
����������
�������

Citation: Huang, Q. Weight-

Quantized SqueezeNet for

Resource-Constrained Robot

Vacuums for Indoor Obstacle

Classification. AI 2022, 3, 180–193.

https://doi.org/10.3390/ai3010011

Academic Editor: Hiroyuki Yoshida

Received: 1 February 2022

Accepted: 2 March 2022

Published: 9 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Weight-Quantized SqueezeNet for Resource-Constrained Robot
Vacuums for Indoor Obstacle Classification
Qian Huang

School of Architecture, Southern Illinois University Carbondale, Carbondale, IL 62901, USA; qhuang@siu.edu

Abstract: With the rapid development of artificial intelligence (AI) theory, particularly deep learning
neural networks, robot vacuums equipped with AI power can automatically clean indoor floors by
using intelligent programming and vacuuming services. To date, several deep AI models have been
proposed to distinguish indoor objects between cleanable litter and noncleanable hazardous obstacles.
Unfortunately, these existing deep AI models focus entirely on the accuracy enhancement of object
classification, and little effort has been made to minimize the memory size and implementation cost
of AI models. As a result, these existing deep AI models require far more memory space than a typical
robot vacuum can provide. To address this shortcoming, this paper aims to study and find an efficient
deep AI model that can achieve a good balance between classification accuracy and memory usage
(i.e., implementation cost). In this work, we propose a weight-quantized SqueezeNet model for robot
vacuums. This model can classify indoor cleanable litters from noncleanable hazardous obstacles
based on the image or video captures from robot vacuums. Furthermore, we collect videos or pictures
captured by built-in cameras of robot vacuums and use them to construct a diverse dataset. The
dataset contains 20,000 images with a ground-view perspective of dining rooms, kitchens and living
rooms for various houses under different lighting conditions. Experimental results show that the
proposed deep AI model can achieve comparable object classification accuracy of around 93% while
reducing memory usage by at least 22.5 times. More importantly, the memory footprint required by
our AI model is only 0.8 MB, indicating that this model can run smoothly on resource-constrained
robot vacuums, where low-end processors or microcontrollers are dedicated to running AI algorithms.

Keywords: robot vacuums; memory efficient; deep learning; weight quantization; SqueezeNet

1. Introduction

Modern smart buildings are driven by emerging sensing, communication, the Internet
of Things (IoT), and artificial intelligence (AI) technologies [1–5]. Among various smart
building devices, robot vacuums can autonomously clean indoor floors by using intelligent
programming and guided vacuuming services. Therefore, without manual intervention,
ground waste is absorbed into a garbage storage bin through sweeping and vacuuming. In
order to detect and bypass noncleanable obstacles, an ultrasonic distance sensor, an infrared
sensor, a tactile sensor, or an integrated camera is generally installed at the front of robot
vacuums. Unfortunately, because of severe drawbacks of ultrasonic, infrared, or tactile
sensors [6], robot vacuums often become stuck under furniture, cabinets, and refrigerators;
on door thresholds or thick carpets; and even trip over objects such as shoes, power cords,
power strips, socks, ropes, remote controls, phone chargers, or kids’ toys. In addition,
robot vacuums have been reported to run over dog or cat feces and ruin indoor floors by
spreading feces throughout houses. Furthermore, robot vacuums may cause problems for
pets, such as sucking food from pet food bowls. Consequently, it is concluded that modern
robot vacuums are not intelligent enough to detect and recognize cleanable litters on indoor
floors. In practice, before using robot vacuums, building users must inspect indoor floors
and move noncleanable hazardous obstacles. Such pre-cleaning is inconvenient and a
burden to robot vacuum users.

AI 2022, 3, 180–193. https://doi.org/10.3390/ai3010011 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai3010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0002-6795-5261
https://doi.org/10.3390/ai3010011
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai3010011?type=check_update&version=1

AI 2022, 3 181

In order to make robot vacuums truly smart, researchers began to investigate artificial
intelligence (AI) models, especially deep learning neural networks, to detect and identify
indoor cleanable litters (e.g., dust, hair, and confetti) and noncleanable hazardous obstacles
(e.g., socks, shoes, power cord, headphones, pet feces, dishcloths, and slippers). Deep AI
models have great potential to support robot vacuums to avoid becoming stuck or trapped
in noncleanable hazardous obstacles. AI brings a better user experience and attracts more
customers to purchase AI robot vacuums. It is forecasted that AI and robotics will be
closely integrated to perform many cleaning tasks for humans by 2025 [7]. Currently, the
development of AI-powered robot vacuums is still in its infancy. In 2021, several robot
vacuum companies began to collect thousands of real or fake dog feces for training deep
AI models.

Essentially, a robot vacuum is a resource-constrained edge device, where low-end
processors or microcontrollers are the computing device for running AI models [8]. Low-
end processors or microcontrollers in robot vacuums have limited memory space, typically
less than 1 MB. Unfortunately, these existing deep AI models in Table 1 focus entirely
on the accuracy enhancement of object classification, and little effort has been made to
significantly reduce the memory size below 1 MB. As a result, these existing deep AI
models need far more memory space than a typical robot vacuum can provide. Hence,
there is an urgent need to develop computationally efficient, small-memory deep AI
models that can run smoothly on common low-end processors and microcontrollers [8].
Furthermore, researchers face another challenge, which is the lack of experimental datasets
in complex indoor scenes from a ground-view perspective. Note that the appearance of
indoor litters and obstacles is different from the ground-view perspective than the top-view
perspective [9,10]. Therefore, the dataset unavailability problem is one of the focuses of
this work.

In this work, we investigate and develop a new deep AI model, which can classify
indoor cleanable litters from noncleanable hazardous obstacles with less trainable parame-
ters and memory footprint. This work makes the following contributions. First, we collect
videos or pictures captured by built-in cameras of robot vacuums and use them to construct
a diverse dataset. The dataset contains 20,000 images with a ground-view perspective of
dining rooms, kitchens, and living rooms for various houses under different lighting condi-
tions. In this manner, data diversity in complex indoor scenes is guaranteed. This dataset
comprises a sufficient number of image data with balanced classes. This experimental
dataset meets the requirement of complex indoor scenes from a ground-view perspective.
Second, we propose a weight-quantized SqueezeNet model to minimize the memory usage
and computational complexity for deployment on resource-constrained robot vacuums.
The techniques of post-training weight quantization and quantization-aware training are
leveraged to significantly reduce the size of our deep AI model by 87% (from 6.1 MB to
0.8 MB). Experiments have been performed on the existing deep AI models in the literature
(i.e., four-layer deep CNN, VGG-16, ResNet-34, 16-layer deep CNN, and MobileNet-V2)
and the proposed weight-quantized SqueezeNet model. These AI models are fine-trained to
achieve the highest accuracy with minimum loss. Then, classification accuracy and memory
footprint are listed in a table for a comprehensive comparison. Experimental results show
that when comparing with these existing deep AI models in the literature (i.e., four-layer
deep CNN, VGG-16, ResNet-34, 16-layer deep CNN, and MobileNet-V2), the proposed
AI model can achieve a comparable object classification accuracy of around 93% while
reducing memory usage by at least 22.5 times. Furthermore, the memory footprint required
by our proposed AI model is only 0.8 MB, indicating that our model can run smoothly on
resource-constrained robot vacuums, where low-end processors or microcontrollers are
dedicated to running AI models.

