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Abstract: Fruit quality is a critical factor in the produce industry, affecting producers, distributors,
consumers, and the economy. High-quality fruits are more appealing, nutritious, and safe, boosting
consumer satisfaction and revenue for producers. Artificial intelligence can aid in assessing the
quality of fruit using images. This paper presents a general machine learning model for assessing
fruit quality using deep image features. This model leverages the learning capabilities of the recent
successful networks for image classification called vision transformers (ViT). The ViT model is built
and trained with a combination of various fruit datasets and taught to distinguish between good
and rotten fruit images based on their visual appearance and not predefined quality attributes. The
general model demonstrated impressive results in accurately identifying the quality of various fruits,
such as apples (with a 99.50% accuracy), cucumbers (99%), grapes (100%), kakis (99.50%), oranges
(99.50%), papayas (98%), peaches (98%), tomatoes (99.50%), and watermelons (98%). However,
it showed slightly lower performance in identifying guavas (97%), lemons (97%), limes (97.50%),
mangoes (97.50%), pears (97%), and pomegranates (97%).
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1. Introduction

Fruit quality refers to a fruit’s overall characteristics that determine its desirability, nu-
tritional content, and safety for consumption [1]. It is determined by the fruit’s appearance,
flavour, texture, nutritional value, and safety [2]. For several reasons, high fruit quality is
crucial for the industry, consumers, and the economy.

High-quality fruits benefit growers and sellers economically, promote healthy eating
habits, reduce healthcare costs, positively impact the environment, ensure food safety, and
promote international trade [3]. Promoting high fruit quality requires using sustainable
farming practices, implementing food safety regulations, and promoting healthy eating
habits [3]. For the industry, fruit quality is critical for market competitiveness and prof-
itability. The produce industry is highly competitive, and consumers are more discerning
than ever, demanding high-quality fruits that meet their flavour, appearance, and nutrition
expectations. Furthermore, the reputation of producers and distributors depends on the
quality of their products [3]. Consumers who are satisfied with the quality of fruits are
more likely to become repeat customers and recommend the products to others, which can
help to build a strong brand image and increase sales [3].

In addition, fruit quality is critical for food safety [1]. Poor-quality fruits are more
prone to contamination by pathogens and spoilage microorganisms, leading to foodborne
illness outbreaks and damaging the industry’s reputation. For people, fruit quality is crucial
because it determines the taste, nutritional value, and safety of their consumed fruits [1].
High-quality fruits are more nutritious, flavourful, and appealing, making them more likely
to be consumed and incorporated into a healthy diet. Furthermore, high-quality fruits are
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less likely to contain harmful contaminants or spoilage microorganisms, reducing the risk
of foodborne illness and promoting public health.

Fruit quality impacts the entire supply chain, from producers to distributors to retailers.
High-quality fruits are less likely to spoil during transportation and storage, reducing waste
and increasing profits for all parties involved. Furthermore, high-quality fruits are more
likely to be sold at premium prices, increasing the value of the entire supply chain.

Several factors determine fruit quality, including variety, growing conditions, harvest-
ing practices, transportation, and storage [1]. For example, the timing of the harvest can
have a significant impact. Harvesting fruits too early can result in poor taste, texture, and
aroma; harvesting fruits too late can lead to overripening, loss of nutrients, and spoilage.
Growing conditions such as soil quality, irrigation, and pest management can also impact
fruit quality. Fruits grown in nutrient-rich soil, with proper irrigation and pest management
practices, are more likely to be of higher quality than those grown in poor soil conditions
or with inadequate pest control measures. Transportation and storage conditions are also
crucial for maintaining fruit quality. Fruits must be transported and stored at optimal
temperatures and humidity levels to prevent spoilage, maintain freshness, and preserve
nutritional value.

Artificial intelligence (AI) can aid in assessing the quality of the fruit using images [4–7].
AI-based technologies such as computer vision and machine learning (ML) algorithms can
analyse the visual characteristics of the fruit and provide an objective quality assessment [8,9].
The AI algorithms can be trained using a large dataset of images [10] of different fruits with
varying quality. They can learn to identify the specific features that indicate the quality of
the fruit [11,12].

This study is the first to introduce the concept of a general ML model for visually
assessing the fruit quality of various types of fruits. While our research focuses on this
specific application, it is important to acknowledge that the field of machine learning has
witnessed the development of general models for various other applications as well, such
as low-cost sensor calibration [13], small molecule substrates of enzyme prediction [14],
and topology optimization [15].

We considered the development of a vision transformer (ViT) network [16], a type of
neural network architecture designed for image classification tasks that use the transformer
architecture, introduced initially for natural language processing. In ViT, an image is first
divided into fixed-size patches. These patches are then flattened and linearly projected
into a lower dimensional space, creating a sequence of embeddings. These embeddings are
then fed into a multi-head self-attention mechanism, which allows the network to learn to
attend to essential patches and relationships between patches.

The self-attention mechanism [17] is followed by a feedforward neural network, which
processes the attended embeddings and outputs class probabilities. ViT also includes addi-
tional techniques, such as layer normalisation, residual connections, and token embedding,
which help improve the network’s performance. ViT allows for effective self-attention
mechanisms in image classification tasks, providing a promising alternative to traditional
convolutional neural networks (CNNs) [18].

A collection of fruit-quality datasets of various fruit types, such as apples, cucumbers,
grapes, kakis, oranges, papayas, peaches, tomatoes, watermelons, guavas, lemons, limes,
mangoes, pears, and pomegranates, served to train the general model and inspect its
performance against fruit-dedicated trained models.

