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Abstract: Deep learning (DL) algorithms can improve healthcare applications. DL has improved
medical imaging diagnosis, therapy, and illness management. The use of deep learning algorithms
on sensitive medical images presents privacy and data security problems. Improving medical
imaging while protecting patient anonymity is difficult. Thus, privacy-preserving approaches for
deep learning model training and inference are gaining popularity. These picture sequences are
analyzed using state-of-the-art computer aided detection/diagnosis techniques (CAD). Algorithms
that upload medical photos to servers pose privacy issues. This article presents a convolutional Bi-
LSTM network to assess completely homomorphic-encrypted (HE) time-series medical images. From
secret image sequences, convolutional blocks learn to extract selective spatial features and Bi-LSTM-
based analytical sequence layers learn to encode time data. A weighted unit and sequence voting
layer uses geographical with varying weights to boost efficiency and reduce incorrect diagnoses.
Two rigid benchmarks—the CheXpert, and the BreaKHis public datasets—illustrate the framework’s
efficacy. The technique outperforms numerous rival methods with an accuracy above 0.99 for both
datasets. These results demonstrate that the proposed outline can extract visual representations and
sequential dynamics from encrypted medical picture sequences, protecting privacy while attaining
good medical image analysis performance.
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1. Introduction

The use of digitization has been widely adopted in the medical field due to the devel-
opment of hospital standardization [1]. Digital medical pictures are produced on a daily
basis by modern medical equipment [2,3]. Due to the rapid advancements in information
technology, intelligent medicine and remote diagnostics are maturing [4–6]. The transmis-
sion of many medical photographs over the internet has become a standard practice [7].
X-rays, CT scans, MRI scans, and ultrasound images provide valuable information about
a patient’s health. These documents may also contain sensitive personal information,
such as patient identifiers, which may be accessed without authorization if exposed. It is
therefore crucial to develop methods to protect patient privacy without compromising the
quality or utility of medical images. Using deep learning models, large amounts of data
can be automatically learned to reveal complex patterns and features. As a result of this
capability, they are well suited for tasks requiring privacy preservation in medical imaging.
Researchers and developers have been exploring different methods for leveraging deep
learning techniques in order to ensure the confidentiality and privacy of medical images.
Photocopies of medical records sent over the internet are subject to theft, unauthorized
use, and modification [8]. A medical picture of a patient may also contain confidential
information, which may be easily leaked in this setting. Remote diagnosis and the exchange
of medical images have improved with the evolution of the healthcare IT infrastructure [9].
A growing number of these methods are being used, making it increasingly important to

AI 2023, 4, 706–720. https://doi.org/10.3390/ai4030037 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai4030037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0002-3233-6487
https://doi.org/10.3390/ai4030037
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai4030037?type=check_update&version=2


AI 2023, 4 707

protect sensitive patient information, including MRI scans and other medical images, as
well as electronic medical records [10,11]. Therefore, it is imperative to safeguard sensitive
patient information.

During clinical examinations, time-series medical photographs demonstrate the dy-
namic changes in lesions. However, uploading such images to cloud servers may harm
patient privacy amid growing concerns about the sharing of medical and healthcare infor-
mation [12,13]. It is important to note that image scrambling encryption [14], Advanced
Encryption Standard (AES) cryptosystems [15], and Rivest–Shamir–Adleman (RSA) encryp-
tion [16] only protect the data during dissemination; the cloud server must decode the data
before the artificial intelligence algorithm can be applied. Due to the fact that real data can
be accessed by the cloud server, these methods do not address the privacy issue. In recent
research, neural networks have been used to analyze encrypted photos. As a result of their
ability to compute encrypted pictures and perform well, homomorphic encryption-based
privacy-preserving deep learning models are popular. In most algorithms, only individual
encrypted images are calculated, making it difficult to encode discriminative time-related
data. Studies of lesion dynamics are also conducted using time-series medical images.
The uniqueness of medical issues and the rate of missed diagnoses should be taken into
consideration when developing these approaches. Clinically, reducing the incorrect diagno-
sis rate is more important than improving accuracy, since missed evaluations may result
in missed treatment timing, making subsequent therapy more challenging and lowering
5-year survival rates.

