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Abstract: A major bottleneck preventing the extension of deep learning systems to new domains is
the prohibitive cost of acquiring sufficient training labels. Alternatives such as weak supervision,
active learning, and fine-tuning of pretrained models reduce this burden but require substantial
human input to select a highly informative subset of instances or to curate labeling functions. REGAL
(Rule-Enhanced Generative Active Learning) is an improved framework for weakly supervised text
classification that performs active learning over labeling functions rather than individual instances.
REGAL interactively creates high-quality labeling patterns from raw text, enabling a single annotator
to accurately label an entire dataset after initialization with three keywords for each class. Experiments
demonstrate that REGAL extracts up to 3 times as many high-accuracy labeling functions from text
as current state-of-the-art methods for interactive weak supervision, enabling REGAL to dramatically
reduce the annotation burden of writing labeling functions for weak supervision. Statistical analysis
reveals REGAL performs equal or significantly better than interactive weak supervision for five of six
commonly used natural language processing (NLP) baseline datasets.

Keywords: weak supervision; active learning; natural language processing; text classification; text
mining; data labeling

1. Introduction

Collecting training labels is a necessary, fundamental hurdle in creating any super-
vised machine learning system. The cost of curating labels, however, can be very costly.
Training a robust deep learning model generally requires on the order of 10,000+ training
examples [1,2]. Recently, advances in unsupervised pretraining [3–5] have created expres-
sive, publicly available models with smaller requirements for task adaptation via fine
tuning. Pretrained models in specific domains (e.g., clinical, biomedical, legal), refs. [6,7]
have extended benefits to new domains.

Researchers have improved automated text class labeling using solutions that include
active learning [8], domain adaptation of pretrained models, self-training on confident
model predictions [9–11], noisy supervision using labeling heuristics [12], and crowd-
sourced labeling [13].

Active learning [14] seeks to reduce the labeling burden by initializing a model with a
very small set of seed labels, then iteratively solicits batches of labels on “highly informative”
unlabeled instances. Active learning allows a model to be robustly trained on a small
subset of data while attaining performance similar to a model trained on a much larger
dataset. While active learning provides large gains compared to random instance labeling,
significant work is still required to label individual data instances.
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Weak supervision provides multiple overlapping supervision sources in the form of in-
dependent labeling rules, then probabilistically disambiguates sources to obtain predictions.
Since a single labeling rule (also called a labeling function) can label a large proportion
of a dataset, a small number of labeling rules can lead to significant gains in efficiency
while minimizing annotation efforts. The main difficulty in weak supervision is the need to
curate these labeling functions, which can be deceptively complex and nuanced.

To address limitations of prior labeling methods, we synthesize ideas from active learn-
ing, pretraining, and weak supervision to create REGAL, which performs active learning
over model-generated labeling functions. REGAL accelerates data labeling by interactively
soliciting human feedback on labeling functions instead of individual data points. It ac-
complishes this by (1) extracting high-confidence labeling rules from input documents,
(2) soliciting labels on these proposed rules from a human user, and (3) denoising over-
lap between chosen labeling functions to create high-confidence labels. This framework,
depicted in Figure 1 enables REGAL to seek feedback on areas of model weakness while
simultaneously labeling large swaths of examples.

Figure 1. REGAL model setup. REGAL takes unlabeled documents and seed rules as input. It then
iteratively proposes new labeling functions by extracting high-quality patterns from the training data
and soliciting user feedback about which to keep.

2. Preliminaries

REGAL proposes multiple, high-quality sources of weak supervision to improve
labeling on a source dataset as formally defined below. Figure 2 illustrates the differences
between active learning, weak supervision, and REGAL.

2.1. Problem Formulation

It is assumed that for a given a set of documents D = {d1, d2, . . . , d|D|}, each of which
has a (possibly unknown) classification label ci ∈ C. Each document di = [vi,1, vi,2, . . . , vi,T ]
represents a sequence of tokens from the vocabulary V , where tokens drawn from V could
be words, subwords, characters, etc.

It is assumed there is no access to ground-truth labels for the documents in the
training set. However, there are a small number of heuristic labeling functions (LFs)
given which provide limited initial supervision for each class. R = {r1, r2, . . . , rl}, where
each rj : D → C ∪ {cabstain} is a function that maps documents to a class label in C or
abstains from labeling. This set of LFs induces a vector of noisy labels for each document,
denoted £i = [r1(di), r2(di), . . . , rl(di)]

T . Because LFs act as rule-based labelers, we freely
interchange the terms “labeling function” and “rule” throughout the paper.



AI 2022, 3 213

Figure 2. Labeling structure for traditional active learning, weak supervision, and REGAL. In
traditional active learning, high-value instances are selected and sent to a human annotators for
labeling. In traditional weak supervision, annotators write rules based on patterns they observe in
data. REGAL synthesizes these two approaches by extracting high-value candidate LFs which are
then filtered by human annotators.

2.2. Challenges

Weakly supervised text classification presents three main challenges: label noise, label
incompleteness, and annotator effort. For a lengthier discussion of different sources of label
noise and the different types of algorithms used to address label incompleteness, see [15].

2.2.1. Label Noise

Label noise is the problem of labeling functions generating incorrect labels for partic-
ular data instances. This problem generally occurs when a specified labeling function is
too general and, thus, mislabels instances into the wrong class. The diversity of language
presents an extremely large space of possible misapplications for a single labeling function
and enumerating these misapplications can be prohibitively expensive.