The contributions of this study can be summarised as follows:

• We present a general ML model for determining the quality of various fruit based on
their visual appearance;

• This general model performs better or equal to dedicated per-fruit models;
• Comparisons with the State-of-the-Art architectures reveal the superiority of ViTs in

fruit quality assessment.
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2. Related Work

Recent studies have reported remarkable success in visually estimating fruit quality.
Rodríguez et al. [19] focused on identifying plum varieties during early maturity

stages, a difficult task even for experts. The authors proposed a two-step approach where
images are first processed to isolate the plum. Then, a deep convolutional neural network
is used to determine its variety. The results demonstrate high accuracy, ranging from
91 to 97%.

In [20], the authors proposed a CNN to help with sorting by detecting defects in man-
gosteen. Indonesia has identified mangosteen as a fruit with significant export potential,
but not all are defect free. Quality assurance for export is performed manually by sorting
experts, which can lead to inconsistent and inaccurate results due to human error. The
suggested method achieved a classification accuracy of 97% in defect recognition.

During the growth process of apple fruit crops, there are instances where biological
damage occurs on the surface or inside of the fruit. These lesions are typically caused by
external factors such as the incorrect application of fertilisers, pest infestations, or changes in
meteorological conditions such as temperature, sunlight, and humidity. Wenxue et al. [21]
employed a CNN for real-time recognition of apple skin lesions captured by infrared video
sensors, capable of intelligent, unattended alerting for disease pests. Experimental results
show that the proposed method achieves a high accuracy and recall rate of up to 97.5% and
98.5%, respectively.

In [22], the authors proposed an automated method to distinguish between naturally
and artificially ripened bananas using spectral and RGB data. They used a neural network
on RGB data and achieved an accuracy of up to 90%. They used spectral data classifiers
such as random forest, multilayer perceptron, and feedforward neural networks. They
achieved accuracies of up to 98.74% and 89.49%, respectively. These findings could help
ensure the safety of banana consumption by identifying artificially ripened bananas, which
can harm human health.

In [23], hyperspectral reflectance imaging (400~1000 nm) was used to evaluate and
classify three common types of peach diseases by analysing spectral and imaging infor-
mation. Principal component analysis was used to reduce the high dimensionality of the
hyperspectral images, and 54 imaging features were extracted from each sample. The
proposed model had 82.5%, 92.5%, and 100% accuracy for slightly decayed, moderately
decayed, and severely decayed samples, respectively.

Ref. [24] proposed developing a deep learning-based model called Fruit-CNN for
recognising fruits and assessing their quality. The dataset used in this study includes
twelve categories of six different fruits based on their quality. It comprises 12,000 images in
real-world situations with varying backgrounds. The proposed model outperformed other
State-of-the-Art models, achieving an accuracy of 99.6% on a test set of previously unseen
images. In [25], the authors utilised a CNN to create an efficient fruit classification model.
The model was trained using the Fruits 360 dataset, which consists of 131 varieties of fruits
and vegetables. This study focused on three specific fruits, divided into the following three
categories based on quality: good, raw, and damaged. The model was developed using
Keras and trained for 50 epochs, achieving an accuracy rate of 95%. In [11], the authors
used two banana fruit datasets to train and assess their presented model. The original
dataset contains 2100 images categorised into ripe, unripe, and over-ripe, with 700 images
in each category. This study employed a handcrafted CNN for the classification. The CNN
model achieved an accuracy of 98.25% and 81.96% regarding the two datasets.

In [26], the authors developed a model to identify rotting fruits from input images.
This study used three types of fruits: apples, bananas, and oranges. The features of
the fruit images were collected using the MobileNetV2 [27] architecture. The model’s
performance was evaluated on a Kaggle dataset, and it achieved a validation accuracy of
99.61%. In [28], the authors proposed two approaches for classifying the maturity status of
papaya: machine learning (ML) and transfer learning. The experiment used 300 papaya
fruit images, with 100 images for each maturity level. The ML approach a utilised local
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binary pattern, histogram of directed gradients, grey level co-occurrence matrix, and
classification approaches including k-nearest neighbours, support vector machine, and
naive Bayes. In contrast, transfer learning utilised seven pre-trained models, including
VGG-19 [29]. Both methods achieved 100% accuracy, with the ML method achieving this in
0.0995 s of training time and the transfer learning method achieving 100% accuracy.

Most related works have focused on building fruit-specific models. Subsequently,
they utilised datasets containing fruits from a single variety. There is a need for general
fruit quality prediction models, which are transferrable from industry to industry and are
trained using large-scale datasets. Moreover, recent advances in deep learning models can
be benchmarked for fruit quality assessment to investigate their performance.

3. Materials and Methods
3.1. Deep Learning Framework

We propose a ViT model for the classification task. The current section describes the
fundamental concepts of the ViT model and the parameters of the proposed model.

3.1.1. Convolutional Neural Networks (CNNs)

CNNs are a class of neural networks designed explicitly for image-processing tasks [30,31].
CNNs use convolutional and pooling layers to extract features from an input image.
Convolutional layers work by convolving a set of learnable filters (kernels) over the input
image to produce feature maps [18]. The filters are designed to detect specific patterns in
the image, such as edges or corners.

Pooling layers are used to downsample the feature maps produced by convolutional
layers, reducing their size while retaining the most critical information. The most common
type of pooling layer is max pooling, which takes the maximum value from each subregion
of the feature map.

CNNs have succeeded highly in image classification tasks, achieving State-of-the-Art
performance on benchmark datasets such as ImageNet. However, they are limited in their
ability to capture global relationships between different parts of an image.

3.1.2. Transformers

Transformers are a type of neural network architecture initially developed for natural
language processing tasks, such as machine translation and text summarisation. Transform-
ers use a self-attention mechanism [32] to capture relationships between different parts of
an input sequence [33].