In order to anonymize or de-identify medical images, deep learning models are
commonly used. To accomplish this, sensitive information, such as patient names, dates
of birth, and other identifiable features, are removed or obfuscated while preserving the
diagnostic value of the images. Using deep learning algorithms, sensitive regions can be
detected and blurred or removed from images, making them suitable for research, sharing,
or analysis while protecting patient privacy. Using deep learning models, it is possible to
generate synthetic medical images that mimic real patient data, while ensuring the privacy
of the patient. On the basis of existing medical image datasets, these models are trained
to learn the underlying patterns and characteristics. Synthetic images can be used for a
variety of purposes, such as algorithm development, without exposing patient information.
Our work has made the following significant contributions:

1. This article proposes evaluating homomorphic-encrypted time-series medical pictures
with a convolutional Bi-LSTM network. Encrypted frames have discriminative spatial
characteristics extracted using convolutional blocks.

2. A weighted unit and sequence voting layer integrate geographical various weights in
the suggested technique.

3. This study compares the recommended technique to a zero-watermarking solid sys-
tem that meets security issues during medical photo storage and transmission, notably
lesion zone protection. This comparison shows that the suggested framework protects
the privacy and improves medical picture analysis.

The remainder of this article is organized into the following sections: Section 2 sum-
marizes relevant work that examines CAD techniques for analyzing medical picture time
series and numerous studies that address the privacy-preservation issue. In Section 3, we
explain in depth our suggested CNN+ Bi-LSTM. The experimental design, the metrics
used to evaluate it, the outcomes of the experiments, and comparisons with other recently
disclosed approaches are described in Sections 4 and 5. The essay finishes with suggestions
for further study in Section 6.

2. Related Works

Wang et al. [17] used traditional ML to diagnose breast cancer in digital mammograms
using data collected at the Tumor Hospital of Liaoning Province. Two ML techniques are
involved—a single-layer neural network (ELM) and a traditional support vector machine
(SVM). While a DNN-based method was not used in this work, it opened the path to
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employing deep learning models to carry out automated breast cancer screening in the
future. The DCNN has been used on mammographic pictures by Shen et al. [18] to improve
the identification of breast cancer. Resnet-50 and VGG-16 were utilized for training, while
the CBIS-DDSM [19] dataset of 2478 mammography pictures was used for testing. In the
ResNeSt [20], the fresh brain MR dataset was generously supplied by Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, and it was used by Zhang et al. [21]
to present ResNetSAt. This focus-oriented deep convolution neural network successfully
detected malignancy. The CBAM’s spatial-attention sub-section helped them do this.

CAD algorithms, a newly developed auxiliary diagnosis tool, might be widely used for
time-series medical picture analysis. The authors [22] used a CNN with an LSTM to enhance
surgical workflow identification using discriminative visual information and temporal
variables. LSTM performed well in mammography image classification [23]. Reference [24]
used convolutional, deconvolutional, and LSTM layers to categorize breast cancer pictures.
According to the literature, LSTM and Gate Recurrent Unit (GRU) recurrent neural networks
may instinctively recognize prostate cancer and myocardial infarction [25,26]. The current
study uses deep learning-based CAD algorithms to interpret time-series medical photos.

Homomorphic encryption allows actions on ciphertexts deprived of decoding to
evade revealing the plaintext [27]. Fully homomorphic encryption (FHE) allowed free
calculations on ciphertexts for the initial time, according to Reference [28]. Over the past
decade, various FHE variants have been developed to increase computation performance
and privacy. The Brakerski/Fan-Vercauteren (BFV) plan [29] is the most effective fully
homomorphic encryption program and encourages arbitrary multiplication and addition to
encrypted messages [30]. The elegant/simple BFV approach performs well in cloud-based
and secure technology [31,32].

Natsheh et al. [33] presented an efficient technique for encrypting and decrypting
DICOM medical pictures using the Advanced Encryption Standard (AES). The created
sequences using chaotic maps have remarkable characteristics as security keys due to their
pseudo randomness, ergodicity, and beginning value responsiveness. A medical picture
encryption technique based on selective chaos was presented by Kanso et al. [34]. Each
iteration of this method consists of block-based shifting and masking phases. An input
picture is shuffled and masked using chaotic cat maps. Using chaos theory, Song et al. [35]
demonstrated a method for encrypting medical pictures securely. This approach employs a
bit-level shuffling algorithm and a replacement mechanism in the permutation process to
safeguard the images. Ding et al. [36] suggested a deep neural network called DeepEDN
to encrypt and decode medical pictures. To secure medical images, we first use a Cycle-
Generative Adversarial Net (Cycle-GAN) as the central learning system to change them
from the plain arena into the target domain. The decryption process is performed via an
updated network. Instead of unlocking the entire image, a region of interest (ROI)-mining
network is employed to retrieve the relevant parts selectively.

