aggressively by using max-pooling kernels of sizes 4, 8, 16, 32 as opposed
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to DeepSleep which uses max-pooling kernels of size 4 in all encoder blocks but the first
one, where it uses a factor of 2. Using a more aggressive max-pooling downsampling
strategy increases the information loss, especially in the early layers. On the other hand, a
slightly longer temporal resolution of the latent space was considered, i.e., in the proposed
method, the latent space has an overall length of 29, while in DeepSleep 28 was considered.
Contrary to this, DeepSleep builds up more channels in the latent space than the proposed
model (480 vs. 120). All these modifications were motivated to improve the efficiency of
DeepSleep 2.0 while maintaining similar performance.

Table 1. DeepSleep 2.0 model architecture with C = 13 physiological channels and input signal
centered and padded to a total length of S = 223 = 8,388,608 data points.

ID Layer Type Output
Dimension Kernel Size Batch

Normalization
Activation
Function Stride Padding Weights

Initialization
- Input (symbolic) C× S - - - - - -
1 Input 13× 223 - - - - - -
2 Double convolution 15× 223 7 yes ReLU 1 same Xavier
3 Max pooling 15× 221 4 - - 4 - -
4 Double convolution 30× 221 7 yes ReLU 1 same Xavier
5 Max pooling 30× 218 8 - - 8 - -
6 Double convolution 60× 218 7 yes ReLU 1 same Xavier
7 Max pooling 60× 214 16 - - 16 - -
8 Double convolution 120× 214 7 yes ReLU 1 same Xavier
9 Max pooling 120× 29 32 - - 32 - -

10 Double convolution 120× 29 7 yes ReLU 1 same Xavier
11 Upsampling 120× 214 32 - - 32 - -
12 Concatenate with ID 8 output 240× 214 - - - - - -
13 Double convolution 60× 214 7 yes ReLU 1 same Xavier
14 Upsampling 60× 218 16 - - 16 - -
15 Concatenate with ID 6 output 120× 218 - - - - - -
16 Double convolution 30× 218 7 yes ReLU 1 same Xavier
17 Upsampling 30× 221 8 - - 8 - -
18 Concatenate with ID 4 output 60× 221 - - - - - -
19 Double convolution 15× 218 7 yes ReLU 1 same Xavier
20 Upsampling 15× 223 4 - - 4 - -
21 Concatenate with ID 2 output 30× 223 - - - - - -
22 Double convolution 15× 223 7 yes ReLU 1 same Xavier
23 Output convolution 1× 223 1 - Sigmoid * 1 - Xavier
- Output (symbolic) 1× S - - - - - -

Total trainable parameters: 740,551, parameters memory size: 2.82 (MB)

* The sigmoid activation function is only applied during model inference. During model training, a linear
activation is considered and the network outputs logits.

4.2. Preprocessing

The considered dataset was approximately 135 GB in size. The PSG recordings were
stored as an array of 16-bit signed integers. For computational and memory efficiency,
some preprocessing steps were taken prior to applying the network training procedure.

4.2.1. Signal Normalization

Quantile normalization was shown in DeepSleep to yield negligible performance gains
when compared to Z-score normalization. To reduce the complexity of the preprocessing
step, the Z-score normalization was preferred here.

Consider C, the set of all available channel indices, i.e., C = {1, . . . , C}, then the
recordings for each subject can be Z-score-normalized as follows

x̄j,i =
xj,i − µj

σj
, ∀j ∈ C, ∀i ∈ R, (3)

where µj is the mean value and σj > 0 the standard deviation of the jth PSG channel,
defined as (note that as part of the initial data inspection, one record, tr07-0709, was found
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to have missing airflow data. That channel’s standard deviation will result in σj = 0.
Therefore, (3) must be implemented with strict check for σj > 0):

µj =
1
S

S

∑
i=1

xj,i, σj =
1

S− 1

S

∑
i=1

(
xj,i − µj

)2.

4.2.2. Record Length Unification

All recordings are unified to a total length of 223 = 8,388,608 data points. This length
represents an overall recording of approximately 11 h 39 m and can accommodate all
sample recording lengths in the dataset. Where necessary, the recordings and associated
arousal labels were augmented to have the length of 223 by applying ‘0’ and ‘-1’ padding,
respectively. The padding was implemented in such a way that the original signals were
centered in the middle of the preprocessed data. Note that this preprocessing only affected
the nonscoring setRns.