The self-attention mechanism works by computing a weighted sum of the input
sequence, where the weights are taught based on the importance of each element to the
other elements in the sequence. This allows the model to focus on relevant parts of the
input sequence while ignoring irrelevant parts.

Transformers have been highly successful in natural language processing tasks, achiev-
ing State-of-the-Art performance on benchmark datasets such as GLUE and SuperGLUE.

3.1.3. ViT Model

ViTs are a type of deep learning model that combines the power of CNNs with the
attention mechanism of transformers to process images. This hybrid architecture is highly
effective for image classification tasks, as it allows the model to focus on relevant parts of
an image while capturing spatial relationships between them.

ViTs use the following two main components: CNNs and transformer networks. The
CNNs are used for feature extraction from the images, while transformer networks are
used for attention mechanisms. CNNs are particularly good at capturing local image
features such as edges and corners. In contrast, transformer networks can capture the
global structure of images by attending to relevant regions. By combining the two, visual
transformer CNNs can capture local and global features, improving performance.
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The ViT of this study divides the input image into a grid of 33 smaller patches, similar
to how image segmentation works [16]. Each patch is flattened and passed through
convolutional layers to extract features. The transformer network then processes these
features, which attends to the most relevant features and aggregates them to generate a
representation of the image. This representation is then passed through a series of fully
connected layers to classify the image.

The proposed ViT model in Figure 1 consists of multiple layers of self-attention and
feedforward networks. The self-attention mechanism allows the network to attend to differ-
ent input parts and weight them based on relevance. The feedforward network generates a
new representation of the input, which is then used in the next self-attention layer.
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Figure 1. The proposed vision transformer network.

The model takes input images of size (200,200,3) and returns a prediction of one of the
two classes. The model’s architecture consists of a series of transformer blocks, each with a
multi-head attention layer and a multilayer perceptron (MLP) layer. The input images are
divided into patches and fed into the transformer blocks. The model is trained using the
sparse categorical cross entropy loss function and the AdamW optimiser.

The model first processes the input images by dividing them into smaller patches.
Each patch is then encoded using a patch encoder layer, which applies a dense layer and
an embedding layer. The encoded patches are then passed through a series of transformer
blocks. Each block applies a layer of multi-head attention followed by an MLP. The multi-
head attention layer allows the model to attend to different image parts. In contrast, the
MLP layer applies non-linear transformations to the encoded patches.

After the final transformer block, the encoded patches are flattened and fed into an
MLP that produces the final classification. The MLP applies two dense layers with 500 and
250 units to the encoded patches. The output of the MLP is then passed through a dense
layer with two units and a Softmax activation function to produce the final prediction.
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The model is trained using the sparse categorical cross-entropy loss function, which
compares the predicted class probabilities to the actual class labels. The AdamW optimiser
optimises the model, which applies weight decay to the model parameters. The model is
evaluated using the sparse categorical accuracy metric, which measures the proportion of
correctly classified examples.

3.2. Datasets
3.2.1. Sources

We used various sources for collecting fruit images classified between quality-related
categories. We used the extracted image collection to develop this study’s large-scale
dataset. The image sources comprise the following:

• FruitNet: Indian fruits dataset with quality: https://www.kaggle.com/datasets/shas
hwatwork/fruitnet-indian-fruits-dataset-with-quality (accessed on 2 February 2023);

• FruitQ dataset: https://www.kaggle.com/datasets/sholzz/fruitq-dataset (accessed
on 2 February 2023);

• Lemon quality dataset: https://www.kaggle.com/datasets/yusufemir/lemon-qualit
y-dataset (accessed on 2 February 2023);

• Mango varieties classification and grading: https://www.kaggle.com/datasets/saur
abhshahane/mango-varieties-classification (accessed on 2 February 2023).

3.2.2. Characteristics and Preprocessing

The datasets mentioned above were processed to create this study’s dataset. The
analysis identified 16 fruit types.

We have followed the steps described below to create the dataset:

Step 1. Download all files from each source.
Step 2. Create the initial list of examined fruit types.
Step 3. For each dataset, validate the availability of each fruit in the list.
Step 4. For each dataset, exclude corrupted and low-resolution images.
Step 5. Create a large-scale dataset that contains all available fruit types.
Step 6. Exclude fruits that are not labelled.
Step 7. Define the two classes: good quality (GQ) and bad quality (BQ).
Step 8. Exclude fruit types that include less than 50 images per class.

Table 1 presents the image distribution between the classes of the final dataset, the
total number of images per fruit, the initial image format, and image size.

Table 1. Per-fruit characteristics of this study’s dataset.

Datasets Number of Images Representing
Good Quality Fruit

Number of Images
Representing Bad Quality Fruit Total Format Image Size

(Height, Width)

Apple 1149 1141 2290 PNG (192, 256)
Banana 1292 1520 2812 PNG (720, 1280)

Cucumber 250 461 711 PNG (720, 1280)
Grape 227 482 709 PNG (720, 1280)
Guava 1152 1129 2281 JPEG (256, 256)
Kaki 545 566 1111 PNG (720, 1280)

Lemon 1125 951 2076 PNG (300, 300)
Lime 1094 1085 2179 JPEG (192, 256)

Mango 200 200 400 JPEG (424, 752)
Orange 1216 1159 2375 PNG (256, 256)
Papaya 130 663 793 PNG (720, 1280)
Peach 425 720 1145 PNG (720, 1280)
Pear 504 593 1097 JPEG (720, 1280)

Pomegranate 5940 1187 7127 JPEG (256, 256)
Tomato 600 1255 1855 PNG (720, 1280)