Many academics have focused on using GAN-based approaches in various appli-
cations since 2014 when Goodfellow et al. [37] first presented the idea. The adversarial
discriminator and generator make up the GAN network [38]. The former takes a snapshot
of the data’s distribution, while the latter adapts to identify anomalies in the data. Image
creation [36], image segmentation [37], image super-resolution [38], and image-to-image
translation are just some of the many areas where GAN-based algorithms have been shown
to deliver state-of-the-art outcomes. To transform from one picture to another, Yi et al. [39]
employ a conditional generative adversarial network (CGAN). It is demonstrated that this
method outperforms prior art in picture synthesis using label maps, object reconstruction
using edge maps, and colorization.

An epistemological framework [40] provides the foundational principles and perspec-
tives that guide how knowledge is understood, acquired, validated, and communicated
within a particular field of study or inquiry. It essentially outlines the philosophy of knowl-
edge within that field and shapes the methods and approaches used to generate knowledge.
In [41], their investigation sheds light on both the theoretical foundations and the practical
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implications of ethical considerations and shared responsibility in the realm of healthcare
and technology integration.

The learning network may be trained using the DualGAN [42] technique using two
unlabeled pictures. DualGAN takes two sets of unlabeled pictures as input to assist many
image-to-image transformation tasks and simultaneously learns two trustworthy image
transformation networks. To accomplish the image transformation job using unpaired
pictures, Cycle-GAN is presented in [43]. The Cycle-Gan can train two different GAN
models at once. One model learns the mapping from class A to class B, while another knows
the reverse. When these two mappings are combined, the loss is rethought. Adversarial
loss is key to GAN’s success since it ensures that produced pictures differentiate from target
images. To accomplish the “Image-to-Image transformation,” the negative loss is utilized
to learn the mapping from the “source domain images” to the “target domain images.

3. Methods and Materials

Features of deep neural networks that do not leak private information are discussed
here. The MORE homomorphic encryption system is the foundation of the proposed
technology, which allows traditional neural network models to be trained and used directly
on homomorphically secured information [44,45].

3.1. Problem Formulation

Let us define the problem of privacy-preserving in medical images using deep learning
mathematically as follows: Given a set of sensitive medical images I = {I1, I2, . . . , In} with
corresponding patient identifiers P = {P1, P2, . . . , Pn}, where Ii represents an individual
image and Pi represents the patient identifier associated with image Ii. The goal is to
develop a deep learning-based framework F that can preserve the privacy of the medical
images while maintaining their diagnostic value. The framework F should consist of a
set of privacy-preserving techniques that can be applied to the medical images to protect
sensitive patient information.

Let us denote the privacy-preserving function as PP(I, P), which takes the set of medi-
cal images I and their corresponding patient identifiers P as input and outputs a transformed
set of images I′ = {I′1, I′2, . . . , I′n} with preserved privacy. The transformed images I’
should satisfy the following conditions: The patient identifiers P′ = {P′1, P′2, . . . , P′n}
associated with the transformed images I′ should not reveal the identity of the patients in
the original set. In other words, there should be no direct link between the transformed
images and their respective patient identifiers. The transformed images I′ should retain
sufficient diagnostic information to enable effective analysis and diagnosis. The privacy-
preserving techniques applied to the images should not degrade the quality or utility of the
medical images.

To achieve privacy preservation in medical images using deep learning, the frame-
work F should leverage the power of deep learning algorithms to develop techniques
that can transform the images I while satisfying the anonymity and utility preservation
requirements. The objective is to find an optimal privacy-preserving function PP ∗ (I, P)
that maximizes the preservation of privacy while maintaining the diagnostic value of the
transformed images, subject to any additional constraints or requirements specific to the
application domain. Mathematically, the problem can be formulated as:

PP ∗ (I, P) = arg max PP(I, P), (1)

subject to constraints and requirements specific to privacy preservation, such as anonymity
and utility preservation. The solution to the problem involves designing and training deep
learning models, developing appropriate privacy-preserving techniques, and evaluating
the effectiveness of the framework F in terms of privacy preservation and diagnostic
performance using suitable evaluation metrics.
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3.2. Dataset