4.2.3. Data Structure Selection

The Z-score-normalized recordings were first padded as described in Section 4.2.2 and
then saved in a half-precision floating-point format (FP16). Compared to FP64 precision,
the accuracy loss in terms of mean square error (MSE) computed across all 13 PSG channels
and all (n = 994) recordings in the dataset was: MSE = 4.29× 10−8 ± 3.16× 10−9 (± in the
1σ sense).

4.3. Training

Various neural network training strategies were investigated. The adopted training
strategy is described next.

4.3.1. Cross-Validation

As mentioned above, the dataset considered in this work comprised n = 994 record-
ings, one recording per subject. As it is accustomed in the ML community, the underlying
data were split into three unique batches. The considered dataset was randomly (all ran-
dom generator functions were initialized with the same seed for reproducibility and model
comparison purposes) split into batches of training (60%), validation (15%), and testing
(25%) data. This splitting strategy allowed us to compare the obtained results with the
benchmark DeepSleep model. The available demographic data and the actual split in
absolute numbers are summarized in Table 2.

Table 2. Total number of subjects and related demographics in different sets.

Attribute Training Validation Testing

Total number of subjects 596 149 249
Gender (male/female) 396/200 96/53 174/75
Age (mean ± 1σ years) 55.3± 14.4 54.3± 14.6 55.7± 14.0

4.3.2. Data Augmentation

The authors of DeepSleep have already performed extensive experiments in order
to optimize the resulting model. A number of data augmentation strategies were used
to expand the training set in order to improve the generalizability of the model, includ-
ing random swapping of similar PSG channels, magnitude, and timescale modifications.
Furthermore, different PSG signal lengths and channel combinations (i.e., using various
numbers of PSG channels) were also investigated. The best performance was achieved by
utilizing all 13 PSG channels and full-length recordings.

In this work, the viable methods of swapping similar physiological channels and
randomly modifying the magnitude of the signals were adopted. The timescale-wise
random multiplication was shown in [4] as less effective and was therefore not considered.
In addition to the above methods, a new bold strategy was investigated. Namely, during
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the training process, one PSG channel was randomly selected and swapped by a sequence
of standard Gaussian distributed signals. This method is later referred to as Gaussian
noise injection.

4.3.3. Early Stopping

The validation set is used for monitoring the training-validation losses and avoiding
problems related to overfitting or underfitting. In general, a training process shall continue
as long as the network’s generalization ability is improved and overfitting avoided.

In this work, a so-called early stopping with patience was adopted. This strategy
ensures that the training is stopped based on the performance of the validation loss during
the training. Specifically, the training is stopped if the validation loss has not improved in
κ > 0 consecutive steps (epochs). In this work, only the best performing model, i.e., the
model that achieved the smallest loss on the validation set, was additionally evaluated
using the test set.

4.3.4. Loss Function

The BCE loss function was used to train the network parameters and is defined as
follows (the actual implementation of the BCE loss uses logits instead of probabilities and
takes advantage of the log-sum-exp trick for numerical stability):

L(ŷ, y) = − 1
N ∑

i∈Rns

[yi log ŷi + (1− yi) log(1− ŷi)], (4)

where N is the total number of scored time points, i.e., N = |Rns|. Note that all nonscored or
uniform-length padded regions, i.e., i ∈ Rns, do not contribute to the gradients calculation.

Remark 1. Despite the area under the precision–recall curve (AUPRC) being the primary evalua-
tion metric, it is not possible to use AUPRC as a loss function for the neural network backpropaga-
tion. This is because the AUPRC function, see (5), is not differentiable, which is one of the main
prerequisites for using the backpropagation algorithm [30].

Remark 2. The Sørensen–Dice coefficient is another candidate for approximating an ideal, “AUPRC
loss”-like loss function. However, empirical tests performed within the DeepSleep study [4] suggest
that a pure BCE loss achieves a better-trained model performance compared to the Sørensen–Dice
loss or a combination of Sørensen–Dice and BCE loss.