Watermelon 51 203 254 PNG (720, 1280)
Total (UD dataset) 15,900 13,315 29,215 - -

https://www.kaggle.com/datasets/shashwatwork/fruitnet-indian-fruits-dataset-with-quality
https://www.kaggle.com/datasets/shashwatwork/fruitnet-indian-fruits-dataset-with-quality
https://www.kaggle.com/datasets/sholzz/fruitq-dataset
https://www.kaggle.com/datasets/yusufemir/lemon-quality-dataset
https://www.kaggle.com/datasets/yusufemir/lemon-quality-dataset
https://www.kaggle.com/datasets/saurabhshahane/mango-varieties-classification
https://www.kaggle.com/datasets/saurabhshahane/mango-varieties-classification
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Apart from the 16 separate datasets, which have been organised to represent one fruit
each, we created an ultimate dataset of all fruit types for training the general model. This
dataset will henceforth be addressed as the Union dataset (UD).

We also collected 200 images per fruit that serve the purpose of the external evaluation
dataset. The characteristics of this dataset are presented in Table 2.

Table 2. Per-fruit characteristics of this study’s external evaluation dataset.

External Dataset Number of Images Representing
Good Quality Fruit

Number of Images
Representing Bad Quality Fruit Total Format Image Size

(Height, Width)

Apple 100 100 200 JPEG (192, 256)
Banana 100 100 200 JPEG (720, 1280)

Cucumber 100 100 200 JPEG (256, 256)
Grape 100 100 200 PNG (256, 256)
Guava 100 100 200 JPEG (256, 256)
Kaki 100 100 200 PNG (720, 1280)

Lemon 100 100 200 PNG (300, 300)
Lime 100 100 200 JPEG (192, 256)

Mango 100 100 200 JPEG (424, 752)
Orange 100 100 200 JPEG (256, 256)
Papaya 100 100 200 PNG (256, 256)
Peach 100 100 200 JPEG (256, 256)
Pear 100 100 200 JPEG (720, 1280)

Pomegranate 100 100 200 JPEG (256, 256)
Tomato 100 100 200 PNG (256, 256)

Watermelon 100 100 200 JPEG (720, 1280)

Figure 2 illustrates the data collection and preprocessing steps for creating the datasets
of this study.
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We emphasize that, in this study, we exclusively assessed the quality of fruits based
on their visual appearance. We did not consider other features, such as taste, texture, nutri-
tional content, or internal characteristics such as ripeness, which are undoubtedly critical
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factors in determining overall fruit quality. This limitation is important to acknowledge, as
it implies that our quality assessment is solely based on external attributes such as colour,
shape, size, and visual defects. While visual appearance can provide valuable insights into
fruit quality, it is not a comprehensive measure.

Dataset preprocessing includes sorting the images by fruit, excluding low-resolution
and corrupted images, grouping the images into classes, resizing the images to fit in a black
background with a 200 × 200-pixel canvas, and normalisation.

CNNs require input images to have a consistent size. Resizing ensures that all input
images have the same dimensions, which is essential for the network to process them effec-
tively. This standardization simplifies the architecture and reduces the need for complex
resizing operations within the network. Resized images are computationally more efficient
to process. Large variations in image sizes can increase the computational load on the
network, slowing down training and inference. Resizing images to a uniform size reduces
this computational burden.

Normalizing pixel values to a common range (e.g., [0, 1] or [−1, 1]) helps to stabilize
and accelerate the training process. It ensures that the network’s weights are updated
uniformly, preventing saturation of activation functions. Normalization also helps mitigate
the effects of the differences in lighting and contrast across images, making the network
more robust to variations in input data. Normalizing inputs helps maintain a consistent
scale of gradients across layers during backpropagation. This can prevent vanishing or
exploding gradients, which are common issues in deep networks, and enable more stable
and faster convergence during training. Normalization can act as a form of regularization
by reducing the likelihood of overfitting. It imposes constraints on the network’s weights
and activations, making the model more resistant to noise in the training data.

Data augmentation is a crucial strategy to artificially increase the effective size of the
training dataset and improve model generalization. The following methods were applied:

• Width shift: We randomly shifted the image horizontally, changing the position of the
fruit within the frame. This helps the model learn to recognize the same fruit from
different viewpoints.

• Height shift: similar to width shift, we randomly shifted the image vertically to
introduce variations in the fruit’s vertical position within the frame.

• Rotation: We applied random rotations to the images to simulate different orientations
of the fruits. This helps the model become more invariant to rotation.

• Gaussian noise: we added Gaussian noise to the images to simulate variations in
lighting conditions and improved the model’s robustness to noise.

• Sheer: sheer transformations were applied to deform the image, introducing slight
distortions that mimic real-world deformations in fruit appearance.

3.3. Experiment Design

Figure 3 illustrates the methodology of this research study. We designed the experi-
ments as follows:

a. Build a ViT network and perform a 10-fold cross-validation procedure using the
UD dataset.

b. Evaluate the model’s per-fruit performance in detecting rotten- and good-quality fruits.
c. Build ViT models for each fruit and perform a 10-fold cross-validation procedure

using data from the specific fruit.
d. Evaluate the models’ performance in detecting rotten- and good-quality fruits.

Figure 3 illustrates the methodology of the present research study.
In evaluating a classification model’s performance, several key metrics are commonly

used, such as accuracy, precision, recall, and the F1 score. Accuracy measures the proportion
of correctly classified instances, providing a general overview of a model’s correctness.
Precision, conversely, gauges the model’s ability to correctly identify positive instances
among those it predicted as positive, focusing on minimizing false positives. Recall, also
known as sensitivity, assesses the model’s capability to identify all positive instances among
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the actual positives, concentrating on minimizing false negatives. The F1 score, which
harmonizes precision and recall, offers a balanced metric that considers false positives and
false negatives, making it particularly useful when class imbalance is present in the data.
These evaluation criteria collectively provide a comprehensive assessment of a model’s
performance, aiding in informed decision-making and model refinement.
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4. Results
4.1. General Model

In this section, we present the classification results of the general model, which was
trained using the large-scale UD dataset.