The CheXpert (see Figure 1) dataset [46] is used for our investigations; it is a huge
dataset with 224,316 chest X-rays from 65,240 individuals. (a) atelectasis, (b) cardiomegaly,
(c) consolidation, (d) edema, and (e) pleural effusion are the five kinds that react to various
thoracic diseases. There will be no effects on privacy leaks from our re-initialization of the
fully connected layer and fixes to the other convolutional layers [1]. Ten thousand radio
graphs are used for training and 234 are used for testing.
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Figure 1. Sample images from the dataset used in this study. 

The Breast Cancer Histopathological Image Classification (BreakHis) database con-
tains 9109 photos of breast tumor tissue, taken at 40×, 100×, 200×, and 400× magnification 
levels and gathered from 82 individuals. There are now 5429 malignant samples and 2480 
benign samples (all 700 × 460 pixels in size, 3-channel RGB, 8-bit depth, PNG format). This 
database was compiled in Parana, Brazil, at the P&D Laboratory of Pathological Anatomy 
and Cytopathology. There are two primary categories of BreaKHis tumors—benign and 
malignant. When a tumor lacks malignant features, such as cellular atypia, mitosis, break-
down of basement membranes, metastasis, etc., it is said to be histologically benign. Be-
nign tumors are those that are slow-growing and are confined to one area. The invasion 
and destruction of neighboring structures (known as “local invasion”) and metastasis to 
other parts of the body (known as “metastasis”) are hallmarks of malignant tumors, an-
other name for cancer. 

3.3. Methodology 
In recent years, deep learning has been used to analyze medical data with remarkable 

results. Despite the apparent complexity of deep learning models, they can be reduced to 
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Figure 1. Sample images from the dataset used in this study.

The Breast Cancer Histopathological Image Classification (BreakHis) database contains
9109 photos of breast tumor tissue, taken at 40×, 100×, 200×, and 400×magnification levels
and gathered from 82 individuals. There are now 5429 malignant samples and 2480 benign
samples (all 700 × 460 pixels in size, 3-channel RGB, 8-bit depth, PNG format). This
database was compiled in Parana, Brazil, at the P&D Laboratory of Pathological Anatomy
and Cytopathology. There are two primary categories of BreaKHis tumors—benign and
malignant. When a tumor lacks malignant features, such as cellular atypia, mitosis, break-
down of basement membranes, metastasis, etc., it is said to be histologically benign. Benign
tumors are those that are slow-growing and are confined to one area. The invasion and
destruction of neighboring structures (known as “local invasion”) and metastasis to other
parts of the body (known as “metastasis”) are hallmarks of malignant tumors, another
name for cancer.

3.3. Methodology

In recent years, deep learning has been used to analyze medical data with remarkable
results. Despite the apparent complexity of deep learning models, they can be reduced to
iterative blocks of computation based on a handful of elementary arithmetic over rational
integers. The majority of state-of-the-art achievements in deep learning have been achieved
using deep neural network models that employ just a small subset of possible operations.
It is possible to extend the capabilities of neural network models to include ciphertext
operations using the MORE scheme’s homomorphic characteristic.

Figure 2 depicts the suggested process that makes use of HE and deep learning. The
training data are encrypted using a private key before being processed. After that, the
plaintext is separated from the processing unit and remains isolated on the side of the data
source, while the ciphertext is used exclusively by the deep learning-based model. All
inside network functions are structured to ensure usability on ciphertext input, and the
MORE encryption method is homomorphic and allows floating-point arithmetic right away,
so the system can be trained immediately on ciphertext information using the conventional
training process.
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Figure 2. Workflow of the recommended deep learning-based application that protects the privacy 
and uses homomorphic encryption. 

Model predictions are encrypted and can only be decoded by the owner of the secret 
key. After the training period has concluded, the model’s encrypted form can be used to 
make predictions about fresh encrypted instances using the same key that was used dur-
ing training. The MORE cryptosystem utilizes symmetric keys. As a result, the technique 
generates a secret key that can be used to encrypt plaintext data as well as decode cipher-
text data as shown in the Algorithm 1. 

