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Abstract: The ability to overcome an opposition in team sports is reliant upon an understanding of
the tactical behaviour of the opposing team members. Recent research is limited to a performance
analysts’ own playing team members, as the required opposing team athletes’ geolocation (GPS) data
are unavailable. However, in professional Australian rules Football (AF), animations of athlete GPS
data from all teams are commercially available. The purpose of this technical study was to obtain
the on-field location of AF athletes from animations of the 2019 Australian Football League season
to enable the examination of the tactical behaviour of any team. The pre-trained object detection
model YOLOv4 was fine-tuned to detect players, and a custom convolutional neural network was
trained to track numbers in the animations. The object detection and the athlete tracking achieved
an accuracy of 0.94 and 0.98, respectively. Subsequent scaling and translation coefficients were
determined through solving an optimisation problem to transform the pixel coordinate positions of a
tracked player number to field-relative Cartesian coordinates. The derived equations achieved an
average Euclidean distance from the athletes’ raw GPS data of 2.63 m. The proposed athlete detection
and tracking approach is a novel methodology to obtain the on-field positions of AF athletes in
the absence of direct measures, which may be used for the analysis of opposition collective team
behaviour and in the development of interactive play sketching AF tools.

Keywords: object detection; deep learning; athlete tracking; computer vision

1. Introduction

Performance analysts in professional sports teams are increasingly required to analyse
large sets of athlete data to derive insights that result in a competitive advantage over the
opposition [1]. The in-depth analysis of team sports is on the rise due to advancements in
sensor technology and computing power [2–4]. The first step of all analyses is the accurate
tracking of players on the field. This can be achieved by sensor data such as GPS, LPS,
or IMUs, or using video [3]. The notion of tracking data refers to spatiotemporal data
describing ball and/or player positions during a sports event [5]. The use of easy-to-access
video data to derive 2D spatiotemporal data is increasingly popular. For this purpose, com-
puter vision methods have been applied in multiple sports, with the majority of applications
in soccer and basketball [2]. Using solely video data, researchers and sport professionals
aim to better understand tactical behaviour and interactions of a team or individual [5,6] or
to support decision-making pertaining to performance and injury risk [4].

For meaningful outcomes, it is important to consider the demands and constraints
of specific team sports [4]. Australian rules Football (AF) provides challenges that cannot
be found in more frequently investigated team sports like soccer and basketball: in AF,
36 players are on a field that is not consistent in size across different stadiums, which is
a unique constraint of the sport. The dimensions of fields used within the professional
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Australian Football League (AFL) vary from 175 m in length and 145 m in width (Uni-
versity of Tasmania Stadium) to 155 m by 136 m (Sydney Cricket Ground). The average
length and width of AFL grounds are 163.6 ± 5.9 m and 132.1 ± 6.9 m, respectively [4].
To provide player location information, all players are equipped with a commercial GPS
unit, but professional teams can only access the GPS data of their own team, while limited
or no information on any of the opposition AF teams is accessible. Therefore, current
state-of-the-art tactical analysis cannot be performed easily, since the location of the opposi-
tion AF team is unknown. Consequently, despite the ubiquity of GPS data, the analysis
of opposition collective behaviour in AF is currently restricted to conventional 2D video
analysis, a manual and time-consuming process. Therefore, computer vision technology
presents an exciting opportunity to overcome this issue in AF [7–9].

The major challenges of vision-based methods are their dependency on the environment—
they are susceptible to frequent changes in athlete velocities and occlusions in congested
play, changes in field lighting, and similarities in the appearances of teammates [2,3].
Further, the unique challenge of varying field sizes in combination with the large field
size requiring multiple cameras makes the use of conventional player tracking methods
impossible [4]. Varying pre-processing steps are therefore necessary to successfully track
athletes [10,11]. Recommended techniques include the following: (1) the removal of
shadows to combat changes in lighting conditions [12]; (2) the use of multiple camera
set-ups to ensure all athletes are in the field of view during filming [13]; (3) the use of
pre-trained object detection models [14–16]; (4) and jersey number recognition models for
the detection and identification of individual athletes [17].