4.1.1. Training and Validation Performance

Under the 10-fold cross-validation procedure, the general model achieves an accuracy
of 0.9794. The latter is computed regardless of the fruit under examination. The model
obtains a 0.9886 precision, 0.9733 recall, and 0.9809 F1 score (Table 3).

Table 3. Results of the general model under a 10-fold cross-validation procedure. UD refers to the
training dataset.

Training Data Testing Data Accuracy Precision Recall F1

UD UD 0.9794 0.9886 0.9733 0.9809

The above scores represent the aggregated scores derived from each iteration over the
ten-fold procedure. The model performs excellently in identifying the general condition of
any fruit of the dataset. It yields 178 false-good predictions and 424 false-rotten predictions.
Correct predictions include 15,476 true-good cases and 13,137 true-rotten cases.
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4.1.2. External Per-Fruit Evaluation

The general model has been evaluated using the external datasets of various fruit
types. The reader shall recall that each external dataset includes 100 good and 100 rotten
fruit representations. Table 4 presents the results.

Table 4. Results of the general model when testing with external data. The testing fruit column refers
to the type of fruits used for testing the model. The latter images originate from the test dataset.

Training Data Testing Fruit Accuracy Precision Recall F1

UD Apple 0.9950 1.0000 0.9900 0.9950
UD Banana 0.9800 0.9615 1.0000 0.9804
UD Cucumber 0.9900 0.9804 1.0000 0.9901
UD Grape 1.0000 1.0000 1.0000 1.0000
UD Guava 0.9700 0.9796 0.9600 0.9697
UD Kaki 0.9950 0.9901 1.0000 0.9950
UD Lemon 0.9700 0.9608 0.9800 0.9703
UD Lime 0.9750 0.9798 0.9700 0.9749
UD Mango 0.9750 0.9897 0.9600 0.9746
UD Orange 0.9950 0.9901 1.0000 0.9950
UD Papaya 0.9800 0.9898 0.9700 0.9798
UD Peach 0.9800 0.9706 0.9900 0.9802
UD Pear 0.9700 0.9796 0.9600 0.9697
UD Pomegranate 0.9700 0.9796 0.9600 0.9697
UD Tomato 0.9950 0.9901 1.0000 0.9950
UD Watermelon 0.9800 0.9706 0.9900 0.9802

The general model shows remarkable performance in identifying the quality of apples
(accuracy of 0.9950), cucumbers (accuracy of 0.99), grapes (accuracy of 1.00), kakis (accuracy
of 0.9950), oranges (accuracy of 0.9950), papayas (accuracy of 0.98), peaches (accuracy of
0.98), tomatoes (accuracy of 0.9950), and watermelons (accuracy of 0.98).

Slight worse performance was recorded concerning guavas (accuracy of 0.9700),
lemons (accuracy of 0.9700), limes (accuracy of 0.9750), mangoes (accuracy of 0.9750),
pears (accuracy of 0.9700), and pomegranates (accuracy of 0.9700).

It is worth noticing that the general model achieved equal or higher classification
scores in the external datasets than the scores from the Union dataset (UD) which contains
the training data. This phenomenon is strong evidence of the generalisation capabilities of
the model.

4.2. Dedicated Models

In this section, we present the results of the dedicated models. Each model is trained
to distinguish between good and rotten images of a specific fruit. Subsequently, each model
can operate using images of a single fruit variety.

4.2.1. Training and Validation Performance

Table 5 summarises the 10-fold cross-validation results of the dedicated models.
All models obtain high-performance metrics except for the grape and papaya models.
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Table 5. Results of dedicated models under a 10-fold cross-validation procedure. The testing fruit
column refers to the type of fruits used for testing the model. The latter images originate from the
test dataset.

Training Data (UD) Testing Fruit Accuracy Precision Recall F1

Apple Apple 0.9948 0.9974 0.9922 0.9948
Banana Banana 0.9904 0.9854 0.9938 0.9896

Cucumber Cucumber 0.9887 0.9764 0.9920 0.9841
Grape Grape 0.9661 0.9511 0.9427 0.9469
Guava Guava 0.9965 0.9974 0.9957 0.9965
Kaki Kaki 0.9928 0.9873 0.9982 0.9927

Lemon Lemon 0.9981 1.0000 0.9964 0.9982
Lime Lime 0.9991 0.9982 1.0000 0.9991

Mango Mango 0.9625 0.9793 0.9450 0.9618
Orange Orange 0.9971 0.9984 0.9959 0.9971
Papaya Papaya 0.9546 0.7831 1.0000 0.8784
Peach Peach 0.9965 0.9953 0.9953 0.9953
Pear Pear 0.9909 0.9940 0.9861 0.9900

Pomegranate Pomegranate 0.9964 0.9975 0.9981 0.9978
Tomato Tomato 0.9957 0.9933 0.9933 0.9933

Watermelon Watermelon 0.9055 0.6800 1.0000 0.8095

4.2.2. External Per-Fruit Evaluation

Table 6 summarises the classification metrics of each dedicated model when predicting
the classes of the external dataset.

Table 6. Results of dedicated models. The testing fruit column refers to the type of fruits used for
testing the model. The latter images originate from the test dataset.