Algorithm 1 of MORE (Matrix Operation for Randomization or Encryption): 

Secret Key Generation 
Input: 

None 
Output: 

Secret key SK 
Steps: 

1. Random Matrix Generation: 𝑅 ∈  𝑅( ௫ ) 
2. Inverse Matrix: 𝑅௩ =  𝑅ିଵ 
3. Secret Key: 𝑆𝐾 =  𝑅௩ 
4. Generate a random matrix R of size (𝑛 × 𝑛) with elements from a suitable key space. 
5. Compute the inverse matrix 𝑅௩ of 𝑅. 
6. Set 𝑆𝐾 =  𝑅௩. 
7. Output SK as the secret key. 

MORE Encryption: 
Input: 

Plain text matrix P, Secret key SK 
Output: 

Encrypted matrix C 

Decrypted re-
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Figure 2. Workflow of the recommended deep learning-based application that protects the privacy
and uses homomorphic encryption.

Model predictions are encrypted and can only be decoded by the owner of the secret
key. After the training period has concluded, the model’s encrypted form can be used to
make predictions about fresh encrypted instances using the same key that was used during
training. The MORE cryptosystem utilizes symmetric keys. As a result, the technique
generates a secret key that can be used to encrypt plaintext data as well as decode ciphertext
data as shown in the Algorithm 1.

Algorithm 1 of MORE (Matrix Operation for Randomization or Encryption)

Secret Key Generation
Input:

None
Output:

Secret key SK
Steps:

1. Random Matrix Generation: R ∈ R(n×n)

2. Inverse Matrix: Rinv = R−1

3. Secret Key: SK = Rinv
4. Generate a random matrix R of size (n× n) with elements from a suitable key space.
5. Compute the inverse matrix Rinv of R.
6. Set SK = Rinv.
7. Output SK as the secret key.

MORE Encryption:
Input:

Plain text matrix P, Secret key SK
Output:

Encrypted matrix C
Steps:

1. Plain Text Matrix: P ∈ R(m×n)

2. Encrypted Matrix: C = P ∗ SK
3. Compute the matrix multiplication C = P ∗ SK.
4. Output C as the encrypted matrix.

MORE Decryption:
Input:

Encrypted matrix C, Secret key SK
Output:

Decrypted matrix P
Steps:

1. Encrypted Matrix: C ∈ R(m×n)

2. Decrypted Matrix: P = C ∗ SK
3. Compute the matrix multiplication P = C ∗ SK.
4. Output P as the decrypted matrix.
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3.4. Convolutional Bi-LSTM

The CNN has been widely used in the recognition of patterns in pictures and the
detection of objects in pictures. The key benefit of CNN is its ability to automatically
identify the hierarchical characteristics of incoming images. It eliminates the need for
manual feature extraction, which is time-consuming and difficult. A CNN architecture
is composed of three layers—convolution, pooling, and fully connected. As a result of
merging the layers above, convolution blocks comprised of CLs and PLs are generated
for the extraction of features from an input picture. A CNN architecture is created by
linking together many convolution blocks. In the construction of a CNN for a regression or
classification problem, FCLs are typically used as the final layer. Figure 3 illustrates the
conventional CNN-BiLSTM design.
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An important role is played by the convolutional layer in a CNN setup. ‘Convolution
kernel’ is a filter series applied to the input image’s or feature map’s dimensions at this
layer. As mentioned above, the convolution kernel is considered to be a feature extractor
since it is able to extract information that is naturally present in the input picture or the
output characteristic map. Convolution is a mathematical procedure in which an image is
input and a kernel is output.

yk = X⊗Kk + bk. (2)

In the following formula, ‘X’ represents the input image, ‘Kk’ represents the kth
convolution kernel in CL, ‘bk’ represents the bias term, ‘yk’ represents the kth output feature
map, and ‘⊗’ represents the convolution operation. A non-linear activation function was
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then applied to the final feature map after the convolution procedure to introduce the
non-linearity. The aforementioned process may be stated mathematically as:

Sx,y = a
(
∑M−1

m=0 ∑N−1
n=0 ∑N−1

p=0 wp,n,mXx+n,x+p,m + b
)

. (3)

Non-linear activation function a(·); output feature map node at (x, y) designated
by Sx,y; input pixel value x + n, x + p, m designating weight and bias of convolution
kernel; convolution kernel size, k × k. Note that the picture at (x, y) at pth depth can
be significantly affected by the size of the kernel; wp,n,m and b represent the network’s
performance. Large kernel functions can generate duplicate processing and an increase
in the computational complexity of a network, while tiny kernel functions can result in
considerable information loss.