Recent works to address label noise include: generative label denoising [12,16], self-
training on synthetic examples generated with latent variable models [17], using a neural
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network to identify improper applications of labeling functions using labeled rule exem-
plars [18], and active learning on instances with conflicting labels [19]. REGAL seeks
to reduce label noise by automatically learning rules designed to differentiate between
separate classes.

2.2.2. Label Incompleteness

Label incompleteness is the insufficiency of labeling functions to assign labels to
particular slices of a dataset. It occurs when the syntactic and semantic patterns in a
subset of examples do not lie within the scope of the given labeling functions. Label
incompleteness is particularly pervasive in the long tails of a dataset, which often contain
more diverse, difficult instances. For this reason, label incompleteness commonly manifests
in low-resource or highly technical domains where differences in nomenclature lead to
large labeling gaps.

Approaches to tackle label incompletness include differentiable soft-matching of la-
beling rules to unlabeled instances [20], automatic rule generation using pre-specified
rule patterns [21,22], co-training a rule-based labeling module with a deep learning mod-
ule capable of matching unlabeled instances [11,17], and encouraging LF diversity by
interactively soliciting LFs for unlabeled instances [19].

2.2.3. Annotator Effort

Many domains require subject matter experts (SMEs) to annotate correctly. However,
SMEs have cost and time constraints. These constraints are often most pressing in domains
requiring the most expertise (e.g., biomedical), which is precisely where expert input is
most valuable. By presenting annotators with candidate labeling rules, REGAL reduces the
time necessary to specify rules by hand, thereby increasing annotator efficiency.

2.3. Objectives

REGAL is a model that interactively generates labeling functions from a text corpus
with a small set of sparse, noisy labels. REGAL addresses text labeling challenges by auto-
matically proposing labeling rules designed to (1) disambiguate instances with conflicting
LF-induced labels and (2) extend coverage to unlabeled portions of the dataset. As annota-
tors generate labels, REGAL can adapt to new labeling needs as the set of labels expands.

3. Methods

REGAL’s architecture is shown in Figure 3. REGAL is composed of four components:

1. TextEncoder: Encodes semantically meaningful information about each token and
document into contextualized token embeddings.

2. SnippetSelector: Extracts relevant phrases for document classification.
3. RuleProposer: Generates candidate labeling functions from extracted snippets.
4. RuleDenoiser: Produces probabilistic labels for all documents using labeling func-

tions and document embeddings.

3.1. Text Encoder

REGAL begins with a TextEncoder module whose purpose is to create semantically
meaningful embeddings for each document and its individual tokens. Token embeddings
are used by the snippet selector and rule proposer to construct meaningful rules. The
document embeddings are used by the rule denoiser to weight LF relevance for individ-
ual instances.
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Figure 3. Model architecture for REGAL.

We create TextEncoder as a bidirectional, transformer-based encoder [23] using a
pretrained, uncased BERT-base model [3] provided by Huggingface [24]. It allows each
token’s embedding to be conditioned on all other input text in the document, allowing
them to capture rich contextual information. We use the outputs hi,t of the last layer as
token embeddings: [

hi,1, . . . , hi,T

]
= enc([vi,1, . . . , vi,T ]) (1)

We will henceforth let Hi =
[
hi,1, . . . , hi,T

]
represent the sequence token embeddings

from document di.
In addition to initializing TextEncoder with a BERT-base, we encourage the encoder

to further learn contextual information about labeling rules using a masked language
modeling (MLM) objective. Our masking budget consists of all of tokens used in LFs as
well as a random 10% of tokens from the sequence. Each token is either masked or noised
according to the strategy in Devlin et al. [3], and TextEncoder is required to predict the
correct token in each case. Thus, TextEncoder continually learns new labeling cues rather
than memorizing simple labeling functions. Optimization is performed using cross entropy
loss over the masked/noised tokens, denoted as LMLM.

3.2. Snippet Selector

After producing expressive token embeddings, those most useful for creating labeling
rules must be selected. Accordingly, we develop a SnippetSelector module to identify
which pieces of text are most useful for developing precise labeling functions and rich
document representations.

SnippetSelector learns to extract words and phrases that are indicative of an indi-
vidual class label. A classwise attention mechanism over tokens identifies and extracts the
token and document level information necessary to generate expressive, class-specific label-
ing functions. SnippetSelector also calculates each document’s probability of belonging
to each class. These probabilities serve as suitability scores as to how well-equipped a
document is to generate LF keywords of that class.

SnippetSelector takes as inputs the token embeddings from the document encoder
and produces class-specific token attention a(c)i,t , document embeddings ei, and document-

level class probabilities pi =
[

p(1)i , . . . , p(C)i

]
, which are computed as follows.
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First, class-specific attention scores are calculated for each token in our document.
Class-specific attention scores are used by the rule proposal network to generate new
labeling rules and are calculated as follows:

ai,t = Wa
2 tanh

(
Wa

1 Hi

)
(2)

where Wa
1 ∈ Rm2×m1 and Wa

2 ∈ Rc×m2 . These scores are then used to calculate a class-
specific document representation

ẽ(c)i =
T

∑
t=1

a(c)i,t hi,t (3)

These are in turn aggregated into an overall document representation with class
weights ηc

ei =
C

∑
c=1

ηcẽ(c)i (4)

This representation will be used by the rule attention submodule to estimate condi-
tional LF reliability.

The class-specific embeddings ẽ(c)i are also used to compute the document’s class probabilities:

pi = softmax
([

p̂(1)i , . . . , p̂(C)i
])

(5)

where p(c)i = w(c)
p

T
ẽ(c)i and w(c)

p is a weight vector corresponding to each class. In addition
to serving as this submodule’s prediction of the document’s label, these probabilities also
serve as measures of the document’s suitability to contribute to LFs of each particular class.