Two computer vision-based methods regularly used to obtain on-field athlete locations
are detection embedded tracking and tracking by detection [11]. The detection of athletes is part
of the tracking pipeline in detection embedded tracking [7,18,19], considered as a costly manual
method when compared with modern deep learning implementations [8,20]. The tracking
process begins by extracting the playing field area using a combination of basic computer
vision techniques, such as background subtraction, Canny edge detection, and contour
extraction [7,8,21] to ensure that the subsequent feature extraction of the tracking subjects
(usually colour, shape, and trajectory features) is free from variations in the playing field
appearance and noise from spectators and advertisement banners. One example of this
approach is in tracking athletes in soccer across video frames using Haar-like features [19],
defined as differences in the summed pixel intensities of various rectangular regions across
the tracking subjects [22]. A more recent example built upon this approach is using particle
filters as the feature extraction method, which considers differences in pixel intensities
between smaller regions in comparison to Haar-like features [23]. Blob detection [24,25],
Otsu detectors [12], and motion vectors [26] are also commonly used feature extraction
methods in detection embedded tracking. Athletes are tracked by associating similar features
across frames, such as edge detection [12], three-dimensional topographic features [25],
and Efficient Convolution Operator (ECO) tracking algorithms [27,28].

Tracking by detection differs from the aforementioned approaches in that it first detects
the athletes in the input image prior to passing detections to stand-alone object track-
ers [14,15]. This approach results in improved accuracy as the athlete appearances and
locations are known prior to the application of the tracking algorithm. However, the ac-
curacy of the stand-alone tracking methods are heavily dependent on the accuracy of the
detector, meaning it is extremely important to use an object detector that has been optimised
for the desired task to obtain the best tracking results. Deep learning techniques based
on convolutional neural networks have shown promising results in object detection [29],
and pre-trained person detectors are a popular form of object detectors as they avoid the
need to train from scratch. For example, Histograms of Oriented Gradients-based person
detectors [30], Faster-Recurrent Convolutional Neural Network (a popular state-of-the-art
object detector architecture [31]), and a faster state-of-the-art object detector known as You
Only Look Once (YOLO) [32,33] that were trained to detect persons in images and videos
have all been used to detect athletes in sporting contexts. The detections were subsequently
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passed into designated tracking algorithms, such as support vector machines, Long Short-
Term Memory neural networks [34], and Simple Online and real-time Tracking with a Deep
Association Metric (DeepSORT) [35], to track the athletes across video frames [9,15,36].

Previous progress in tracking athlete movements using computer vision-based meth-
ods has examined sports where playing field dimensions remain constant across compe-
tition arenas. Further, the playing field boundaries in previous research are all rectan-
gular in shape, such as the playing fields and courts encountered in soccer, basketball,
and squash [25,37–40], serving to greatly simplify the technical processes required to deter-
mine the field-relative position of detected athletes [4]. A majority of the existing works has
also used stationary cameras that minimises, and in some cases eliminates, issues related to
a shifting background, appearance distortions, and camera motion that arise from operator
pan, tilt, and zoom functions [10]. These challenges are amplified in AF due to the per-
missible differences in field shapes and sizes across stadiums [41], and the use of multiple,
manually operated pan, tilt, and zoom cameras in which the entire playing field will seldom
be in full field of view. Frequent occlusions of athletes are also a common feature of video
footage due to the full-contact nature of the sport. These limitations severely impact the
aforementioned tracking methods’ performance, serving to inhibit the application of athlete
detection and tracking methods in AF [4]. One study used a custom person detector and
team classifier for detection and then tracked the athletes across frames of broadcast video
with a combination of Kalman filters and energy minimisation techniques [42]. The results
of this investigation struggled to overcome the changes in lighting conditions and frequent
occlusions of athletes.

Athlete tracking data, from body-worn Global Positioning System (GPS) to Local
Positioning System (LPS) devices, overcome the aforementioned challenges plaguing video
footages of AF matches [43]. However, the raw athlete tracking data from opposition teams
are unavailable to professional AF teams, meaning that an alternative method is needed
to obtain this information. Unique to professional AF is the commercial availability of
animations of athlete GPS data from all professional AF matches, which include opposition
teams, by Champion Data, the official statistics provider for the Australian Football League.
Athletes are represented as circles from a birds-eye view of a playing field (Figure 1, top
right), which simplifies the athlete tracking task because it removes the issues of lighting
variations, changes in athlete appearances, ambiguous differences between teammates,
occluded areas of the playing field, and camera distortion. Consequently, the animated
athlete tracking data provides a unique opportunity for the application of modern tracking-
by-detection techniques.

The aim of this technical study is to develop a tracking by detection technique to obtain
the field-relative positions of AF athletes using player animations based on GPS signals.
We will further establish pixel-to-Cartesian coordinate transformation coefficients unique
to each stadium. This novel application of tracking by detection enables tactical analyses of
opposition collective team behaviour and the development of interactive play sketching
tools in AF.
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Figure 1. Overview of the workflow used in this study. Raw GPS data is not available for the
opposition team. All steps using this information are highlighted by red boxes. GPS animations are
commercially available for both teams and all steps in the workflow using this data are highlighted
by green boxes. The numbers provided in brackets indicate the data set size used for each step.