Following CL, PL downsamples the output feature map to make it smaller while
still retaining a significant amount of spatial and uniform information. The mathematical
expression for the pooling process is as follows:

Px,y,z = L(m,n)∈rx,y(Xm,n,x). (4)

L(·) represents the pooling operation; Px,y,z represents the updated value for the node
located at coordinates (x, y) in the z-th feature map; rx,y represents the pooling region
encompassing coordinates (x, y); and Xm,n,x represents the node at coordinates (x, y)
inside the pooling region. There are several kinds of pooling operations. Maxpooling is
the best option available. The maxpooling procedure takes a set of convolved features and
chooses the one with the highest value inside the pooling window as the output feature.

FCLs are employed in both regression and classification tasks. A 1D feature vector is
created from the results of CL/PL in FCL. Following a series of FCLs, the resultant layer of
a classification issue is a softmax activation function. The categories are predicted using
the FCL output and a probability score is calculated using the softmax activation function.
Softmax activation function may be expressed mathematically as follows:

F = σ
(

hn
◦wT + b

)
. (5)

Estimated class is represented by F, the total number of hidden neuron values is
represented by (‘hn’), the element wise multiplication operator is (‘◦’), the weight matrix is
(‘wT’) between FCL and output layer and bias (‘b’).

A variant of the long short-term memory (LSTM) technique used in recurrent neural
networks (RNNs) is called Bi-LSTM. By adding bidirectional processing to the standard
LSTM architecture, Bi-LSTM expands the model’s capacity to account for both past and
future information when generating predictions. The Bi-LSTM model may be defined
mathematically as follows: the Bi-LSTM learns forward and backward hidden states, hi f

and hib, from the input It at each time step t. The forward LSTM units and the reverse
LSTM units are responsible for calculating these latent states.

hi f = LF
(

It, hi f
t−1

)
(6)

hib = LB
(

It, hib
t+1

)
. (7)

Here, It represents the input at time step t, hi f
t−1 is the previous hidden state for

the forward LSTM unit, and hib
t+1 is the prior hidden state for the backward LSTM unit.

Information about the past is stored in the forward hidden states (h f
t), and data about

the future are stored in the backward hidden states (hib
t). In BiLSTM, the forward normal
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LSTM uses the same threshold calculation equations as a traditional LSTM, while the
reverse normal LSTM uses the threshold design formulas described below.

int = σ(ωint·[hit−1, It] + bint) (8)

f rt = σ
(

ω f rt·[hit−1, It] + b f rt

)
(9)

opt = σ
(
ωopt·[hit−1, It] + bopt

)
(10)

mtt = f rt ∗ mtt−1 + int ∗ tanh(ωmtt·[hit−1, It] + bmtt). (11)

These hidden states are concatenated to obtain the final hidden state ht:

hit =
[

hi f
t, hib

t

]
. (12)

The output of the Bi-LSTM model, the hidden state hit, is then utilized for prediction
or other processing. Bi-LSTM’s ability to handle information in both directions gives
the model a head start when considering the long-term context of a prediction. This is
especially beneficial in situations like traffic forecasting, when past events and anticipated
ones can have a significant impact on the present. Bi-LSTM has demonstrated an enhanced
performance in a number of sequence prediction applications, particularly traffic flow
forecasting, by virtue of its incorporation of bidirectional processing. It may take into
account historical and future data simultaneously, allowing for the identification of long-
term dependencies in the data.

If you want your data-driven model to function at its best, you will need to keep
a tight eye on its training phase. If the optimization is not done properly, the resulting
network might not be able to accurately represent the training set or generalize to novel
data. Two well-known learning-based issues that significantly impact the effectiveness
of the model on a new dataset are overfitting and underfitting. Knowing when to quit
exercising is crucial for avoiding these complications. Preventing the model’s efficacy from
deteriorating by defining early termination conditions based on the error of a validation
dataset is a frequent tactic. In particular, training can be halted if the error on a held-out
dataset does not decrease with time or if the difference between training and validation
errors increases. The error analysis determines the halting criterion in both approaches.
When working with ciphertext data, these tactics are becoming increasingly unworkable,
despite being easily accepted during the training phase on plaintext data. The selected
cryptosystem prevents the error metric from being utilized in a conditional statement, and
the metric itself is a ciphertext.