AI 2022, 3 182

The rest of this paper is organized as follows. Section 2 introduces related work on
several state-of-the-art deep AI models. Section 3 describes the proposed weight-quantized
SqueezeNet and two techniques of weight quantization. Section 4 describes dataset genera-
tion and annotation and experimental environment setup. In order to highlight the benefits
of our proposed AI model, Section 5 demonstrates extensive experimental results that are
compared with the state-of-the-art works in the literature. Section 6 concludes the paper
and discusses future work.

2. Related Work

In this subsection, we review several state-of-the-art deep AI models that have been
recently employed in indoor object classification for robot vacuums. These AI models
include CNN, VGG-16, ResNet, and MobileNet-V2, which will be elaborated as follows.

CNN: Convolutional Neural Network is a powerful deep learning model with excel-
lent performance and a wide range of applications. The structure of a CNN can be divided
into three types of layers: convolutional layers that extract features, max pooling layers
that downsample features without corrupting recognition results, and fully connected
layers that perform classification tasks. The pooling layer reduces the number of training
parameters and ignore some information while keeping sampling unchanged. In CNNs,
convolutional layers and pooling layers are usually repeated many times to form a deep
network architecture with multiple hidden layers, commonly known as deep convolutional
neural networks.

VGG-16: To build deeper convolutional neural networks, researchers proposed VGG
models to avoid larger 5 × 5 or 7 × 7 convolutional kernels. The entire VGG network uses
the same size of convolutional kernels (3 × 3) and maximum pooling (2 × 2). There are
multiple variants of VGGNet, consisting of different numbers of layers in the network. The
16-layer model is called VGG-16. VGG-16 proves that increasing the network depth affects
the final performance of VGG models to some extent. Unfortunately, VGG-16 contains more
parameters and consumes more computing resources, resulting in more memory usage.

ResNet: During the back-propagation stage, traditional deep CNN models show
the vanishing gradient problem, where the derivative value gradually becomes almost
trivial. In response to this problem, the ResNet model refers to the VGG-19 network and
adds the residual unit by using two types of shortcut connections (identity shortcut and
projection shortcut). Therefore, ResNet solves the gradient degradation problem of deep
neural networks by using residual learning, allowing researchers to train deeper networks.
Unfortunately, ResNet models contain a large number of parameters and memory space;
thus, they require a lot of training time.

MobileNet-V2: The main idea of MobileNet-V2 models is the depth-wise separable
convolution, which is a factorized convolution including two smaller operations: depthwise
convolution (i.e., different convolution kernels are used for each input channel) and point-
wise convolution (i.e., 1 × 1 convolution kernel). The MobileNet-V2 model remarkably
reduces the amount of computation and trainable parameters. Therefore, MobileNet-V2 is
preferred for running on edge devices.

Table 1 summarizes existing deep AI models for object classification using computer
vision techniques. In [11], a four-layer deep convolutional neural network (CNN) model
was created to detect obstacles in complex scenes. Cross street pictures and sunny street
pictures were used for training and testing, respectively. Testing accuracy of 80% was
reported in [11]. Later, researchers conducted image-based obstacle classification with
advanced deep learning in 2018. In [12], the VGG-16 model was employed, which contains
13 convolutional layers, 3 fully connected layers, a global averaging 2D pooling layer, and
a dense layer of 1024 hidden nodes. Experiments were performed to train the VGG-16
model for binary object classification (obstacle or non-obstacle). The reported overall test
accuracy is around 86%. Unfortunately, even though [11,12] achieved good classification
accuracy, they require at least 1 GB of memory space, which is cost-prohibitive in resource-
constrained robot vacuums. In [13], the AI model of ResNet-34 was chosen for garbage

AI 2022, 3 183

recognition on grass. Since ResNet is more memory efficient, it occupies 172 MB of memory
space and the authors claimed 96% accuracy in practical testing. In [14], researchers
proposed a 16-layer deep CNN model to classify food litters on tables into two categories
(solid or liquid). To reduce the number of trainable parameters as well as the memory
size, the authors excluded the use of fully connected layers. As a result, memory usage
dropped to 128.5 MB while maintaining a high classification accuracy of 96%. Recently, the
researchers in [15–17] proposed to adopt the MobileNet-V2 model [18,19] for indoor trash
classification. The reported classification accuracy reached 93%, and the memory size is
only 18.8 MB. To date, the MobileNet-V2 model consumes the least amount of memory and
achieves comparable classification accuracy.

Table 1. Summary of existing deep AI models for classification of indoor litters by robot vacuums.

Existing
Work Year AI Model for Object

Classification
Weight

Quantization
Reported
Accuracy

Memory
Usage

[11] 2013 4-layer Deep CNN No 80% 2.1 GB
[12] 2018 VGG-16 No 86% 1.3 GB
[13] 2018 ResNet-34 No 96% 172 MB
[14] 2020 16-layer Deep CNN No 96% 128.5 MB

[15–17] 2020 MobileNet-V2 No 93% 18.8 MB

3. Proposed Weight-Quantized SqueezeNet
3.1. SqueezeNet Overview

SqueezeNet is a lightweight and efficient CNN model [20]. As SqueezeNet is mainly
used in an embedded environment, it involves several methods of model compression. For
example, many 3 × 3 convolution kernels in SqueezeNet are replaced by 1 × 1 convolution
kernels. Using this approach, the number of parameters for one convolution operation is
reduced by a factor of 9. In addition, the number of 3 × 3 convolution kernels is reduced
and downsampling is delayed in the network layers of SqueezeNet. As a result, SqueezeNet
reduces the number of trainable parameters and the computational effort of the entire work.
Thus, it is potentially viable to deploy SqueezeNet in memory-limited hardware devices.

Table 2 summarizes the number of parameters in these potential deep AI models.
Comparing with these existing state-of-the-art AI models in Section 2, we found that
SqueezeNet has the smallest number of parameters; thus, it is a good choice for robot
vacuum applications. Unfortunately, the model size of SqueezeNet (i.e., 6.1 MB) is still
larger than the memory space available in typical robot vacuums. Therefore, model
compression techniques will be used to further reduce the model size. Next, we will
introduce two types of weight quantization techniques.

Table 2. Comparison of the number of parameters in these potential deep AI models.

Deep AI Model Number of Parameters Model Size Comments

4-layer Deep CNN [11] 268,478,206 2.1 GB
SqueezeNet is a good
candidate due to its

smallest number
of parameters

VGG-16 [12] 165,726,018 1.3 GB
ResNet-34 [13] 21,301,810 172 MB

16-layer Deep CNN [14] 16,055,077 128.5 MB
MobileNet-V2 [15–17] 2,260,546 18.8 MB

SqueezeNet 723,534 6.1 MB

3.2. Weight Quantization Techniques

In order to ensure the high accuracy of deep learning models running on resource-
constrained hardware platforms, researchers have started to study AI model compression.
According to [21,22], the common model compression approaches include the following:
network pruning [23], weight factorization [24], quantization [25], and weight sharing [26].
Based on some pruning criteria or thresholds, network pruning attempts to identify and

AI 2022, 3 184

remove unimportant neurons from a neural network. As a result, the number of neural
connections is reduced, and the network becomes sparser. Efficient network pruning results
in compact network architectures, fewer computing operations, and less memory space for
parameter storage. Weight factorization is a mathematical technique for matrix compression,
which is similar to the dimension reduction in vectors. The idea is to apply low-rank
approximation to weights of a network layer, for which its weight matrix is factorized into
a product of two smaller matrices. Only important weights of the decomposed matrices
are stored. However, in deep neural networks, the time cost and workload of decomposing
weight matrices are large overheads. The idea of weight quantization is to replace high-
precision weights with low-precision weights without changing network architectures.
Thus, approximate weights are used for a compressed representation. As perfect weight
precision is scarified for low memory space, there is a trade-off between weight quantization
and loss of accuracy. Weight sharing tends to reuse the same weights in certain locations of
a neural network, rather than training a huge number of weight parameters. This technique
saves massive computational costs by reducing the number of weights that must be trained.