Training Data Testing Fruit Accuracy Precision Recall F1

Apple Apple 0.9950 1.0000 0.9900 0.9950
Banana Banana 0.9950 0.9901 1.0000 0.9950

Cucumber Cucumber 0.9850 0.9899 0.9800 0.9849
Grape Grape 0.9900 0.9900 0.9900 0.9900
Guava Guava 0.9850 0.9709 1.0000 0.9852
Kaki Kaki 0.9900 1.0000 0.9800 0.9899

Lemon Lemon 0.9950 1.0000 0.9900 0.9950
Lime Lime 0.9800 0.9898 0.9700 0.9798

Mango Mango 0.9500 0.9412 0.9600 0.9505
Orange Orange 0.9950 1.0000 0.9900 0.9950
Papaya Papaya 0.9500 0.9688 0.9300 0.9490
Peach Peach 0.9800 0.9706 0.9900 0.9802
Pear Pear 0.9650 0.9697 0.9600 0.9648

Pomegranate Pomegranate 0.9950 0.9901 1.0000 0.9950
Tomato Tomato 0.9800 0.9800 0.9800 0.9800

Watermelon Watermelon 0.9550 0.9505 0.9600 0.9552

The dedicated models perform remarkably for apples (accuracy of 0.9950), bananas
(accuracy of 0.9950), cucumbers (accuracy of 0.9850), grapes (accuracy of 0.99), kakis (accu-
racy of 0.99), lemons (accuracy of 0.9950), oranges (accuracy of 0.9950), and pomegranates
(accuracy of 0.9950).

A slight decrease in accuracy is observed for the limes (accuracy of 0.98), peaches
(accuracy of 0.98), and tomatoes (accuracy of 0.98).

The dedicated models show suboptimal results in classifying mangos (accuracy of
0.95), papayas (accuracy of 0.95), pears (accuracy of 0.9650), and watermelons (accuracy
of 0.9550).

We compared the results of the general model and the dedicated models (Table 7).
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Table 7. Comparison between dedicated models and the general model in per-fruit accuracy mea-
sured using the external test set.

Fruit Dedicated Model General Model

Apple 0.9950 0.9950
Banana 0.9950 0.9800

Cucumber 0.9850 0.9900
Grape 0.9900 1.0000
Guava 0.9850 0.9700
Kaki 0.9900 0.9950

Lemon 0.9950 0.9700
Lime 0.9800 0.9750

Mango 0.9500 0.9750
Orange 0.9950 0.9950
Papaya 0.9500 0.9800
Peach 0.9800 0.9800
Pear 0.9650 0.9700

Pomegranate 0.9950 0.9700
Tomato 0.9800 0.9950

Watermelon 0.9550 0.9800

The general model is more effective than the dedicated models for predicting the
quality of cucumbers, grapes, kakis, mangos, papayas, pears, tomatoes, and watermelons.

It yields equal classification accuracy in apples, oranges, and peaches. Subsequently,
the dedicated models are better when built for bananas, guavas, lemons, limes, and
pomegranates. Of the sixteen fruit types, the dedicated models performed better only
in five of them (Table 7, Figure 4).
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4.3. Comparison with State-of-the-Art Models under a 10-Fold Cross-Validation Procedure on the
UD Dataset

We oppose the proposed general model (ViT) to various State-of-the-Art networks
implemented using the Keras Python library. Each network was trained and evaluated
under the same conditions. Table 8 presents the obtained performance metrics.
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Table 8. UD dataset classification of various State-of-the-Art CNN-based networks under a 10-fold
cross-validation procedure.

Model Accuracy Precision Recall F1

Xception [34] 0.9524 0.9726 0.9390 0.9555
VGG16 [29] 0.9446 0.9647 0.9323 0.9482
VGG19 [29] 0.9671 0.9875 0.9516 0.9693

ResNet152 [35] 0.9785 0.9887 0.9716 0.9800
ResNet152V2 [35] 0.9606 0.9861 0.9409 0.9630
InceptionV3 [36] 0.9539 0.9711 0.9433 0.9570

InceptionResNetV2 [36] 0.9641 0.9796 0.9539 0.9666
MobileNet [27] 0.9536 0.9820 0.9319 0.9563

MobileNetV2 [27] 0.9624 0.9805 0.9499 0.9649
DenseNet169 [37] 0.9631 0.9669 0.9652 0.9660
DenseNet201 [37] 0.9598 0.9736 0.9519 0.9627

NASNetMobile [38] 0.9547 0.9819 0.9340 0.9574
EfficientNetB6 [39] 0.9660 0.9718 0.9655 0.9686
EfficientNetB7 [39] 0.9705 0.9842 0.9611 0.9725

EfficientNetV2B3 [39] 0.9591 0.9716 0.9526 0.9620
ConvNeXtLarge [40] 0.9732 0.9870 0.9634 0.9750

ConvNeXtXLarge [40] 0.9486 0.9651 0.9396 0.9522
Swin Transformer [41] 0.9632 0.9874 0.9445 0.9654
Perceiver Network [42] 0.9643 0.9711 0.9631 0.9671

Involutional Neural Network [43] 0.9635 0.9725 0.9601 0.9663
ConvMixer [16,44,45] 0.9591 0.9715 0.9529 0.9621

BigTransfer [46] 0.9574 0.9659 0.9555 0.9606
EANet [47] 0.9732 0.9874 0.9630 0.9750
FNet [33] 0.9690 0.9709 0.9722 0.9716

gMLP [48] 0.9597 0.9818 0.9435 0.9623
MLP-Mixer [46] 0.9564 0.9656 0.9539 0.9597

Attention VGG19 [49] 0.9644 0.9852 0.9489 0.9667
Vision Transformer (this study) 0.9794 0.9886 0.9733 0.9809

The top networks exhibiting equivalent performance include ResNet152 [35], Con-
vNeXtLarge [40], and EANet [47]. Figure 5 provides a visual comparison regarding the
recorder accuracy of each model. The ViT model of this study is slightly better than the
rest. Further and extensive fine tuning of other models may reveal that other models can
perform equally well. However, the latter is beyond the scope of this paper.
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4.4. Comparison with Classic Machine Learning Models

We also oppose the proposed general model (ViT) to various classic machine learning
models implemented with the aid of the scikit-learn Python library. Each network was
trained and evaluated under the same conditions. To prepare the images for such networks,
the initial image was flattened to form a one-dimensional vector that is mandatory for
processing by these classifiers.