Because BERT tokens are wordpiece subword units, the SnippetSelector aggregates
subword attentions to a word level by simply summing all of the subword attentions that
correspond to a particular word. These are further aggregated into phrase weights by
summing over all words in a phrase. Phrase attentions are then passed to the rule proposal
network to create rules that are displayed to users for adjudication.

3.3. Rule Proposal Network

REGAL’s RuleProposer module REGAL to measure the quality of keyword and
phrase based rules given a set of seed rules. This can be easily extended to create rules from
a set of seed labels as well. The RuleProposer takes as inputs both the class-conditioned
word level attention ac

i,t and document-level class probabilities pi and outputs a score τ
(c)
j

for each vj ∈ V corresponding to how strongly vj represents class c. These scores are
calculated as:

τ
(c)
j c =

1
|vj|γ

|D|

∑
i=1

T

∑
t=1

1vi,t=vj p
(c)
i a(c)i,t (6)

Here, γ ∈ [0, 1] is a parameter that controls how much REGAL’s RuleProposer bal-
ances between the coverage of a phrase (i.e., how often it occurs) and its instance level
importance. Low values of γ favor phrases with high coverage while high values of γ favor
LFs based on highly precise phrases with less regard for coverage. Since the types of rules
needed may differ as training progresses, we allow users to choose γ for each round of
proposed rules. In practice, we find that γ ∈ [0.5, 0.9] tend to produce good rules.

Once candidate rules have been generated, they are passed through a PhrasePruner
module that filters them to improve coverage and discriminative capacity. The PhrasePruner
performs two pruning steps. First, it trims rules below a certain count threshold α. Trim-
ming ensures that chosen rules have sufficient coverage to be useful. Second, we perform
polarity pruning, which limits candidate phrases to those that a difference of at least β
between the first and second highest scoring classes. Polarity pruning ensures that rules are
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highly specific to a single class and eliminates phrases containing stopwords, punctuation,
and other tokens not particularly relevant to distinguishing classes. Scores for all but the
highest scoring class are set to 0 to avoid any phrase being chosen as a representative of
multiple classes. In practice, we find that α >= 10 and β = 0.4/|C| tend to work well.

Of the remaining phrase scores τ
(c)
j , the RuleProposer proposes up to k new LFs for

each class by choosing the top k scoring phrases {v(c)1 , . . . , v(c)k } for each class c′. These

tokens each induce a labeling function of the form HAS(x, v(c)i ) → c, where the class label

c is assigned to a text x if it contains the token v(c)i .

3.4. Rule Denoiser

As multiple general-purpose LFs are proposed, it is inevitable that some will conflict.
Accordingly, we utilize a rule denoiser developed in [25] to learn probabilistic labels based
on the rules matched to each instance.

We train these soft labels and the class probabilities pi from SnippetSelector using
probabilistic cross entropy loss:

LTOK = −
C

∑
c=1

y(c)i log(p(c)i ) (7)

Note that the methods in this section can easily be modified to support multilabel
classification. This could be performed by using multiple label models (one for each class)
and by replacing the single multi-class cross entropy loss with sum of the individual binary
cross entropy loss terms for each class.

3.5. Model Optimization

The entire model is optimized by minimizing the unweighted sum of the loss functions
of its components:

L = LMLM + LTOK (8)

4. Experiments and Discussion
4.1. Datasets

REGAL’s performance is evaluated on a number of sentiment and topic classifica-
tion datasets:

Yelp is a collection of Yelp restaurant reviews classified according to their sentiment;
IMDB is a set of movie reviews classified according to sentiment [26];
AGnews is a news corpus for topic classification with four classes: sports, technology,
politics, and business [27];
BiasBios is a set of biographies of individuals with classes based on profession. We
use the binary classification subsets utilized in [28]: (1) Professor vs. Physician,
(2) Professor vs. Teacher, (3) Journalist vs. Photographer, and (4) Painter vs. Architect.

Basic summary statistics on our data are found in Table 1.
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Table 1. Summary of REGAL data and rule generation parameters. The data below describe the
respective sizes of traditional train, validate, and test sets, though REGAL only extracts rules from the
train set. Coverage denotes the total coverage of the initial set of seed rules, whereas Bal. Coverage
denotes the accuracy after downsampling to balance class-wise labeling propensities.

Dataset # Train # Valid # Test # Classes Coverage Bal. Coverage

Yelp 30,400 3800 3800 2 0.2239 0.1042
IMDB 24,500 500 25,000 2 0.1798 0.1663
AG News 96,000 12,000 12,000 4 0.0963 0.0144
Journalist/Photographer 15,629 500 16,129 2 0.3211 0.2364
Professor/Physician 26,738 500 27,238 2 0.5149 0.3772
Professor/Teacher 11,794 500 12,294 2 0.5195 0.3574
Painter/Architect 5618 500 6118 2 0.4516 0.2650

4.2. Baseline Models

We compare REGAL’s ability to identify promising keyword LFs to the baseline models
models described below.

4.2.1. Snuba or Reef

Snuba [21], recently renamed Reef, is an automated method of extending the coverage
of a small, labeled dataset by automatically generating a subset of labeling functions from
this labeled subset. It uses an acquisition function for new LFs consisting of a weighted
average of the F1 score on the dev set and the Jaccard distance of a newly proposed rule to
the current LF set.

4.2.2. Interactive Weak Supervision

Interactive Weak Supervision [28] is very similar to REGAL and uses active learning
to evaluate rules based on the documents they match. IWS evaluates rules via an ensemble
of small multi-layer perceptrons (MLPs) and prioritizes the labeling uncertain rules close
to the decision boundary using the saddle acquisition function described in [29].