In this paper, we investigate using the quantization technique for AI model compres-
sion [27]. Generally speaking, weight parameters in a format of 32-bit floating-point are
used during model training and inference. However, in practical commercial applications,
due to a large number of network layers and trainable parameters, inference and prediction
require a large amount of computation, resulting in low inference efficiency. Weight quanti-
zation converts weight parameters in the format of 32-bit floating points to 8-bit integer
points. In this manner, it reduces the overhead of memory and storage. At the same time, it
may improve the efficiency of prediction. The challenge of weight quantization is how to
make a trade-off between model compression and loss of accuracy. Figure 1 illustrates the
difference between convolutions without/with weight quantization, respectively. In this
work, we implement both weight quantization techniques on the SqueezeNet model.

AI 2022, 3, FOR PEER REVIEW 5 of 14

network pruning [23], weight factorization [24], quantization [25], and weight sharing
[26]. Based on some pruning criteria or thresholds, network pruning attempts to identify
and remove unimportant neurons from a neural network. As a result, the number of neu-
ral connections is reduced, and the network becomes sparser. Efficient network pruning
results in compact network architectures, fewer computing operations, and less memory
space for parameter storage. Weight factorization is a mathematical technique for matrix
compression, which is similar to the dimension reduction in vectors. The idea is to apply
low-rank approximation to weights of a network layer, for which its weight matrix is fac-
torized into a product of two smaller matrices. Only important weights of the decomposed
matrices are stored. However, in deep neural networks, the time cost and workload of
decomposing weight matrices are large overheads. The idea of weight quantization is to
replace high-precision weights with low-precision weights without changing network ar-
chitectures. Thus, approximate weights are used for a compressed representation. As per-
fect weight precision is scarified for low memory space, there is a trade-off between
weight quantization and loss of accuracy. Weight sharing tends to reuse the same weights
in certain locations of a neural network, rather than training a huge number of weight
parameters. This technique saves massive computational costs by reducing the number of
weights that must be trained.

In this paper, we investigate using the quantization technique for AI model compres-
sion [27]. Generally speaking, weight parameters in a format of 32-bit floating-point are
used during model training and inference. However, in practical commercial applications,
due to a large number of network layers and trainable parameters, inference and predic-
tion require a large amount of computation, resulting in low inference efficiency. Weight
quantization converts weight parameters in the format of 32-bit floating points to 8-bit
integer points. In this manner, it reduces the overhead of memory and storage. At the
same time, it may improve the efficiency of prediction. The challenge of weight quantiza-
tion is how to make a trade-off between model compression and loss of accuracy. Figure
1 illustrates the difference between convolutions without/with weight quantization, re-
spectively. In this work, we implement both weight quantization techniques on the
SqueezeNet model.

Figure 1. (a) Convolution without quantization, (b) convolution with post-training weight quanti-
zation, and (c) convolution with quantization-aware weight training.

Post-training weight quantization [28,29]: Post-training refers to the quantization op-
eration after the 32-bit floating-point model training has converged. Post-training weight
quantization is a simple-to-use technique that quantization can be accomplished with a
quantization tool such as TensorFlow Lite Converter [30]. As shown in Figure 1b, weight
parameters in convolution operation are represented in the 8-bit fixed-point format, which

Input

Convolution

Weights
(float)

+
biases

ReLU

Output
(float)

(a)

Quantized
Weights
(8-bit)

(b)

Input

Convolution

+
biases

ReLU

Output
(float)

Fake_Quantized
Weights (8-bit)

(c)

Input

Convolution

+
biases

ReLU

Fake_Quantized_
Activation

Weights
(float)

Output
(float)

Figure 1. (a) Convolution without quantization, (b) convolution with post-training weight quantiza-
tion, and (c) convolution with quantization-aware weight training.

Post-training weight quantization [28,29]: Post-training refers to the quantization
operation after the 32-bit floating-point model training has converged. Post-training weight
quantization is a simple-to-use technique that quantization can be accomplished with a
quantization tool such as TensorFlow Lite Converter [30]. As shown in Figure 1b, weight
parameters in convolution operation are represented in the 8-bit fixed-point format, which
is highly efficient during inference. The disadvantage of post-training weight quantization
is that the performance of quantized models can sometimes drop significantly.

AI 2022, 3 185

Quantization-aware weight training [31]: Quantization-aware training refers to the
quantization of 32-bit floating-point models during training. Because quantization-aware
weight training suffers less quantization loss, its accuracy drops less than post-training
weight quantization. As shown in Figure 1c, fake quantization is applied to floating weights.
Then, fake-quantized 8-bit weights are used in convolution operations. Once quantization-
aware training is complete, floating-point models will be converted to 8-bit quantized
models using the information stored during fake quantization.

In addition to reducing the amount of data that needs to be stored, model weight
quantization also helps to significantly decrease inference time and required computational
resources [32–34]. For example, it has been reported in [33] that inference time is shortened
by 2.45 times for a quantized ResNet-50 model with 8-bit integer weights. Hardware cost
reduction and energy-saving results have been presented in [34], from which we select the
adder and multiplier results and plot them in Figure 2. It is clear that using 8-bit integer
quantization to 32-bit floating-point weights results in one or two orders of magnitude area
or energy savings. These features are attractive for AI model implementation in low-end
processors or microcontrollers.

AI 2022, 3, FOR PEER REVIEW 6 of 14

is highly efficient during inference. The disadvantage of post-training weight quantization
is that the performance of quantized models can sometimes drop significantly.

Quantization-aware weight training [31]: Quantization-aware training refers to the
quantization of 32-bit floating-point models during training. Because quantization-aware
weight training suffers less quantization loss, its accuracy drops less than post-training
weight quantization. As shown in Figure 1c, fake quantization is applied to floating
weights. Then, fake-quantized 8-bit weights are used in convolution operations. Once
quantization-aware training is complete, floating-point models will be converted to 8-bit
quantized models using the information stored during fake quantization.

In addition to reducing the amount of data that needs to be stored, model weight
quantization also helps to significantly decrease inference time and required computa-
tional resources [32–34]. For example, it has been reported in [33] that inference time is
shortened by 2.45 times for a quantized ResNet-50 model with 8-bit integer weights. Hard-
ware cost reduction and energy-saving results have been presented in [34], from which
we select the adder and multiplier results and plot them in Figure 2. It is clear that using
8-bit integer quantization to 32-bit floating-point weights results in one or two orders of
magnitude area or energy savings. These features are attractive for AI model implemen-
tation in low-end processors or microcontrollers.