For the random forest algorithm, we set the number of trees (n_estimators) to 1000;
the maximum depth of each tree (max_depth) to 25; the minimum samples required
to split a node (min_samples_split) to 2; the minimum samples required at a leaf node
(min_samples_leaf) to 1; and the maximum number of features considered for each split
(max_features) to ‘sqrt’ (square root of the total number of features).

For the XGBoost algorithm, we chose a learning rate (learning_rate) of 0.1; 1000 boosting
rounds (n_estimators); a maximum tree depth (max_depth) of 15; a minimum sum of
instance weight in a child (min_child_weight) of 1; a subsample fraction (subsample) of 0.8;
and a fraction of features used for each tree (colsample_bytree) of 0.8.

For the k-nearest neighbours (KNN) algorithm, we set the number of neighbours (k)
to 11. We used the default Euclidean distance metric for neighbour selection.

Regarding the support vector machine (SVM) algorithm, we applied a linear kernel,
set the regularization parameter (C) to 1.0, and used class weights balanced according to
the input data. For the naive Bayes method, we applied Laplace smoothing (alpha) with a
value of 1.0. We used standard text preprocessing and feature extraction techniques.

In our neural network, we defined 6 hidden layers with 128 neurons each; used
ReLU activation functions; a batch size of 32; 50 training epochs’ a learning rate of 0.001;
and applied dropout regularization with a rate of 0.2. We used the Adam optimizer and
categorical cross-entropy loss for a classification task.

Table 9 presents the obtained performance metrics.

Table 9. UD dataset classification of various State-of-the-Art ML networks under a 10-fold cross-
validation procedure.

Model Accuracy Precision Recall F1

random forest 0.9343 0.9693 0.9081 0.9377
XGBoost 0.9343 0.9635 0.9140 0.9381

K-Nearest Neighbours 0.9213 0.9767 0.8764 0.9238
Support Vector Machine 0.9159 0.9773 0.8655 0.9180

Naive Bayes 0.8733 0.9615 0.7991 0.8728
Neural Network 0.8732 0.9752 0.7870 0.8710

Vision Transformer (this study) 0.9794 0.9886 0.9733 0.9809

The tree-based algorithms (random forest and XGBoost 2.0.0.) outperform the rest,
yielding an accuracy of 0.9343. Still, the classical ML algorithms exhibit lower evaluation
metrics compared to the vision transformer network.

4.5. Comparison with the Literature

We collected recent literature employing either dedicated models and examining a
single fruit or general models applied to various fruit representations. Table 10 compares
the general model of this study and models suggested by related works.
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Table 10. Comparison with the literature.

Fruit Study Objective Method(s) Accuracy

Plum [19] Determination of plum maturity from images Deep CNN 91–97%
Mangosteen [20] Quality assurance in mangosteen export Deep CNN 97%

Apple [21] Apple lesions identification Deep CNN 97.5%

Banana [22] Differentiation between naturally and
artificially ripened bananas Neural Network 98.74%

Peach [23] Peach disease identification Deep Belief Network 82.5–100%
Multiple (6) [24] Quality Assessment Deep CNN 99.6%
Multiple (3) [25] Quality Assessment Deep CNN 95%

Banana [11] Quality Assessment Deep CNN 81.75–98.25%
Multiple (3) [26] Quality Assessment Deep CNN 99.61%

Papaya [28] Quality Assessment Deep CNN 100%
Pomegranate [50] Quality Assessment Recurrent Neural Network 95%

Grapes [51] Quality Assessment Artificial Neural Network 87.8%
Mango [52] Quality Assessment SVM 98.6%
Apple [52] Quality Assessment Deep CNN 98.6%

The comparison reveals that the suggested general and dedicated models are consistent
with the literature and may exhibit better performance regarding specific fruit types. More
precisely, most studies report an accuracy between 97% and 99% in determining the quality
of the fruits. The general model of this study reports per-fruit accuracies that vary between
97% and 100%.

The comparisons also verify that the general model is often better than the dedicated
models.

5. Discussion

The quality of fruits is essential in determining their market value and consumer
satisfaction. High-quality fruits are visually appealing, flavourful, and nutritionally dense.
However, assessing fruit quality can be laborious and time-consuming, especially when
performed manually. This is where deep learning technology can be applied to automate
and optimise the process of fruit quality assessment. By processing a large dataset of
fruit images, deep learning algorithms can be trained to recognise specific patterns and
features indicative of fruit quality. For instance, a deep learning model can be trained
to identify specific colouration, texture, and shape characteristics that indicate freshness,
ripeness, or maturity in a fruit. Deep learning can be used to assess the quality of fruits at
different stages of production, from the farm to the market. Farmers can use deep learning
algorithms to assess the quality of their products in real-time, allowing them to make
informed decisions on when to harvest or transport their fruits.

Additionally, food retailers can use deep learning technology to sort and grade fruits
based on their quality, reducing waste, and ensuring consistent product quality for con-
sumers. Furthermore, deep learning can also be applied to preserve fruit quality during
storage and transportation. By detecting and removing low-quality fruits before ship-
ping, deep learning algorithms can reduce the chances of damage or spoilage during
transportation, ensuring that consumers receive only high-quality fruits.