4.2.3. Fully Supervised BERT Model (FS BERT)

A fully-supervised BERT model is used to compare the performance of the labeling
models developed from REGAL’s proposed rules.

4.3. Training Setup

REGAL requires a user to provide at least some labeling signal to prime the rule
generator. Accordingly, we provide three phrase-matching LFs for each class of each
dataset. Keywords for seed rules are shown in the Appendix B. If the LF’s phrase is found
in document di, the LF assigns its label; otherwise, it abstains from labeling di.

REGAL is run for five rounds of LF extraction with α = 0.7 and one epoch of training
between each round of rule extraction. Each extracted phrase candidate is required to
occur in at least 20 documents to be considered as a labeling function. After each round
of training and accumulating rule scores, we take the solicit labels on the top m rules for
each class, where m = min(50, k) and k is the number of rules above the polarity threshold.
Solicited labels are evaluated by an oracle evaluator which accepts a proposed rule rj if
accuracy(rj) > φ on matched samples. We choose φ = 0.7 as our acceptance threshold.
Further parameter settings for training can be found in the Appendix C.

4.4. Rule Extraction

REGAL’s key feature is the ability to extract expressive, high-coverage labeling rules
from text. The ability of REGAL to identify promising rules based on the provided seed
rules evaluated.

We compare LFs selected by REGAL to those from other methods based on their
coverage and accuracy, each macro-averaged across LFs. We additionally compare how the
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labeling functions from different models work together to train a label denoising model to
generate probabilistic labels of the data. Downstream performance is evaluated using the
accuracy and area under the receiver operator characteristic curve (AUC). The results of
this comparison are shown in Table 2.

Table 2. Performance comparison of LF extraction methods. LF accuracy and coverage are averaged
over all LFs produced by the model. # LFs denotes the total number of LFs selected/predicted
by the model, not the number proposed. LM Acc and LM AUC represent the accuracy and area
under the ROC curve, respectively, of the probabilistic labels produced by a Snorkel label model. For
fully-supervised BERT models (denoted by FS BERT), accuracy and AUC are not computed with a
label model. * FS BERT results for AG News taken from [30]. ** For fair comparison with IWS and
REEF/Snuba, REGAL and FS BERT macro averages exclude AG News.

Dataset Model # LFs LF Acc Coverage LM Acc LM AUC

AG News

IWS - - - - -
REEF/Snuba - - - - -
REGAL 280 0.912 0.007 0.856 -

FS BERT * - - - 0.952 -

IMDB

IWS 35 0.807 0.065 0.811 0.883
REEF/Snuba 50 0.729 0.068 0.722 0.787
REGAL 193 0.787 0.017 0.510 0.757

FS BERT - - - 0.914 0.974

Journalist/ Photographer

IWS 110 0.877 0.033 0.898 0.958
REEF/Snuba 23 0.894 0.142 0.910 0.944
REGAL 265 0.840 0.030 0.733 0.890

FS BERT - - - 0.954 0.990

Painter/ Architect

IWS 157 0.883 0.032 0.893 0.966
REEF/Snuba 23 0.893 0.140 0.874 0.947
REGAL 373 0.876 0.034 0.897 0.977

FS BERT - - - 0.968 0.995

Professor/ Physician

IWS 238 0.860 0.042 0.892 0.957
REEF/Snuba 26 0.917 0.184 0.882 0.935
REGAL 249 0.876 0.041 0.794 0.871

FS BERT - - - 0.951 0.994

Professor/ Teacher

IWS 218 0.785 0.030 0.760 0.928
REEF/Snuba 12 0.562 0.619 0.782 0.839
REGAL 211 0.824 0.029 0.813 0.877

FS BERT - - - 0.938 0.982

Yelp

IWS 87 0.799 0.047 0.747 0.830
REEF/Snuba 38 0.833 0.071 0.830 0.887
REGAL 155 0.803 0.018 0.770 0.837

FS BERT - - - 0.960 0.992

macro-average

IWS 140.833 0.835 0.041 0.833 0.920
REEF/Snuba 28.667 0.805 0.204 0.833 0.890
REGAL ** 241 0.834 0.028 0.753 0.868

FS BERT ** - - - 0.9475 0.988

From these results, we observe that REGAL consistently produces more LFs than other
methods, but that the average accuracy of these is often slightly below the LFs produced
by Reef and IWS. However, the average accuracy for REGAL could also be distorted if
the average accuracy of its rules is lowered by the large number of additional rules not
identified by IWS. To examine this, we compared the rules produced by REGAL and IWS
using a Mann–Whitney–Wilcoxon [31] test. Specifically, we test the hypothesis that one
produces rules that are significantly more accurate than those produced by the other. The
results of these tests is given in Table 3. These tests reveal that the accuracy of rules from
REGAL and IWS are very comparable, with no significant difference on four of six datasets
and each method significantly outperforming the other on one dataset each.

Another interesting result is both models often see lower accuracy from downstream
label models than the average accuracy of LFs input into said label models. Upon further
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investigation, this phenomenon appears to be occur due to imbalance in the total number
of labeling votes for each individual class. To test this hypothesis, we balanced the number
of noisy label votes to reflect a roughly even class balance. Balancing was performed by
randomly downsampling labeling functions from dominant classes until all classes had
roughly the same number of total LF votes for each class. The resultant accuracy scores
before and after balancing are shown in Table 4. These results reveal that balancing LF
outputs tends to increase accuracy for Snorkel label models and for majority voting, despite
reducing the amount of data used for training. However, balancing tends to reduce AUC
scores, implying that the additional labels do assist in rank-ordering instances even if these
instances are mislabeled due to the decision boundary cutoff. Because of this skew, labels
and probabilities produced by these label models should be used with care.