Figure 2. Energy saving vs. hardware resource reduction.

4. Experiments and Discussion
4.1. Datasets Generation and Annotation

We generate a dataset from videos or pictures captured by built-in cameras of robot
vacuums. Each video file was first converted into a sequence of images. Then, each image
frame was saved as a separate picture. These videos and pictures were taken from the
dining rooms, kitchen rooms, and living rooms of different houses in various lighting
conditions. In this manner, data diversity in complex indoor scenes is enhanced. As a good
dataset should have balanced and uniform data distribution, our dataset is randomly di-
vided into 70% for the training set, 15% for the validation set, and 15% for the testing set,
as listed in Table 3. The training and validation sets were used for training, tuning, and
the evaluation of AI models, while the testing set was used to estimate the final classifica-
tion accuracy once the training process is completed. The total number of samples in our
dataset is 20,000, which are labeled into two categories: cleanable and noncleanable. To
increase dataset diversity and generalization, data augmentation techniques were used to
reduce model overfitting [35,36].

Figure 2. Energy saving vs. hardware resource reduction.

4. Experiments and Discussion
4.1. Datasets Generation and Annotation

We generate a dataset from videos or pictures captured by built-in cameras of robot
vacuums. Each video file was first converted into a sequence of images. Then, each image
frame was saved as a separate picture. These videos and pictures were taken from the
dining rooms, kitchen rooms, and living rooms of different houses in various lighting
conditions. In this manner, data diversity in complex indoor scenes is enhanced. As a
good dataset should have balanced and uniform data distribution, our dataset is randomly
divided into 70% for the training set, 15% for the validation set, and 15% for the testing set,
as listed in Table 3. The training and validation sets were used for training, tuning, and the
evaluation of AI models, while the testing set was used to estimate the final classification
accuracy once the training process is completed. The total number of samples in our dataset
is 20,000, which are labeled into two categories: cleanable and noncleanable. To increase
dataset diversity and generalization, data augmentation techniques were used to reduce
model overfitting [35,36].

Table 3. Sample numbers and percentages of three subsets in our dataset.

Subset Number of Samples Percentage

Training Set 14,000 70%
Validation Set 3000 15%

Testing Set 3000 15%

AI 2022, 3 186

In general, indoor objects larger than 2 cm are classified as noncleanable obstacles.
Therefore, robot vacuums will avoid vacuuming any objects larger than 2 cm. Table 4 shows
examples of indoor cleanable litters and noncleanable obstacles in our dataset. Cleanable
litters in these captured images include rice, sunflower seed shell, soybean, red bean,
millet, cat litter, dog litter, etc. Noncleanable obstacles in our dataset include power cords,
keychains, shoes, socks, pet feces, kid’s toys, oil bottles, power strips, etc. Figures 3 and 4
show the examples of images samples in our dataset. It is clear that the viewing angle of
these built-in cameras is different from that of human beings.

Table 4. Examples of indoor cleanable litters and noncleanable obstacles in our dataset.

Cleanable Litters Noncleanable Obstacles

Rice Power cords
Sunflower seed shell Keychains

Soybean Shoes
Red bean Socks

Millet Pet feces
Cat Litter Kids’ toys
Cat food Oil bottle
Dog food Power strip

AI 2022, 3, FOR PEER REVIEW 7 of 14

Table 3. Sample numbers and percentages of three subsets in our dataset.

Subset Number of Samples Percentage
Training Set 14,000 70%

Validation Set 3000 15%
Testing Set 3000 15%

In general, indoor objects larger than 2 cm are classified as noncleanable obstacles.
Therefore, robot vacuums will avoid vacuuming any objects larger than 2 cm. Table 4
shows examples of indoor cleanable litters and noncleanable obstacles in our dataset.
Cleanable litters in these captured images include rice, sunflower seed shell, soybean, red
bean, millet, cat litter, dog litter, etc. Noncleanable obstacles in our dataset include power
cords, keychains, shoes, socks, pet feces, kid’s toys, oil bottles, power strips, etc. Figures 3
and 4 show the examples of images samples in our dataset. It is clear that the viewing
angle of these built-in cameras is different from that of human beings.

Table 4. Examples of indoor cleanable litters and noncleanable obstacles in our dataset.

Cleanable Litters Noncleanable Obstacles
Rice Power cords

Sunflower seed shell Keychains
Soybean Shoes
Red bean Socks

Millet Pet feces
Cat Litter Kids’ toys
Cat food Oil bottle
Dog food Power strip

Figure 3. Several images of indoor cleanable litters such as rice, sunflower seed shell, soybean, red
bean, millet, cat litter, and cat food.
Figure 3. Several images of indoor cleanable litters such as rice, sunflower seed shell, soybean, red
bean, millet, cat litter, and cat food.

AI 2022, 3 187AI 2022, 3, FOR PEER REVIEW 8 of 14

Figure 4. Several examples of images of indoor noncleanable hazardous obstacles such as shoes,
kids’ toys, power strips, power cords, pet feces, and oil bottles.

4.2. Experimental Environment Setup
Python and TensorFlow were used in this work for experimental study. As a concise

and practical programming language, Python has been loved by AI experts and program-
mers. TensorFlow is an open-source software platform for machine learning [37], running
on a machine with eight Intel Core CPUs @2.60 GHz, four NVIDIA TITAN XP GPUs, and
12 GB video memory. This machine was built by NVIDIA in Santa Clara, CA, USA. Ub-
untu 20.4, TensorFlow 2, and Python 3.7 were installed on this machine at Southern Illi-
nois University Carbondale, Illinois, USA. Figure 5a shows AI training and evaluation
processes without weight quantization. This training process is adopted in prior works
[8–14]. In contrast, Figure 5b,c show AI model training and evaluation processes when
weight quantization techniques were applied [38,39].

Training
with SGD

Evaluation with
Testing Set

AI algorithm

Training and
Validation Sets

Trained AI
model

Classification
Accuracy

Training
with SGD

AI algorithm

Training and
Validation Sets

Trained AI
model

Weight Post-
Quantization

Quantized
Trained AI

model
Evaluation with

Testing Set
Classification

Accuracy

(a) AI algorithm training and test process without weight quantization

(b) AI algorithm training and test process with weight post-quantization

Training
with SGD

AI
algorithm

Training and
Validation Sets

Evaluation with
Testing Set

Classification
Accuracy

(c) AI algorithm with quantization-aware training and test process

Quantized AI
model

Weight
Quantization Quantized

Trained AI
model

Figure 4. Several examples of images of indoor noncleanable hazardous obstacles such as shoes, kids’
toys, power strips, power cords, pet feces, and oil bottles.

4.2. Experimental Environment Setup

Python and TensorFlow were used in this work for experimental study. As a concise
and practical programming language, Python has been loved by AI experts and program-
mers. TensorFlow is an open-source software platform for machine learning [37], running
on a machine with eight Intel Core CPUs @2.60 GHz, four NVIDIA TITAN XP GPUs, and
12 GB video memory. This machine was built by NVIDIA in Santa Clara, CA, USA. Ubuntu
20.4, TensorFlow 2, and Python 3.7 were installed on this machine at Southern Illinois
University Carbondale, Illinois, USA. Figure 5a shows AI training and evaluation pro-
cesses without weight quantization. This training process is adopted in prior works [8–14].
In contrast, Figure 5b,c show AI model training and evaluation processes when weight
quantization techniques were applied [38,39].