4.4. Evaluation Metric

The computational method proposed in this work was primarily evaluated against its
binary classification performance on target arousal and nonarousal regions contained in
the test set and as measured by the AUPRC, defined as:

AUPRC = ∑
j, |Pj∩Rns| 6=0

(
rj−1 − rj

)
pj−1, (5)

where pj is the precision and rj is the recall, defined as

pj =

∣∣Ra ∩ Pj ∩Rns
∣∣∣∣Pj ∩Rns

∣∣ , (6)

rj =

∣∣Ra ∩ Pj ∩Rns
∣∣∣∣Ra ∩Rns

∣∣ , (7)

and calculated for each cutoff value j, j ∈ {0, 1, . . . , 1000}. In (6) and (7), Pj indicates the

set of samples for which the predicted arousal probability was at least j
1000 .
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In addition to AUPRC, the area under the receiver operating characteristic curve
(AUROC) was used as a secondary scoring metric. The AUROC is defined as:

AUROC = ∑
j, |P j∩Rns| 6=0

1
2
(
rj−1 − rj

)(
sj + sj−1

)
, (8)

where sj is the specificity, defined as:

sj =

∣∣Rna ∩ P j ∩Rns
∣∣∣∣Rna ∩Rns

∣∣ . (9)

As mentioned in Section 3.3, sleep arousals are sparsely distributed events (less
than 10%, see Figure 2). Therefore, the AUPRC metric was deemed to be a more suitable
evaluation metric as it is able to distinguish the performance in highly unbalanced data such
as the sleep arousals in the PhysioNet dataset. This is due to the fact that the precision (6)
is very sensitive to false positives when the number of true positives is relatively small.

Remark 3. Note that (5) and (8) are referred to, respectively, as gross AURPC and gross AUROC,
if (5)–(9) are calculated for each possible value (all time instances) in the entire test set, which is not
the same as averaging the AUPRC or AUROC for each record. Otherwise, if (5)–(9) are computed
per recording, (5) and (8) are referred to as sample AUPRC and sample AUROC, respectively.

Remark 4. In the PhysioNet challenge, the gross AUPRC was used as the main scoring metric.
Gross AUPRC can be viewed as a weighted average of sample AUPRCs, where longer records
are weighted more in the score calculation. This "weighting strategy" results in a more accurate
performance description of a model [4]. The same analogy can be applied to the gross AUROC.

5. Results
5.1. Implementation Details

A cloud computing environment was used to configure a virtual machine to have
similar computational capabilities as the machine reported for training the DeepSleep
model, described in the supplementary material to [4]. A CUDA-enabled machine with
one NVIDIA Tesla T4 GPU was used. The final DeepSleep 2.0 network was implemented
using Pytorch (v 1.8.1) in Python (v 3.8). Efficient memory implementation procedures
(e.g., automatic mixed precision) were followed.

5.1.1. Parameterization

Extensive hyperparameter tuning was out of the scope of this work. During the
training process, the Adam (adaptive momentum estimation) optimization algorithm was
used with the learning rate of η = 10−4, momentum parameters β1 = 0.9 and β2 = 0.999,
ε = 10−8, and a weight decay rate (`2-norm regularization term) λ = 10−5. A stopping
criteria with patience κ = 7 and batch size of 2 were used. All convolutional layer weights
were initialized using the Xavier initialization and gain parameter corresponding to the
ReLU activation function.

5.1.2. Model Variants

In this work, in total four different model variants were evaluated. While all four
models used the same training methodology and network architecture, they differed in the
data preprocessing and/or data augmentation part. The differences are summarized in
Table 3.
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Table 3. Considered variants of the DeepSleep 2.0 model.

Model ID Z-Score Normalization Channel Swapping Random Gaussian Noise
Injection

Model 0 7 7 7
Model 1 3 7 7
Model 2 3 3 7
Model 3 3 3 3

5.2. Training Progress

The per-epoch cross-entropy training and validation losses for the four models are
depicted in Figure 4.
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Figure 4. History of training and validation cross-entropy losses. Early-stopping was implemented
with a patience equal to κ = 7.

It can be seen that each model takes a different number of epochs to train. The model
which had implemented Z-score normalization only showed to have very quickly diverging
training vs. validation losses. On the other hand, the random Gaussian noise injection
shows very good generalization capabilities as the trends in the training and validation
losses are relatively closely related.

5.3. Sample Prediction Example

Before turning to the statistical results, a randomly selected recording (tr03-0078) from
the test set is used to illustrate the DeepSleep 2.0 (model 2) arousal predictions. A 300 s
window example of all 13 PSG channels with target labels and predicted sleep arousals at
5 ms resolution is illustrated in Figure 5. It can be seen that the model predicts a higher
score at time windows where actual arousal happens. Note that ’-1’ represents nonscored
regions, hence the model is allowed to output any score in these regions, see Section 4.4
for more details. On the other hand, nonarousal regions are accurately represented by low
probability values.
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Figure 5. A 300 s window example of a PSG recording of a randomly selected (from the test set)
subject with target labels (arousal = 1, nonarousal = 0, not scored = −1) and DeepSleep 2.0 (model 2)
predicted sleep arousal probabilities.