Table 3. Statistical comparison of REGAL and IWS using the Mann–Whitney–Wilcoxon (MWW)
test. The methods show no significant difference except on the Journalist/Photographer and Profes-
sor/Physician datasets. After Bonferroni correction, MWW shows that REGAL outperforms IWS on
Professor/Physician and IWS is outperforms REGAL on Journalist/Photographer. * Significant at
p < 0.05 after Bonferroni correction; ** significant at p < 0.01 after Bonferroni correction.

Dataset Higher Med. Acc. MWW p-val.

Yelp REGAL 0.3438
IMDB IWS 0.1926
Journalist/Photographer IWS * 0.0066 *
Professor/Teacher REGAL 0.2086
Professor/Physician REGAL ** 0.0010 **
Painter/Architect IWS 0.1438

Table 4. Effects of balancing data on model label model performance. We balanced data by calculating
the total number of noisy label votes for each class and randomly replacing votes for dominant classes
until all label distribution was approximately balanced. We measure change in total coverage as well
as Accuracy and AUC for both Snorkel label models and a simple majority voting LF aggregator
(denoted “MV”). Imbalance Ratio reflects the ratio of most labeled class: least labeled class. Note that
rows with higher imbalance ratio have tend to see larger improvements in accuracy after balancing.

Dataset Model ∆ Accuracy ∆ AUC MV Acc ∆ MV AUC ∆ Coverage Imbalance
Ratio

AG News REGAL 0.011 − −0.034 − −0.154 2.245

IMDB
IWS −0.002 −0.014 0.008 0.001 −0.107 1.896

REEF/Snuba 0.002 0.000 0.000 0.000 −0.002 1.053
REGAL 0.066 −0.068 0.083 −0.008 −0.165 3.573

Journalist/
Photogra-
pher

IWS −0.001 −0.013 −0.012 0.001 −0.112 2.492
REEF/Snuba −0.003 −0.004 −0.004 0.000 −0.006 1.493

REGAL −0.014 0.004 0.025 −0.012 −0.001 1.319

Painter/
Architect

IWS 0.033 −0.014 0.022 0.007 −0.136 3.969
REEF/Snuba 0.001 0.000 −0.003 −0.003 −0.004 1.340

REGAL −0.011 −0.006 0.015 −0.004 −0.001 1.238

Professor/
Physician

IWS −0.010 −0.008 0.006 −0.001 −0.002 1.170
REEF/Snuba −0.004 0.001 −0.007 −0.002 0.000 1.499

REGAL −0.026 −0.024 0.024 −0.009 0.000 1.380

Professor/
Teacher

IWS 0.120 −0.033 0.146 0.075 −0.253 7.109
REEF/Snuba 0.008 0.000 0.000 −0.008 0.000 1.012

REGAL −0.001 −0.013 0.000 −0.003 0.000 1.121

Yelp
IWS 0.085 0.061 0.060 −0.007 −0.140 3.285

REEF/Snuba 0.003 0.002 0.001 0.000 −0.008 1.226
REGAL 0.010 0.012 0.021 −0.019 −0.036 1.642

4.5. Qualitative LF Evaluation

The LFs extracted by REGAL are best understood through specific examples. This
enables a user to inspect the extent to which LFs discovered by REGAL model semantically
meaningful indicators for a particular domain, or if REGAL is rather targeting artifacts that
are specific to the particular dataset in question. To this end, we present the first six rules
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generated by REGAL for each of our datasets in Table 5. We additionally provide samples
of multi-word LFs discovered by REGAL in Table A1 in the Appendix B.

From the top rules selected, we see the type of textual clues REGAL catches to select
rules. In Yelp reviews, it unsurprisingly catches words of praise to represent positive
reviews and people seeking remediation for poor experiences for negative reviews. Addi-
tionally, REGAL selects many specific food entreés as positive LFs keywords, highlighting
that positive reviews tend to discuss the individual food that people ordered more than
negative ones. In contrast, negative LFs tend to focus on experiences outside of dining,
such are retail and lodging.

Table 5. Top 6 unigram labeling functions from first 5 iterations of REGAL. In some cases, REGAL
did not identify LFs for particular classes at some iterations, denoted by “-”.

Dataset Class Iter. 1 Iter. 2 Iter. 3

AG News

Sports ‘ioc’, ‘olympic’, ‘knicks’, ‘nba’,
‘ncaa’, ‘medal’

‘mls’, ‘mvp’, ‘fc’,
‘sport’, ‘cowboys’,

‘golf’

‘102’, ‘35th’, ‘vs’,
‘2012’, ‘700th’, ‘ruud’

Science/Tech
‘microprocessors’, ‘microproces-
sor’, ‘antivirus’, ‘workstations’,
‘passwords’, ‘mainframe’

‘xp’, ‘os’, ‘x86’, ‘sp2’,
‘worms’, ‘worm’

‘hd’, ‘666666’, ‘src’,
‘sd’, ‘br’,

‘200301151450’

Politics ‘allawi’, ‘prime’, ‘ayad’, ‘iyad’,
‘kofi’, ‘sadr’

‘plo’, ‘holy’, ‘roh’,
‘troops’, ‘troop’, ‘mp’ -

Business ‘futures’, ‘indexes’, ‘trading’, ‘in-
vestors’, ‘traders’, ‘shares’

‘http’, ‘www’,
‘output’, ‘bp’,
‘dow’, ‘bhp’

‘ob’