AI 2022, 3, FOR PEER REVIEW 8 of 14

Figure 4. Several examples of images of indoor noncleanable hazardous obstacles such as shoes,
kids’ toys, power strips, power cords, pet feces, and oil bottles.

4.2. Experimental Environment Setup
Python and TensorFlow were used in this work for experimental study. As a concise

and practical programming language, Python has been loved by AI experts and program-
mers. TensorFlow is an open-source software platform for machine learning [37], running
on a machine with eight Intel Core CPUs @2.60 GHz, four NVIDIA TITAN XP GPUs, and
12 GB video memory. This machine was built by NVIDIA in Santa Clara, CA, USA. Ub-
untu 20.4, TensorFlow 2, and Python 3.7 were installed on this machine at Southern Illi-
nois University Carbondale, Illinois, USA. Figure 5a shows AI training and evaluation
processes without weight quantization. This training process is adopted in prior works
[8–14]. In contrast, Figure 5b,c show AI model training and evaluation processes when
weight quantization techniques were applied [38,39].

Training
with SGD

Evaluation with
Testing Set

AI algorithm

Training and
Validation Sets

Trained AI
model

Classification
Accuracy

Training
with SGD

AI algorithm

Training and
Validation Sets

Trained AI
model

Weight Post-
Quantization

Quantized
Trained AI

model
Evaluation with

Testing Set
Classification

Accuracy

(a) AI algorithm training and test process without weight quantization

(b) AI algorithm training and test process with weight post-quantization

Training
with SGD

AI
algorithm

Training and
Validation Sets

Evaluation with
Testing Set

Classification
Accuracy

(c) AI algorithm with quantization-aware training and test process

Quantized AI
model

Weight
Quantization Quantized

Trained AI
model

Figure 5. (a) AI model training and evaluation process without weight quantization, (b) AI model
training and evaluation process with post-training weight quantization, and (c) quantization-aware
AI model training and evaluation.

AI 2022, 3 188

5. Experimental Results and Discussion

In this work, instead of implementing our model in a real vacuum cleaner, we use
NVIDIA GPUs to train and test the performance of our proposed AI model. This is because
although vacuum cleaners are used to collect images and videos for our dataset, we do
not know the details of how to professionally disassemble vacuum cleaners and how
to integrate the AI model we trained into the processors or microcontrollers of vacuum
cleaners. In order to implement our model in vacuum cleaners for field experimental
testing, technical support from vacuum cleaner manufacturers is required. Unfortunately,
in this work, we have not received such technical support yet.

In our experiment, all weights of the AI models are trained by the SGD optimizer [40],
which helps to minimize training loss by updating the weight parameters in back-propagation.
The learning rate is configured as an exponential decay function, where the learning rate
gradually decays from an initial value of the learning rate. The initial learning rate and the
decay rate are set to 0.001 and 10−6, respectively. The epoch number is set to 200, which has
been proved to be enough for the experiments to converge well. Due to the limitation of
computational resources, we used a mini-batch size of 64 for SqueezeNet. The source codes
and trained models can be downloaded from Google Drive. The link is as follows: https:
//drive.google.com/drive/folders/1N8QsH2HirWTLyiK3ltWFtNaU_d9SaSXW (accessed
on 13 February 2022).

The main reference works [11–17] use their own datasets, most of which are not from
a ground-view perspective, for model training and validation. Therefore, in this work,
for a fair comparison, we conducted experiments on the same dataset we constructed to
evaluate these AI models and our proposed model. Table 5 lists information on the number
of parameters, model size, and test classification accuracy of these deep AI models without
any weight quantization techniques. We can see that the SqueezeNet model comprises
a minimal number of parameters; hence, the smallest model size that is only 6.1 MB.
Compared with these existing AI models [11–17], the SqueezeNet model can reduce the
memory footprint by at least 87%, while achieving a comparable test classification accuracy
of around 93%. As mentioned earlier, for cost reasons, robot vacuum manufacturers need
to develop memory-efficient AI models for resource-constrained hardware devices such
as low-end processors or microcontrollers. Despite the significant memory reduction,
this memory footprint of 6.1 MB in the SqueezeNet model still exceeds what a typical
microcontroller or low-end processor can provide.

Table 5. Size and accuracy comparison of potential deep AI models without any weight quantization.

Deep AI Model Model Size Test Classification Accuracy Comments

4-layer Deep CNN [11] 2.1 GB 90.2%
SqueezeNet achieves a

comparable classification
accuracy with the least
amount of model size

VGG-16 [12] 1.3 GB 94.4%
ResNet-34 [13] 172 MB 93.1%

16-layer Deep CNN [14] 128.5 MB 93.7%
MobileNet-V2 [15–17] 18.8 MB 93.9%

SqueezeNet (this work) 6.1 MB 93.2%

Experiments were performed to check the AI model’s performance after using the
post-training weight quantization technique. Table 6 shows the model size, size reduction
percentage, and test classification accuracy, respectively. We can see that the post-training
weight quantization results in a size reduction of about 87%. Furthermore, the test accuracy
of SqueezeNet is 93.2%, which is the same as that of the SqueezeNet model without weight
quantization. These results indicate that, without any accuracy degradation, post-training
weight quantization reduces the size of our deep AI model by 87% (from 6.1 MB to 0.8 MB).
As the quantized SqueezeNet model is 0.8 MB in size, it has the great potential to run
smoothly on resource-constrained robot vacuums.

https://drive.google.com/drive/folders/1N8QsH2HirWTLyiK3ltWFtNaU_d9SaSXW
https://drive.google.com/drive/folders/1N8QsH2HirWTLyiK3ltWFtNaU_d9SaSXW

AI 2022, 3 189

Table 6. Size and accuracy comparison of potential deep AI models with post-training weight
quantization.

Deep AI Model Model Size Size Reduction % Test Classification Accuracy Comments

4-layer Deep CNN [11] 268.5 MB 87% 90.5% Post-training weight
quantization reduces
model size by ~87%
with negligible loss

in accuracy

VGG-16 [12] 165.9 MB 87% 94.1%
ResNet-34 [13] 21.8 MB 87% 93.1%

16-layer Deep CNN [14] 16.1 MB 87% 93.9%
MobileNet-V2 [15–17] 2.6 MB 86% 93.9%

SqueezeNet (this work) 0.8 MB 87% 93.2%

Figure 6 plots four simulation curves of training loss, validation loss, training accuracy,
and validation accuracy when post-training weight quantization was applied to our pro-
posed SqueezeNet model. A good fit was observed because the training and validation loss
curves decreased to a point and no longer started to increase. Training accuracy stabilizes
at around 99%, while validation accuracy remains around 93%.

AI 2022, 3, FOR PEER REVIEW 10 of 14

weight quantization. These results indicate that, without any accuracy degradation, post-
training weight quantization reduces the size of our deep AI model by 87% (from 6.1 MB
to 0.8 MB). As the quantized SqueezeNet model is 0.8 MB in size, it has the great potential
to run smoothly on resource-constrained robot vacuums.