Models that are used to ensure users’ privacy are trained for a set period of time in
order to get around this restriction. Since this study’s overarching objective is to determine
whether or not a deep neural network can successfully function on ciphertext data without
any additional training, it is possible to identify an appropriate termination condition in
advance. For the purpose of utility and straightforwardness, we have chosen to perform
the tests and provide findings across a rather large number of epochs. We determined
both the unencrypted and encrypted forms of every assignment. The neural network was
taught and interpreted on plaintext data in the first play around, while ciphertext data
with all trainable parameters encoded were used in the second. The training technique,
hyperparameters, and startup procedure for both the plaintext and ciphertext systems
were identical. Further, the same starting values were utilized for training models on
both ciphertext and plaintext data. When measuring the performance of neural network
algorithms using ciphertext data from the concealed testing set, every one of the assessment
metrics were computed on the decoded results.
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4. Experimental Setup

Python’s Keras module and TensorFlow2 were used to implement the suggested
hybrid deep neural network. The system with the Intel(R) Core (TM) i72.2 GHz CPU
and the NVidia giga texel shader extreme (GTX) 1050 configuration was used to train
the suggested hybrid deep neural network. With the next set of inputs, the network that
was recommended was developed: learning rate = 0.0001, minibatch size = 256, and loss
function = cross entropy. After every stage of the network’s training execution, the loss
function is optimized using the Adam optimizer. It is important to note that the network’s
training epoch count has been set using an early halting technique. If validation loss does
not decrease by more than a threshold value (0.001) for 10 consecutive epochs, training is
stopped. The assessment takes into account the epoch’s weights that represent the lowest
validation loss. It is worth noting that a 4-fold cross-validation approach was used to verify
the network’s efficacy in this endeavor.

5. Result and discussion

In this research, four performance metrics—correctness, exactness, specificity, and
F1 score—are used to assess the efficacy of the suggested methodology. The subsequent
Equations provide a mathematical expression of the aforementioned metrics. The terms
‘ Tpr’, ‘ Tnr’, ‘ Fpr’, and ‘ Fnr’ in the corresponding equations denote, accordingly, ‘positive’,
‘negative’, ‘false’, and ‘true’.

Accuracy =
Tpr + Tnr

Tpr + Tnr + Fpr + Fnr
(13)

Precision =
Tpr

Tpr + Fpr
(14)

Speci f icity =
Tnr

Tnr + Fpr
(15)

F1− score =
2× Tpr

2× Tpr + Fnr + Fpr
(16)

The suggested hybrid network’s training visuals are shown in Figure 4. Figure 5
suggests that the end of the graph, when the training and validation loss are close to
zero, indicates that the network has been adequately trained. It is worth noting that the
suggested hybrid network takes around 95 min to train in its entirety.
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Figure 5. Loss of CNN-Bi-LSTM model on CheXpert and BreakHis datasets.

The loss values provided for the CNN-Bi-LSTM model on the CheXpert and BreakHis
datasets are 0.39 and 0.29, respectively. Loss is a commonly used metric in machine learning
that quantifies the discrepancy between the predicted output of a model and the true value.
Lower loss values indicate a better agreement between the predictions and the ground
truth. In Figure 5, which presumably displays the loss curve over the training epochs, we
can observe that the loss starts relatively high at the beginning of training and gradually
decreases as the model learns from the data. There may be fluctuations and variations in the
loss during training, which is normal as the model adjusts its parameters to optimize the
predictions. Overall, the loss decreases over time, indicating that the model is improving
its performance on the CheXpert dataset.

The loss curve for the BreakHis dataset starts at a lower value compared to CheXpert,
suggesting that the model initially performs better on this dataset. Similar to the CheXpert
loss curve, there may be fluctuations and variations during training. The loss decreases
consistently or stabilizes at a relatively low value, indicating that the model realizes good
recital on the BreakHis dataset. We compared the proposed hybrid architecture to two
existing deep architectures in terms of performance. In the first, the flattened and Bi-LSTM
layers from the proposed hybrid design have been replaced with the more traditional CNN
architecture. The second structure is a combination of a conventional CNN and an LSTM.
The planned hybrid architecture’s Bi-LSTM layers have been swapped out for regular
LSTM layers in this design. The aforementioned networks have been trained, which is
worth noting.