IMDB

Positive
‘enchanting’, ‘errol’, ‘astaire’,
‘matthau’, ‘witherspoon’, ‘mcla-
glen’

‘garcia’, ‘ruby’,
‘1939’, ‘emily’,

‘myrna’, ‘poem’

‘delight’, ‘stellar’,
‘vivid’, ‘voight’,
‘burns’, ‘dandy’

Negative ‘dumbest’, ‘manos’, ‘lame’, ‘whiny’,
‘laughable’, ‘camcorder’

‘pointless’, ‘inept’,
‘inane’, ‘implausible’,

‘abysmal’, ‘cheap’

‘vomit’, ‘joke’,
‘morons’, ‘ugh’,
‘snakes’, ‘avoid’

Journalist/
Photogra-
pher

Photographer ‘35mm’, ‘shoots’, ‘polaroid’, ‘head-
shots’, ‘captures’, ‘portraiture’

‘exposures’, ‘kodak’,
‘nudes’, ‘viewer’,
‘imagery’, ‘colors’

‘shadows’, ‘macro’,
‘canvas’, ‘skill’,
‘poses’, ‘hobby’

Journalist ‘corruption’, ‘government’, ‘cnn’,
‘previously’, ‘policy’, ‘stints’

‘governance’, ‘anchor’,
‘pbs’, ‘npr’,

‘democracy’, ‘bureau’

‘arabic’, ‘programme’,
‘elsewhere’, ‘economy’,

‘crisis’, ‘prior’

Painter/
Architect

Painter ‘galleries’, ‘collections’, ‘residencies’,
‘acrylic’, ‘plein’, ‘pastels’

‘impressionist’,
‘textures’, ‘strokes’,

‘flowers’, ‘figurative’,
‘brush’

‘palette’, ‘feelings’,
‘realism’, ‘emotion’,

‘realistic’, ‘filled’

Architect ‘soa’, ‘enterprise’, ‘bim’, ‘server’,
‘scalable’, ‘solutions’

‘infrastructure’,
‘methodologies’,
‘certifications’,

‘intelligence’, ‘teams’,
‘developer’

‘automation’,
‘computing’,

‘delivery’, ‘healthcare’,
‘initiatives’,
‘processing’

Professor/
Physician

Professor
‘banking’, ‘democratization’, ‘ver-
ification’, ‘cooperation’, ‘gover-
nance’, ‘b’

‘security’, ‘finance’,
‘macroeconomics’,
‘microeconomics’,

‘political’, ‘law’

‘acm’, ‘optimization’,
‘mechanical’,

‘metaphysics’,
‘computational’,
‘visualization’

Physician ‘specializes’, ‘alaska’, ‘takes’, ‘ac-
cepts’, ‘norfolk’, ‘ky’

‘speaks’, ‘aurora’,
‘carolinas’, ‘menorah’,

‘novant’, ‘affiliated’

‘vidant’, ‘anthonys’,
‘southside’, ‘fluent’,

‘hindi’, ‘osf’
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Table 5. Cont.

Dataset Class Iter. 1 Iter. 2 Iter. 3

Professor/
Teacher

Teacher ‘grades’, ‘ages’, ‘eighth’, ‘aged’,
‘graders’, ‘grade’

‘ratings’, ‘sixth’, ‘fifth’,
‘fun’, ‘fourth’,

‘tutoring’

‘pupils’, ‘favorite’,
‘cooking’,

‘volunteering’,
‘comparing’, ‘friends’

Professor
‘governance’, ‘constitutional’, ‘co-
operation’, ‘regulation’, ‘democ-
racy’, ‘finance’

‘econometrics’,
‘banking’, ‘economy’,

‘markets’,
‘entrepreneurship’,

‘economic’

‘globalization’,
‘optimization’, ‘firms’,
‘statistical’, ‘conflict’,

‘tax’

Yelp

Positive ‘phenomenal’, ‘yummy’, ‘delectable’,
‘favorite’, ‘amazing’, ‘atmosphere’

‘terrific’, ‘heavenly’,
‘notch’, ‘hearty’, ‘chic’,

‘stylish’

‘handmade’, ‘kale’,
‘cozy’, ‘carpaccio’,

‘tender’, ‘fave’

Negative ‘refund’, ‘pharmacy’, ‘disrespectful’,
‘refunded’, ‘warranty’, ‘rudest’

‘cancel’, ‘scam’,
‘confirmed’,

‘dealership’, ‘driver’,
‘appt’

‘receipt’, ‘confirm’,
‘reply’, ‘cox’, ‘clerk’,

‘policy’

Similar trends emerge in LFs selected for the professor/physician dataset. ‘Professor‘
LFs tend to correspond to academic disciplines, whereas ‘physician’ LFs relate to aspects
of medical practice (such as specialization or insurance) of the specific location where a
physician practiced. Notably, the locations selected as rules for the physician class are lesser-
known, avoiding towns with major universities that may conflict with the professor class.

Note that all of the rules selected were confirmed by oracle evaluation. This implies
that REGAL selects some LFs that are data artifacts that correlate closely with one class
but are not intuitive to a human annotator. In this sense, REGAL can be a useful tool for
identifying artifacts that could impede the generalization of a model and be used to make
models more robust.

5. Related Work

REGAL builds on dual foundations, active and weakly supervised learning, for
text classification.

5.1. Active Learning

REGAL shares a few goals with active learning. First, REGAL iteratively solicits user
feedback to train a robust downstream model with minimal annotation effort. Methods
to perform active learning include selecting a diverse, representative set of instances to
annotate [32,33], selecting the instances about which the model is least confident [29,34],
and selecting the instances with the highest expected gradient norm and thus the highest
expected model change [35]. Second, REGAL shares active learning’s goal to interactively
solicit an optimal set of labels. However, REGAL differs by soliciting labels for labeling
functions rather than individual data points. Soliciting labels for label functions increase
coverage for a much larger number of instances per given label. It also enables LFs to be
inductively applied to additional data not seen during training.