Table 6. Size and accuracy comparison of potential deep AI models with post-training weight quan-
tization.

Deep AI Model Model Size Size Reduction % Test Classification Accuracy Comments
4-layer Deep CNN [11] 268.5 MB 87% 90.5%

Post-training weight
quantization reduces
model size by ~87%

with negligible loss in
accuracy

VGG-16 [12] 165.9 MB 87% 94.1%
ResNet-34 [13] 21.8 MB 87% 93.1%

16-layer Deep CNN [14] 16.1 MB 87% 93.9%
MobileNet-V2 [15–17] 2.6 MB 86% 93.9%

SqueezeNet (this work) 0.8 MB 87% 93.2%

Figure 6 plots four simulation curves of training loss, validation loss, training accu-
racy, and validation accuracy when post-training weight quantization was applied to our
proposed SqueezeNet model. A good fit was observed because the training and validation
loss curves decreased to a point and no longer started to increase. Training accuracy sta-
bilizes at around 99%, while validation accuracy remains around 93%.

Figure 6. Simulation results of our proposed SqueezeNet model with post-training weight quanti-
zation.

Experiments were also performed to check the AI model’s performance with the
quantization-aware training technique. Table 7 shows the model size, size reduction per-
centage, and test classification accuracy, respectively. Similar to Table 6, we can see that
quantization-aware training results in an 87% reduction in size, and the quantized
SqueezeNet model is 0.8 MB in size. The test accuracy of SqueezeNet is 92.9%, which is
0.3% lower than using the post-training weight quantization technique. Figure 7 plots four
simulation curves of training loss, validation loss, training accuracy, and validation accu-
racy when quantization-aware training is applied to the SqueezeNet model.

Figure 6. Simulation results of our proposed SqueezeNet model with post-training weight quantization.

Experiments were also performed to check the AI model’s performance with the
quantization-aware training technique. Table 7 shows the model size, size reduction
percentage, and test classification accuracy, respectively. Similar to Table 6, we can see
that quantization-aware training results in an 87% reduction in size, and the quantized
SqueezeNet model is 0.8 MB in size. The test accuracy of SqueezeNet is 92.9%, which is
0.3% lower than using the post-training weight quantization technique. Figure 7 plots
four simulation curves of training loss, validation loss, training accuracy, and validation
accuracy when quantization-aware training is applied to the SqueezeNet model.

Table 7. Size and accuracy comparison of potential deep AI models with quantization-aware training.

Deep AI Model Model Size Size Reduction % Test Classification Accuracy Comments

4-layer Deep CNN [11] 268.5 MB 87% 90.1% Quantization-aware
training weight reduces

model size by ~87%
with negligible loss

in accuracy

VGG-16 [12] 165.9 MB 87% 94.7%
ResNet-34 [13] 21.8 MB 87% 93.4%

16-layer Deep CNN [14] 16.1 MB 87% 94.4%
MobileNet-V2 [15–17] 2.6 MB 86% 93.3%

SqueezeNet (this work) 0.8 MB 87% 92.9%

Confusion matrix, also known as error matrix, is used to calculate the evaluation
metrics of classifiers in machine learning. For the prediction result of a classifier, a confusion
matrix is drawn as below. Each row of the table represents the predicted category, and

AI 2022, 3 190

each column represents the actual category. Table 8 provides four types of values for
true positive (TP), false positive (FP), false negative (FN), and true negative (TN). Since
sensitivity refers to the proportion of model prediction as 1 and to all observations as 1, it is
calculated as TP/(TP + FN). Since specificity refers to the proportion of model prediction
as 0 and to all observations as 0, it is calculated as TN/(TN + FP). Table 7 shows that our
SqueezeNet model achieves better performance in sensitivity and specificity.

AI 2022, 3, FOR PEER REVIEW 11 of 14

Table 7. Size and accuracy comparison of potential deep AI models with quantization-aware train-
ing.

Deep AI Model Model Size Size Reduction % Test Classification Accuracy Comments
4-layer Deep CNN [11] 268.5 MB 87% 90.1%

Quantization-aware
training weight reduces

model size by ~87%
with negligible loss in

accuracy

VGG-16 [12] 165.9 MB 87% 94.7%
ResNet-34 [13] 21.8 MB 87% 93.4%

16-layer Deep CNN [14] 16.1 MB 87% 94.4%
MobileNet-V2 [15–17] 2.6 MB 86% 93.3%

SqueezeNet (this work) 0.8 MB 87% 92.9%

Figure 7. Simulation results of our proposed SqueezeNet model with quantization-aware training.

Confusion matrix, also known as error matrix, is used to calculate the evaluation met-
rics of classifiers in machine learning. For the prediction result of a classifier, a confusion
matrix is drawn as below. Each row of the table represents the predicted category, and
each column represents the actual category. Table 8 provides four types of values for true
positive (TP), false positive (FP), false negative (FN), and true negative (TN). Since sensi-
tivity refers to the proportion of model prediction as 1 and to all observations as 1, it is
calculated as TP/(TP + FN). Since specificity refers to the proportion of model prediction
as 0 and to all observations as 0, it is calculated as TN/(TN + FP). Table 7 shows that our
SqueezeNet model achieves better performance in sensitivity and specificity.

Table 8. Confusion matrix comparison with existing AI models with post-training weight quanti-
zation on our dataset.

4-Layer Deep CNN [11] Negative (Predicted) Positive (Predicted)
Negative (actual) TN = 0.82 FP = 0.18
Positive (actual) FN = 0.06 TP = 0.94

VGG-16 [12]
Negative (actual) TN = 0.92 FP = 0.08
Positive (actual) FN = 0.04 TP = 0.96
ResNet-34 [13]

Negative (actual) TN = 0.9 FP = 0.1
Positive (actual) FN = 0.05 TP = 0.95

16-layer Deep CNN [14]
Negative (actual) TN = 0.89 FP = 0.11
Positive (actual) FN = 0.04 TP = 0.96

MobileNetV2 [15–17]
Negative (actual) TN = 0.88 FP = 0.12

Figure 7. Simulation results of our proposed SqueezeNet model with quantization-aware training.

Table 8. Confusion matrix comparison with existing AI models with post-training weight quantiza-
tion on our dataset.

4-Layer Deep CNN [11] Negative (Predicted) Positive (Predicted)

Negative (actual) TN = 0.82 FP = 0.18
Positive (actual) FN = 0.06 TP = 0.94

VGG-16 [12]

Negative (actual) TN = 0.92 FP = 0.08
Positive (actual) FN = 0.04 TP = 0.96

ResNet-34 [13]

Negative (actual) TN = 0.9 FP = 0.1
Positive (actual) FN = 0.05 TP = 0.95

16-layer Deep CNN [14]

Negative (actual) TN = 0.89 FP = 0.11
Positive (actual) FN = 0.04 TP = 0.96

MobileNetV2 [15–17]

Negative (actual) TN = 0.88 FP = 0.12
Positive (actual) FN = 0.03 TP = 0.97

SqueezeNet (This work)

Negative (actual) TN = 0.93 FP = 0.07
Positive (actual) FN = 0.07 TP = 0.93

To conduct a comprehensive comparison, Table 9 summarizes the performance metrics
of the references [11–17] and this work. None of these previous works [11–17] used weight
quantization for model size reduction. Regarding the proposed SqueezeNet model, because
the weight quantization result in Table 5 is better than that in Table 6, we prefer to choose the
post-training weight quantization technique. The values of test accuracy and memory usage
are plotted in Figure 8 for visualization. Compared with the state-of-the-art references [15–17],
this work reduces the memory footprint by at least 22.5 times with a test accuracy drop of
0.7%. These results demonstrate the advantages of this work. Compared to the state-of-the-

AI 2022, 3 191

art design with the highest classification accuracy, our proposed model achieves a memory
reduction of approximately 1625 times with a slight 1.2% drop in accuracy. These results
demonstrate the advantages of our proposed AI model.