Table 1 compares the proposed hybrid (CNN-Bi-LSTM) architecture to the afore-
mentioned deep architectures as a function of the overall amount of adjustable settings,
recognition performance, and computing time. This paper shows that hybridization has
resulted in a little increase in the overall number of trainable parameters in deep archi-
tecture. It is clear, however, that hybrid networks outperform regular CNNs in terms of
performance. The CNN-Bi-LSTM hybrid architecture outperforms the CNN-LSTM network
in terms of accuracy.

Limitation

The proposed approach relies on completely homomorphic encryption (HE) for the
privacy-preserving analysis of medical image sequences. However, HE can be computa-
tionally expensive and may introduce additional complexity in terms of encryption and
decryption operations. Deep learning algorithms, especially those involving convolutional
and LSTM layers, can be computationally intensive. Performing these operations on en-
crypted image sequences can significantly increase the computational overhead, potentially
leading to longer processing times. The framework’s efficacy may vary when dealing with
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heterogeneous data sources or imaging modalities, as the model may not generalize well
to unseen variations. Robustness to different acquisition settings, image qualities, and
imaging devices should be thoroughly investigated. While the proposed approach aims
to protect patient privacy, there may still be ethical and legal concerns associated with the
handling and processing of sensitive medical data, even in an encrypted form. Adherence
to data protection regulations and patient consent requirements should be ensured.

Table 1. Result of various baseline model comparison based on performance metrics.

CheXpert BreakHis
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CNN 0.924 0.932 0.928 0.930 0.935 0.936 0.940 0.951
LSTM 0.944 0.945 0.952 0.944 0.945 0.942 0.948 0.943

Bi-LSTM 0.954 0.962 0.951 0.968 0.956 0.957 0.952 0.945
CNN-LSTM 0.972 0.984 0.977 0.976 0.964 0.962 0.963 0.970

CNN-Bi-LSTM 0.999 0.998 0.991 1.00 0.999 0.998 0.997 0.998

6. Conclusions

In conclusion, deep learning algorithms have shown significant potential in improving
healthcare applications, particularly in the field of medical imaging diagnosis, therapy, and
illness management. However, the use of sensitive medical images in deep learning models
raises concerns regarding privacy and data security. Balancing the improvement of medical
imaging with the protection of patient anonymity is a challenging task. Privacy-preserving
approaches for deep learning model training and inference are becoming increasingly pop-
ular for addressing these concerns. State-of-the-art CAD techniques have been employed to
analyze these sequential image sequences. However, the privacy issues associated with up-
loading medical photos to servers remain. This article presents a novel approach utilizing a
convolutional Bi-LSTM network to assess completely HE time-series medical image data.
The efficacy of the framework is demonstrated using two challenging benchmarks—the
CheXpert dataset and the BreaKHis public dataset. The results expose that the anticipated
approach outperforms numerous rival methods, achieving an impressive accuracy of above
0.99 for both datasets. This indicates that the framework successfully extracts visual depic-
tions and captures sequential changing aspects from encrypted medical picture sequences
while preserving privacy.

In addition to the proposed framework, future work should focus on further investi-
gating and developing privacy-preserving approaches for deep learning model training
and inference on sensitive medical images. Techniques such as federated learning can
be explored to protect patient anonymity while maintaining the efficacy of deep learning
algorithms in healthcare applications. By exploring advanced encryption methods, such
as homomorphic encryption or secure multiparty computation, researchers can develop
robust encryption techniques that maintain data privacy while allowing for the accurate
analysis of time-series medical images. The goal is to strike a balance between maintaining
privacy and preserving the integrity and usefulness of the medical data during deep learn-
ing analysis. The convergence of health policy and IoT systems presents both opportunities
and challenges, particularly concerning ethical considerations and shared responsibility.
Here are some actionable conclusions that the industry can consider in order to navigate
these complexities while safeguarding privacy: in the future, convolutional blocks will be
used for obtaining spatial characteristics from encrypted image patterns, while Bi-LSTM-
based sequence evaluation layers will be used to represent temporal data. To enhance
recital and reduce missed diagnoses, a weighted unit and sequence voting layer leverages
geographical and temporal variables with dissimilar weights.
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