5.2. Weakly Supervised Learning

Weakly supervised learning dates back to early efforts to model the confidence of crowd-
sourced labels based on inter-annotator agreement [13]. Works such as Snorkel [12,25] have
adapted these ideas to learn label confidence based on the aggregation of large numbers
of noisy, heuristic LFs. Weak supervision has been shown to be effective at a host of tasks,
including named entity recognition [36,37], seizure detection [38], image segmentation [39],
relation extraction [20], and text classification [9,11,18,40]. However, all of these models
require users to define labeling functions manually, creating a usability barrier to subject
matter experts not used to writing code. Some also require additional labeled instances
for self-training [18,40], which REGAL does not. Recent works have reduced the barrier
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to scaling weak supervision by propagating labels to nearby matched examples in latent
space [41] and soft-matching LFs to samples not explicitly labeled by the LF [20]. Additional
studies have shown that convergence to a final set of diverse LFs can be accelerated by
prompting users with high-priority examples such as those which are unlabeled or have
conflicting LFs [19].

Snuba/Reef [21] uses similar weak supervision. Snuba/Reef generates LFs from a
small labeled set of data and iteratively creates a diverse set of by adding new LFs using an
acquisition (rk) = w ∗ fscore + (1− w) ∗ jscore, where fscore is the F1 score of the rule on the
labeled dev set, jscore is the Jaccard similarity of the rule to the currently labeled set, and
w ∈ [0, 1] a weight parameter. Snuba differs from our method in that it requires labeled
data in order to generate labeling functions and it does provide a means of interactive
human feedback for LF selection.

5.3. Combined Active Learning with Interactive Weak Supervision

REGAL is the second known work to combine active learning with interactive weak
supervision for text classification using LFs. IWS [28] also enables interactive weak su-
pervision via active learning on labeling functions. Similar to REGAL, IWS begins by
enumerating all labeling functions from a particular “LF family,” such as all of the n-grams
in a document. It featurizes LFs using the SVD of their matched documents, then uses an
ensemble of small neural networks to estimate the accuracy of each LF. IWS then treats
selecting useful LFs as an active level set estimation problem, using the saddle acquisition
function Bryan et al. [29]. IWS is similar to REGAL in that both interactively select n-gram
LFs via human feedback.

REGAL differs from IWS in two main areas. First, REGAL seeks attention on embed-
dings from pretrained language models to optimally select quality n-gram LFs, whereas
IWS uses an ensemble of weak classifiers to estimate a distribution of LF quality. Second,
REGAL uses a different acquisition function than IWS. REGAL seeks to maximize a combi-
nation of coverage and accuracy of proposed LFs (i.e., optimizing LF quality), whereas IWS
seeks to find LFs near the decision boundary about which it is uncertain.

6. Conclusions and Future Work

REGAL interactively creates high-quality labeling patterns from raw text, enabling
an annotator to more quickly and effectively label a data set. REGAL improves upon the
challenges of label noise, label incompleteness, and annotator effort. Results confirm the
combination of weak supervision with active learning provides strong performance that
accelerates advancements in low-resource NLP domains by assisting human subject matter
experts in labeling their text data.

Future work to improve REGAL and other interactive weak supervision methods will
need to improve rule denoising and LF generation. While REGAL can identify useful label-
ing rules, these rules often result in unbalanced labels that skew training and overpower
denoising methods meant to synthesize them. Better denoising algorithms are needed to be
able to deal with this imbalance, which will also improve the performance of models such
as REGAL that interact with these probabilistic labels. Given that most label models expect
LFs to be fully specified before training, future work that identifies fast ways to update
models with the addition of new LFs would be particularly useful. Additional work could
also explore ways to generate and extract labeling functions from other, more expressive
families such as regular expressions to create more precise LFs or automatically refine
existing ones. More expressive labeling functions could also support sequence tagging
tasks such as named entity recognition, e.g., in [36].
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Appendix A. Datasets and Preprocessing

For each of our datasets, we held out small validation and test sets to ensure that
REGAL was training properly and to evaluate how created LFs were contributing to model
performance. Validation and test sets were not used in rule selection. A summary of the
statistics of each of our datasets can be found in Table 1 in the main ppaer. We also include
the coverage of our initial seed rules and the size of the balanced, downsampled labeled
dataset used to begin model training.

Minimal preprocessing was performed only to preserve consistency in the text. Text
in datasets was processed to remove accents and special characters. All examples were
truncated or padded to 128 word-piece tokens.

While stopwords and punctuation were not removed from the text, LFs with punctua-
tion were removed, as were unigram LFs that were included as stopwords. For sentiment
datasets, we converted contractions containing a negation into their non-contracted form
(e.g., “didn’t” became “did not”) to insure consistency.

Appendix B. Seed Labeling Rules

Here we describe the three seed rules used for each class for each baseline dataset.