Table 9. Comparison of this work with existing AI Models when running experiments on our
developed dataset.

Existing Work Year AI Model for Object
Classification Weight Quantization Test Accuracy Memory Usage

[11] 2013 4-layer Deep CNN No 90.2% 2.1 GB
[12] 2018 VGG-16 No 94.4% 1.3 GB
[13] 2018 ResNet-34 No 93.1% 172 MB
[14] 2020 16-layer Deep CNN No 93.7% 128.5 MB

[15–17]] 2020 MobileNet-V2 No 93.9% 18.8 MB
This work 2022 SqueezeNet Post-training weight quantization 93.2% 0.8 MB

AI 2022, 3, FOR PEER REVIEW 12 of 14

Positive (actual) FN = 0.03 TP = 0.97
SqueezeNet (This work)

Negative (actual) TN = 0.93 FP = 0.07
Positive (actual) FN = 0.07 TP = 0.93

To conduct a comprehensive comparison, Table 9 summarizes the performance met-
rics of the references [11–17] and this work. None of these previous works [11–17] used
weight quantization for model size reduction. Regarding the proposed SqueezeNet
model, because the weight quantization result in Table 5 is better than that in Table 6, we
prefer to choose the post-training weight quantization technique. The values of test accu-
racy and memory usage are plotted in Figure 8 for visualization. Compared with the state-
of-the-art references [15–17], this work reduces the memory footprint by at least 22.5 times
with a test accuracy drop of 0.7%. These results demonstrate the advantages of this work.
Compared to the state-of-the-art design with the highest classification accuracy, our pro-
posed model achieves a memory reduction of approximately 1625 times with a slight 1.2%
drop in accuracy. These results demonstrate the advantages of our proposed AI model.

Table 9. Comparison of this work with existing AI Models when running experiments on our de-
veloped dataset.

Existing
Work

Year AI Model for Object
Classification

Weight Quantization Test Accuracy Memory
Usage

[11] 2013 4-layer Deep CNN No 90.2% 2.1 GB
[12] 2018 VGG-16 No 94.4% 1.3 GB
[13] 2018 ResNet-34 No 93.1% 172 MB
[14] 2020 16-layer Deep CNN No 93.7% 128.5 MB

[15–17]] 2020 MobileNet-V2 No 93.9% 18.8 MB

This work 2022 SqueezeNet Post-training weight
quantization

93.2% 0.8 MB

Figure 8. Performance comparison of test accuracy vs. memory footprint between this work and the
existing state-of-the-art works [11–17] in the literature.

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (U

ni
t:

%
)

Figure 8. Performance comparison of test accuracy vs. memory footprint between this work and the
existing state-of-the-art works [11–17] in the literature.

6. Conclusions

In this work, we propose a weight-quantized SqueezeNet model for robot vacu-
ums. This AI model can accurately classify indoor cleanable litters from noncleanable
hazardous obstacles, based on the image or video captures from robot vacuums. We col-
lect 20,000 ground-perspective images and use them to construct a diverse dataset. Both
techniques of post-training weight quantization and quantization-aware training are imple-
mented and evaluated. Experimental results show that the proposed deep AI model can
achieve an object classification accuracy of around 93%, which is comparable to the accuracy
of state-of-the-art works, while reducing the memory footprint at least 22.5 times. More
importantly, the memory footprint required by our AI model is only 0.8 MB, indicating that
this model can run smoothly on resource-constrained robot vacuums.

This work involves two limitations. First, in this work, we only use weight quan-
tization to reduce memory footprint. It is highly attractive to combine multiple model
compression techniques. For example, after weight quantization, weight sharing can be
used to save only the unique values of quantized weights for each network layer. Network
pruning may be applied first to reduce the number of neural connections, followed by

AI 2022, 3 192

weight quantization to further reduce memory size. In the future, we will explore the use
of multiple model compression techniques on this research topic. Second, in this work,
instead of implementing our model in a real vacuum cleaner, we used NVIDIA GPUs
to train and test the performance of our proposed AI model. This is because although
vacuum cleaners are used to collect images and videos for our dataset, we do not know the
details of how to professionally disassemble vacuum cleaners and how to integrate the AI
model we trained into the processors or microcontrollers of vacuum cleaners. In order to
implement our model in vacuum cleaners for field experimental testing, technical support
from vacuum cleaner manufacturers is required. Unfortunately, in this work, we have
not received such technical support yet. In the future, we plan to contact several vacuum
cleaner manufacturers to see if they are interested in supporting our model implementation
and field testing.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Huang, Q.; Lu, C.; Chen, K. Smart Building Applications and Information System Hardware Co-Design. In Big Data Analytics for

Sensor-Network Collected Intelligence; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 225–240.
2. Huang, Q. Review: Energy-Efficient Smart Buildings Driven by Emerging Sensing, Communication, and Machine Learning

Technologies. Eng. Lett. 2018, 26, 320–332.
3. Huang, Q.; Hao, K. Development of CNN-based visual recognition air conditioner for smart buildings. J. Inf. Technol. Constr.

2020, 25, 361–373. [CrossRef]
4. Panchalingam, R.; Chan, K. A State-of-the-Art Review on Artificial Intelligence for Smart Buildings. Intell. Build. Int. 2021, 13,

203–226. [CrossRef]
5. Alanne, K.; Sierla, S. An Overview of Machine Learning Applications for Smart Buildings. Sustain. Cities Soc. 2022, 76, 103445.

[CrossRef]
6. Kang, M.; Kim, K.; Noh, D.; Han, J.; Ko, S. A Robust Obstacle Detection Method for Robotic Vacuum Cleaners. IEEE Trans.