2. Materials and Methods

Two sources of data obtained from a single professional AF team from the 2019
Australian Football League season, comprising 22 matches, were used for this study. A total
of three matches were excluded from analysis due to errors in the raw GPS data. A further
two matches were excluded due to errors in the visualisations. Another two matches
included only three of the four available quarters due to visualisation errors in the final
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quarter. Data from a total of 15 full matches, and the first three quarters of an additional
two matches were included. An overview of the full workflow of this study is displayed in
Figure 1.

The first data source comprised the visual representation of athlete GPS tracking data,
which was overlaid onto an image of the playing field it was originally collected from
(i.e., the actual ground the match was played on) (Figure 1). A visual animation of the
GPS data is produced by animating the output from the GPS sensors (Catapult S5 units)
during match play and was provided to the industry research partner, a professional AF
team, by the official statistics provider of the Australian Football League, Champion Data.
These third-party vendor athlete tracking data animations are commercially available to all
professional AF teams. The second source of data was raw GPS data from the GPS sensors
worn by a single team of athletes (n = 37) drawn from all matches in the 2019 AF playing
season. This study was approved by the Ethics committee from the University of Western
Australia (2020/ET000197).

2.1. Athlete Detection

Two-minute samples of the athlete tracking data animations, selected as the first
two minutes of match play from a total match time of two hours, were used to train
a state-of-the-art multiple-object detection ANN [44] to detect a single team. For this
purpose, athlete player animations were manually labelled using an online labelling tool;
supervise.ly (accessed on 9 May 2024) [45]. A total of 3476 images resulted in 60,612 labelled
athlete examples. This dataset was synthetically enlarged via conventional computer
vision cropping and flipping methods [46], resulting in a total of 41,712 images containing
704,987 labelled examples. The data were split into 85% (35,483 images) for training and
15% (6229 images) for testing. The images were resized to 416 × 416 pixels and used to
fine-tune a YOLOv4 object detection model (backbone: CSPDarknet53, neck: PANet, head:
YOLO Head) that was pre-trained on the MS-COCO dataset and which is publicly available
through the Darknet framework [44]. Training took place over 74,000 iterations with a
batch size of 64 [33], an initial learning rate of 0.001, a momentum of 0.949, and a decay of
0.0005. The mean average precision (mAP), precision, recall, and F1-scores were reported
as standard measures of model accuracy with an Intersection over Union (IoU) threshold of
0.5. The trained model was used to detect athletes in animations across the entire two hours
of a match and the centre of the detected bounding box was used to define an athlete’s
position in pixel coordinates.

2.2. Athlete Tracking

A pre-trained tesseract Optical Character Recognition (OCR) model was initially
employed to identify the athlete player numbers present in each detection [47]. However,
upon visual inspection, it was clear that the outputs of the OCR model were prone to
misidentification. Erroneous outputs were saved, corrected, and labelled, and comprised
multiple samples of images ranging from the digit 1 through 50 (i.e., the expected range in
athlete player numbers allocated to AF athletes). Data were split into 80% (121,230 samples)
for training and 20 % (30,331 samples) for testing. The fully corrected labels were used to
train a custom CNN to identify athlete player numbers in the detections (Figure 2), since
CNNs have shown their applicability in text recognition in images [48]. After performing a
grid search, the convolution kernels were set to a size of 3 × 3 and the pooling kernels were
set to a size of 2 × 2. Each layer utilised a rectified linear unit activation, with the exception
of the final classification layer, which used a softmax activation. The CNN was trained
using a five-fold cross-validation over 10 epochs with a batch size of 32, a learning rate
of 0.01, and a momentum of 0.9. A categorical cross-entropy loss function was optimised
during training using a stochastic gradient descent training process. Training accuracy and
loss were analysed during training, while the accuracy of the trained model was evaluated
on the test set. The trained CNN number reader was used to identify the athlete player

supervise.ly
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numbers present in each of the detections with an imposed condition that each number can
only occur once per team to reflect the actual use case.

Figure 2. Architecture details of the custom athlete number convolutional neural network. The first
box displays the input layer, followed by five convolutional layers of different sizes described by the
numbers. After flattening the data, the convolutional layers are followed by three dense layers of
different sizes. The blue and red shapes display the data flow through the network.

2.3. Conversion to the Field

To transform the athlete tracks in the animations from the image coordinate system to
a field-relative Cartesian coordinate system, the raw GPS data and the equivalent track of
athletes in the animations were used.