This research study presented a general ML model based on vision transformers for
estimating fruit quality based on photographs. We proposed a general model that can be
trained with multiple fruits and predict the quality of any fruit variety that participated in
the training set. This general model was superior to dedicated models, in which training
was performed using a single fruit variety. According to the results, a generalised model
predicts the quality of cucumbers, grapes, kakis, mangos, papayas, pears, tomatoes, and
watermelons more efficiently than dedicated models. However, the classification accuracy
of the generalised and dedicated models is similar for apples, oranges, and peaches.
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On the other hand, the dedicated models perform better for bananas, guavas, lemons,
limes, and pomegranates. Only five of the sixteen fruits analysed showed improved results
when using dedicated models.

This suggests that while a generalised model may provide satisfactory results for most
fruits, dedicated models tailored to specific fruits can significantly enhance the accuracy
of the predictions, particularly for fruits with unique characteristics or qualities that are
difficult to generalise.

To summarize, we presented a machine learning model based on ViT networks capable
of assessing the quality of various fruits based solely on their visual appearance, elimi-
nating the need for fruit-specific models. Our general model showcases performance that
either equals or surpasses dedicated, fruit-specific models, simplifying the process while
maintaining or enhancing accuracy. Through rigorous comparisons with State-of-the-Art
techniques, our research establishes vision transformers (ViTs) as the superior choice for
fruit quality assessment, setting a new benchmark in computer vision for agriculture and
quality control. This study has some limitations. Firstly, fruit quality can be evaluated
based on several factors, including appearance, flavour, texture, and nutritional content.
While the appearance of the fruit can be an indicator of quality, it is not always reliable.

In some cases, the appearance of the fruit can provide some clues about its quality. For
example, ripe fruit should have a bright and uniform colour, be free of bruises or blemishes,
and have a firm and smooth texture. However, some exceptions exist to these guidelines,
such as bananas, which develop brown spots as they ripen but are still perfectly edible.
Other factors affecting fruit quality, such as flavour and nutritional content, cannot be
assessed based on appearance alone. For example, some fruits may look perfectly fine but
lack flavour or be low in certain nutrients. While some fruit characteristics such as colour,
shape, and texture can be visually evaluated. Other vital factors such as flavour, aroma,
and nutritional content cannot be assessed visually. Moreover, the visual appearance of
the fruit can be influenced by various factors, such as lighting, the angle of the camera,
and post-harvest treatments, which can affect the quality assessment. The latter can be
considered a limitation of this study.

Integrating machine learning models into existing fruit sorting and grading systems
may improve efficiency and accuracy but also open the door to a holistic approach that
combines image and non-image characteristics for more comprehensive fruit quality assess-
ments. This synergy between different data sources maximizes the potential for optimizing
fruit grading processes across various agricultural contexts.

Adapting machine learning models to account for variations in fruit quality stemming
from diverse factors such as climate, soil, and growing conditions is crucial for ensuring
the robustness and applicability of these models in real-world agricultural settings. One
approach involves incorporating these environmental variables as features in the training
dataset. By including climate data (e.g., temperature, humidity, and precipitation); soil
characteristics (e.g., pH levels and nutrient content); and growing conditions (e.g., irrigation
methods and pesticide usage), the existing model can learn to recognize patterns and
correlations between these variables and fruit quality. This enables the model to make more
nuanced and context-aware quality assessments. Regular updates of these environmental
data help the model adapt to changing conditions over time.

Secondly, while studying 16 fruit types provides valuable insights, it is essential to
note that this sample size may not represent all fruit types. To fully assess the effectiveness
of generalised versus dedicated models for predicting fruit quality, a more comprehensive
and diverse dataset should be used.

Including a broader range of fruit varieties in future studies can help to identify
patterns and trends across different types of fruit and further establish the efficacy of
generalised and dedicated models. Additionally, expanding the sample size can provide
more accurate and robust results, allowing for greater confidence in the findings and a
better understanding of the strengths and limitations of these modelling approaches.
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The integration of machine learning into fruit quality assessment raises important ethi-
cal considerations. Privacy and consent are paramount, demanding robust data anonymiza-
tion and comprehensive consent procedures. Transparency and fairness are crucial. Biases
inherited from data must be addressed with fairness-aware algorithms, ongoing moni-
toring, and clear model explanations. Environmental responsibility is key, as machine
learning can impact resource consumption. Ethical practices involve optimizing algorithms
for sustainability. Labour displacement concerns the call for plans to retrain and reskill
affected workers. Finally, ensuring equitable access to these technologies, especially for
small-scale farmers, is vital. Initiatives for technology transfer and knowledge sharing
promote fairness and broad benefits.

6. Conclusions

AI-based technologies can potentially revolutionise the fruit industry by providing
objective and efficient quality assessment. This study introduced a general machine learn-
ing model based on vision transformers to assess fruit quality from images. The model
outperformed dedicated models trained on single fruit types, except for apples, oranges,
and peaches, where both had similar accuracy. Dedicated models were better for specific
fruits such as bananas and pomegranates. Overall, a generalised model worked well for
most fruit types. However, dedicated models could improve the accuracy for fruit types
with unique features. Fruit quality depends on multiple factors, including appearance,
flavour, and nutrition. Appearance can be misleading and affected by various factors. This
study has limitations in this regard. Finally, while the 16 fruit types used in this study
provide a valid starting point, future research should include a more diverse and extensive
range of fruit types to better evaluate the effectiveness of generalised and dedicated models
in predicting fruit quality.
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