Consum. Electron. 2014, 60, 587–595. [CrossRef]
7. Smith, A.; Anderson, J. AI, Robotics, and the Future of Jobs, Digital Life in 2025. Available online: https://www.pewresearch.org

(accessed on 13 February 2022).
8. Jayaram, R.; Dandge, R. Optimizing Cleaning Efficiency of Robotic Vacuum Cleaner. TATA ELXSI Report. Available online:

https://www.tataelxsi.com/ (accessed on 13 February 2022).
9. Lv, Y.; Fang, Y.; Chi, W.; Chen, G.; Sun, L. Object Detection for Sweeping Robots in Home Scenes (ODSR-HIS): A Novel Benchmark

Dataset. IEEE Access 2020, 9, 17820–17828. [CrossRef]
10. Ulrich, I.; Nourbakhsh, I. Appearance-based Obstacle Detection with Monocular Color Vision. Am. Assoc. Artif. Intell. 2020,

866–871.
11. Yu, H.; Hong, R.; Huang, X.; Wang, Z. Obstacle Detection with Deep Convolutional Neural Network. In Proceedings of the

International Symposium on Computational Intelligence and Design, Hangzhou, China, 28–29 October 2013; pp. 265–268.
12. Cornacchia, M.; Kakillioglu, B.; Zheng, Y.; Velipasalar, S. Deep Learning-Based Obstacle Detection and Classification with Portable

Unclibrated Patterned Light. IEEE Sens. J. 2018, 20, 8416–8425. [CrossRef]
13. Bai, J.; Lian, S.; Liu, Z.; Wang, K.; Liu, D. Deep Learning Based Robot for Automatically Picking up Garbage on the Grass. IEEE

Trans. Consum. Electron. 2018, 64, 382–389. [CrossRef]
14. Yin, J.; Apuroop, K.G.S.; Tamilselvam, Y.K.; Mohan, R.E.; Ramalingam, B.; Le, A.V. Table Cleaning Task by Human Support Robot

Using Deep Learning Technique. Sensors 2020, 20, 1698. [CrossRef]
15. Teng, T.; Veerajagadheswar, P.; Ramalingam, B.; Yin, J.; Mohan, R.; Gomez, F. Vision Based Wall Following Framework: A Case

Study with HSR Robot for Cleaning Application. Sensors 2020, 20, 3298. [CrossRef] [PubMed]
16. Ramalingam, B.; Lakshmanan, A.K.; Ilyas, M.; Le, A.V.; Elara, M.R. Cascaded Machine-Learning Technique for Debris Classifica-

tion in Floor-Cleaning Robot Application. Appl. Sci. 2018, 8, 2649. [CrossRef]
17. Bao, L.; Lv, C. Ecovacs Robotics: The AI Robotic Vacuum Cleaner Powered by TensorFlow. 2020. Available online: https:

//blog.tensorflow.org/2020/01/ecovacs-robotics-ai-robotic-vacuum.html (accessed on 13 February 2022).
18. Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

http://doi.org/10.36680/j.itcon.2020.021
http://doi.org/10.1080/17508975.2019.1613219
http://doi.org/10.1016/j.scs.2021.103445
http://doi.org/10.1109/TCE.2014.7027291
https://www.pewresearch.org
https://www.tataelxsi.com/
http://doi.org/10.1109/ACCESS.2021.3053546
http://doi.org/10.1109/JSEN.2018.2865306
http://doi.org/10.1109/TCE.2018.2859629
http://doi.org/10.3390/s20061698
http://doi.org/10.3390/s20113298
http://www.ncbi.nlm.nih.gov/pubmed/32531960
http://doi.org/10.3390/app8122649
https://blog.tensorflow.org/2020/01/ecovacs-robotics-ai-robotic-vacuum.html
https://blog.tensorflow.org/2020/01/ecovacs-robotics-ai-robotic-vacuum.html

AI 2022, 3 193

19. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear bottlenecks. In
Proceeding of the IEEE Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520.

20. Iandola, F.; Han, S.; Moskewicz, M.; Ashraf, K.; Dally, W.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50× Fewer
Parameters and <0.5 MB Model Size. arXiv 2016, arXiv:1602. 07360.

21. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. Model Compression and Acceleration for Deep Neural Networks: The Principles,
Progress, and Challenges. IEEE Signal Process. Mag. 2018, 35, 126–136. [CrossRef]

22. Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive
Survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]

23. Tang, Z.; Luo, L.; Xie, B.; Zhu, Y.; Zhao, R.; Bi, V.; Lu, C. Automatic Sparse Connectivity Learning for Neural Networks. IEEE
Trans. Neural Netw. Learn. Syst. 2022. [CrossRef]

24. Huang, T.; Zhao, R.; Bi, L.; Zhang, D.; Lu, C. Neural Embedding Singular Value Decomposition for Collaborative Filtering. IEEE
Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]

25. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.; Keutzer, K. A Survey of Quantization Methods for Efficient Neural Network
Inference. arXiv 2021, arXiv:2103.13630.

26. Roth, W.; Pernkopf, F. Bayesian Neural Networks with Weight Sharing Using Dirichlet Processes. IEEE Trans. Pattern Anal. Mach.
Intell. 2020, 42, 246–252. [CrossRef]

27. Krishnamoorthi, R. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper. arXiv 1806, arXiv:1806:08342.
28. Post-Training Quantization with TensorFlow. Available online: https://www.tensorflow.org/lite/performance/post_training_

quantization (accessed on 13 February 2022).
29. Huang, Q.; Hsieh, C.; Hsieh, J.; Liu, C. Memory-Efficient AI Algorithm for Infant Sleeping Death Syndrome Detection in Smart

Buildings. AI 2021, 2, 705–719. [CrossRef]
30. TensorFlow Lite Converter. Available online: https://www.tensorflow.org/lite/convert (accessed on 1 March 2022).
31. Quantization-Aware Training. Available online: https://blog.tensorflow.org/2020/04/quantization-aware-training-with-

tensorflow-model-optimization-toolkit.html (accessed on 13 February 2022).
32. Vanhoucke, V.; Senior, A.; Mao, M. Improving the Speed of Neural Networks on CPUs. In Proceedings of the Deep Learning and

Unsupervised Feature Learning Workshop—NIPS, Granada, Spain, 12–17 December 2011.
33. Kim, S.; Park, G.; Yi, Y. Performance Evaluation of INT8 Quantized Inference on Mobile GPUs. IEEE Access 2021, 9, 164245–164255.

[CrossRef]
34. Dally, W. High-Performance Hardware for Machine Learning. Tutor. NIPS 2015.
35. Gong, Z.; Zhong, P.; Hu, W. Diversity in Machine Learning. IEEE Access 2019, 7, 64323–64350. [CrossRef]
36. Zheng, J.; Lu, C.; Hao, C.; Chen, D.; Guo, D. Improving the Generalization Ability of Deep Neural Networks for Cross-Domain

Visual Recognition. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 607–620. [CrossRef]
37. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:

A System for Large-Scale Machine Learning. In Proceedings of the ACM USENIX Conference on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

38. Banner, R.; Hubara, I.; Hoffer, E.; Soudry, D. Scalable Methods for 8-bit Training of Neural Networks. In Proceedings of the
International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018; pp. 5151–5159.

39. Wu, S.; Li, G.; Chen, F.; Shi, L. Training and Inference with Integers in Deep Neural Networks. In Proceedings of the International
Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–14.

40. Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2016, arXiv:1609.04747.

http://doi.org/10.1109/MSP.2017.2765695
http://doi.org/10.1109/JPROC.2020.2976475
http://doi.org/10.1109/TNNLS.2022.3141665
http://doi.org/10.1109/TNNLS.2021.3070853
http://doi.org/10.1109/TPAMI.2018.2884905
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
http://doi.org/10.3390/ai2040042
https://www.tensorflow.org/lite/convert
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
http://doi.org/10.1109/ACCESS.2021.3133100
http://doi.org/10.1109/ACCESS.2019.2917620
http://doi.org/10.1109/TCDS.2020.2965166

	Introduction
	Related Work
	Proposed Weight-Quantized SqueezeNet
	SqueezeNet Overview
	Weight Quantization Techniques

	Experiments and Discussion
	Datasets Generation and Annotation
	Experimental Environment Setup

	Experimental Results and Discussion
	Conclusions
	References