Yelp LFs:

Positive: ‘best’, ‘excellent’, ‘awesome’
Negative: ‘worst’, ‘awful’, ‘nasty’

Professor/Physician LFs:

Professor: ‘professor’, ‘science’, ‘published’
Teacher: ‘medical’, ‘practice’, ‘physician’

www.github.com/pathology-dynamics/regal
www.github.com/pathology-dynamics/regal
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Journalist/Photographer LFs:

Journalist: ‘journalism’, ‘writing’, ‘news’
Photographer: ‘photographer’, ‘studio’, ‘fashion’

Professor/Teacher LFs:

Professor: ‘professor’, ‘research’, ‘published’
Teacher: ‘elementary’, ‘children’, ‘teacher’

Painter/Architect LFs:

Painter: ‘painting’, ‘art’, ‘gallery’
Architect: ‘building’, ‘architect’, ‘residential’

IMDB LFs:

Positive: ‘masterpiece’, ‘excellent’, ‘wonderful’
Negative: ‘worst’, ‘awful’, ‘garbage’

Table A1. Top 6 bigram labeling functions from the first iteration of REGAL. Cases where REGAL
did not select any bigram LFs are denoted by “-”.

Dataset Class Length 2 Rules

AG News
Sports ‘2006 world’, ‘93 -’, ‘- star’, ‘half goals’, ‘world short’, ‘1 draw’
Science/Tech ‘worm that’, ‘os x’, ‘/ l’, ‘data -’, ‘a flaw’, ‘chart )’
Politics ‘labour party’, ‘labor party’, ‘s party’, ‘al -’, ‘bush ”, ‘pro -’
Business ‘- wall’, ‘$ 46’, ‘up 0’, ‘$ 85’, ‘$ 43’, ‘a &’

IMDB Positive ‘kelly and’, ‘claire danes’, ‘george burns’, ‘jack lemmon’,
‘michael jackson’, ‘hong kong’

Negative ‘just really’, ‘plain stupid’, ‘maybe if’, ‘avoid it’, ‘so stupid’,
‘stupid the’

Journalist/
Photographer

Photographer -
Journalist ‘see less’, ‘twitter :’

Painter/
Architect

Painter ‘attended the’, ‘public collections’, ‘collections including’
Architect -

Professor/
Physician

Professor ‘of financial’, ‘see less’, ‘film and’, ‘and society’, ‘fiction and’, ‘_ b’
Physician ‘oh and’, ‘va and’, ‘la and’, ‘tn and’, ‘ca and’, ‘ok and’

Professor/
Teacher

Teacher ‘childhood education’, ‘early childhood’, ‘primary school’,
‘of 4’, ‘special education’, ‘rating at’

Professor ‘modeling and’, ‘and computational’, ‘climate change’,
‘and organizational’, ‘of government’, ‘nsf career’

Yelp Positive ‘affordable and’, ‘food good’, ‘highly recommended’,
‘highly recommend’, ‘top notch’, ‘definitely recommend’

Negative ‘never again’, ‘never recommend’, ‘ever again’, ‘very bad’,
‘never going’, ‘my card’

Appendix C. Additional Training Details

We trained REGAL for 5 epochs on the labeled subset of data using a batch size of
128 and Adam optimizer with a learning rate 0.0001. At the end of each epoch, REGAL
proposed 40 rules for each class. After each epoch, we reset model weights as done
in traditional active learning [8] to prevent overfitting and corresponding rule quality
degradation. We additionally stopped REGAL early if, after an epoch of training, no rules
with sufficient high class polarity were available to propose. Lack of rules with sufficient
high class polarity indicated that performance had saturated.

During training, some label classes tend to more readily yield viable, high-coverage
rules than others, which leads to imbalance in the noisy labels. This phenomenon cripples
the label denoising model, which impedes model training and the learning of additional
rules. We solve this problem by randomly downsampling the noisy labels during model
training to contain roughly equal numbers of each class. This leads to greater stability in
LF generation.
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For all binary datasets, we followed the example of [11] by requiring all labeled
examples used in training to be matched by at least 2 LFs during training for greater
model stability.

Appendix D. Generated Rules

In addition to the keyword rules displayed in the main text, REGAL is capable of
generating n-gram rules of arbitrary length. This allows REGAL to identify more complex
linguistic phenomena. N-gram rules (for n > 1 generally have substantially lower coverage
than unigram rules and may or may not improve downstream model performance. In this
section, we display a sample of 2-gram rules discovered for each dataset in Table A1. We
additionally allowed our models to search for rules with more tokens, but discovered that
n-gram rules for n ≥ 3 are generally less valuable. However, it is possible longer n-grams
may be useful for other types of datasets.

Appendix E. Mann–Whitney-Wilcoxon Test

The Mann–Whitney-Wilcoxon test [31,42] is a non-parametric alternative for com-
paring independent samples of two non-normally distributed random variables. It tests
the null hypothesis that both samples (samples “a” and “b” o) are drawn from the same
population P. To perform the test, first pool all samples from a and b together and rank
them from 1 to N, where N = na + nb is the combined sample size of the two groups. Next,
divide the ranked samples into their respective sub-populations and calculate Ta = ∑r∈a r,
i.e., the sum of the ranks of samples in a. Tb is calculated similarly. Finally, the uniformly
distributed test statistic, U, is calculated as:

U =

{
Ta − na(na+1)

2 , if na > nb

Tb −
nb(nb+1)

2 , otherwise
(A1)

Values of the Mann–Whitney-Wilcoxon test were computed using the statistics module
of the scipy python package [43]. A standard Bonferonni correction was utilized to lower
the p-value threshold for significance in the case of multiple comparisons. A traditional
family-wise alpha equal to 0.05 was used. The Bonferonni correction takes the family-wise
alpha and divides it be the number of relevant performed comparisons for a given group of
pairwise tests utilizing the same sample(s). The Bonferroni correction for multiple pair-wise
comparisons is a conservative assessment of significance, as it decreases the likelihood of a
Type 1 error (i.e., a false positive - rejecting the null hypothesis when it is, in fact, true).
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