5.4. Overall Results

The models achieving the smallest validation loss were evaluated on the 25% of the
held-out test data. The obtained results in terms of sample AUPRC and sample AUROC
scores are reported in Figure 6.
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Figure 6. The violin shape represents the distribution of the record-wise (sample) AUPRC and
AUROC scores evaluated on the n = 249 held-out test records. The horizontal black lines correspond
(from bottom to top) to the 25th percentile (Q1), 50th percentile (Q2), and 75th percentile (Q3),
respectively. Each dot represents a sample sleep record score.

The gross AUPRC, gross AUROC, and the BCE loss are summarized in Table 4.
Furthermore, the obtained sample AUPRC and AUROC scores were analyzed for potential
correlation patterns, see Figure 7.

Table 4. Gross AUPRC, gross AUROC, and BCE for the test set.

Evaluation Metric Model 0 Model 1 Model 2 Model 3

AUPRC 0.387872 0.443655 0.450434 0.407079
AUROC 0.878906 0.894429 0.901215 0.895116

BCE 0.177034 0.166627 0.164296 0.170024
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Figure 7. Correlation analysis of subject-wise AUPRC and AUROC scores.

6. Discussion

The obtained results suggest that both the Z-score normalization and the similar PSG
channel swapping are effective preprocessing and data augmentation techniques. The
“bold” data augmentation strategy in terms of Gaussian noise injection did not lead to
significant performance improvements, although it outperformed the baseline Model 0.
The obtained results for Model 2 imply a possible second place in the 2018 PhysioNet
challenge [3]. Compared to other architectures, DeepSleep 2.0 offers a much lighter model
architecture while maintaining close to state-of-the-art performance. For all four model
variants, with a significant p-value, a relatively weak but positive correlation is observed
between the reported sample AUROC and AUPRC scores, suggesting a reliable overall
assessment in terms of AUROC and AUPRC.

In the course of the network development and implementation, several aspects, not
mentioned earlier, were considered. For instance, the model without Z-score normalization
posed a significant challenge to the Adam optimizer, resulting in NaN values in the batch-
normalization phase of the network. Gradient clipping did not solve this issue; however,
committing to smaller learning rates did. Similarly, several experiments were performed
on a smaller dataset. Various activation functions (ELU, SELU, GELU, ReLu), optimizers,
data augmentation techniques, and weight initialization strategies were investigated.

In more generic terms, the author acknowledges that there are other open problems
in automatic sleep arousal detection from multichannel PSG recordings. One of them
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is the absence of continuous labels. According to the AASM scoring manual, human
experts provide only binary, i.e., “sleep” or “arousal”, labels while deep neural networks
have the capability of predicting continuous labels (probability of arousal). Similarly, the
quality of labels is often not perfect due to human errors. Therefore, a question arises
how to obtain or fabricate quality labels that can be directly used to train a network that
performs continuous predictions. On the other hand, there is still room to improve the
prediction accuracy and/or efficiency. Finally, the determination of an optimal subset of
physiological signals necessary to achieve a prescribed sleep arousal detection performance
for a fixed architecture remains largely a heuristic task. Hopefully, this and similar studies
will promote the potential of deep-learning-based techniques for automated nonapnea
sleep arousal segmentation, offering close-to-human performance and leading to more
efficient and cost-saving diagnosis procedures. Consequently, more patients may have
access to timely and targeted treatments of arousal-related sleep disorders.

7. Conclusions

This work demonstrated that a more compact architecture of the state-of-the-art
DeepSleep is able to perform automatic sleep arousal segmentation with a less-complex
architecture, fewer parameters, and achieving close to similar AUPRC and AUROC scores
on the held-out test data considered in this work. It should be noted that the original Deep-
Sleep model achieved the high AUPRC score of 0.550 and AUROC score of 0.927 reported
in PhysioNet challenge for its 1/8 + 1/2 + full ensemble model variant, almost tripling
its base inference complexity. The computational complexity of the proposed DeepSleep
2.0 architecture is significantly smaller than its predecessor. The total number of trainable
parameters in DeepSleep 2.0 is 740,551 and its depth is only 5, while DeepSleep relies on a
depth of 11. To realize a very low-computational and low-memory practical application,
the input signal should be downscaled and the layer input/output dimensions adequately
modified. Future work is expected to consist of various attempts to further improve the
model performance, reduce its complexity, and try new data-centric approaches. Ensemble
models and the incorporation of categorical features are a few examples of other avenues
to take.
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