2.3.1. GPS Data

The start and end times of each quarter were recorded for each match and used
to extract the GPS information during match play. The GPS data were converted from
Earth-centred coordinates, in longitude and latitude, to field-relative Cartesian coordinates,
where the origin of the field-relative coordinate system was located at the centre of the field,
the X-axis was aligned from field-goal to field-goal, and the Y-axis aligned orthogonal to
the X-axis such that the positive direction is away from the team benches (Figure 1, bottom
left). The longitudinal and latitudinal coordinates of the centre of all competition fields
(LF, θF) were recorded using Google Earth [49]. Equations (1) and (2) were used to convert
the longitudinal and latitudinal coordinates of the athletes (LAth, θAth) to field-centred
Cartesian coordinates (XAth, YAth).

XAth = (θF − θAth)× Arc , (1)

YAth = (LAth − LF)× Arc , (2)

where Arc represents the arc distance of a degree over the Earth’s surface, as determined by

Arc =
2πR
360

, (3)

where R represents the radius of the Earth in meters, which is assumed to be a uniform
sphere with a constant radius of 6,378,137 m [50]. The bearing (ψ) between the field’s centre
(LF, θF) and the position on the fields boundary that corresponds with the maxima of the
y-coordinate (LFmax , θFmax ) was determined for each field using Equation (4):

ψ = arctan(J, K) , (4)

where
J = cos θFmax sin ∆L , (5)

K = cos θF sin θFmax − sin θF cos θFmax cos ∆L , (6)
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and
∆L = LFmax − LF . (7)

The bearing was used to align the field-centred Cartesian coordinates (XGPS, YGPS)
with the local coordinate system using the following:

XGPS = XAthcosψ + YAthsinψ , (8)

and
YGPS = −XAthsinψ + YAthcosψ . (9)

The field-relative GPS outputs were down-sampled to 1 Hz.

2.3.2. Animation Data

The athlete track in the animations were down-sampled to 1 Hz for ease of han-
dling prior to a conditional filtering data cleaning process to correct for errors in the
detection/tracking. (1) The position of any athlete whose movement was greater than
a pre-defined threshold of 55 pixels per frame was replaced with a missing value. This
threshold value was determined in initial pilot testing and equates to a speed of 8.2 m/s,
which is categorised as a high-intensity sprint that reportedly occurs 22 ± 9 times per
match [51]. (2) To avoid large jumps in an athlete’s movements in the instance where the
position was missed across multiple consecutive frames, the subsequent detected position
was also replaced with a missing value if the athlete’s movement exceeded the pre-defined
threshold. (3) An athlete’s position was also removed if the athlete was tracked in less than
five times in the subsequent ten frames following a missing value. Linear interpolation was
applied to minimise the number of missed positions and was only applied in instances of
less than or equal to five consecutive missing values. The athlete tracks and field-relative
GPS outputs were temporally aligned for each quarter.

An optimisation problem was established to determine the optimal scaling (mx,y) and
translation (cx,y) coefficients to transform the pixel coordinate outputs (u, v) to field-relative
Cartesian coordinates (Xu, Yv). This step is necessary for every stadium given that the
nine standard home stadiums used by AF teams nationally are of varying size. Initial tests
revealed a linear relationship defined by the following:

Xu = mxu + cx , (10)

and
Yv = myv + cy . (11)

The linear equation was optimised using the Levenberg–Marquardt algorithm through
a non-linear least squares method [52]. Axis-specific scaling and translation coefficients
were determined using separate optimisation problems because the scaling and translation
are different for the field’s X and Y axes. The optimisation was undertaken on a quarter-by-
quarter basis to account for variations in temporal alignments between the athlete detections
and the field-relative GPS. The Euclidean distance d(p, q) between the transformed object
detector output tracks p = (Xu, Yv) and the GPS Cartesian coordinates q = (XGPS, YGPS)
was determined as an accuracy measure if an athlete was present in both GPS and tracking
data. The Euclidean distance was defined as

d(p, q) =

√
n

∑
i=1

(qi − pi)
2 , (12)

where n is the total number of frames tracked.

3. Results

The athlete detector achieved an mAP of 0.94, a precision of 0.95, a recall of 0.97,
and an F1-score of 0.96. The custom CNN trained to read the two-digit player numbers
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achieved an average accuracy of 0.98 ± 2 × 10−3 on the test set across the five-folds of
training (Figure 3).

Accuracy

0.979 0.980 0.981 0.982 0.983 0.984 0.985

Figure 3. Boxplot of the accuracy measure distribution of the custom number reader model across
the five-fold cross-validation training protocol.

Each stadium had a unique pixel-to-Cartesian coordinate transformation equation (see
Equations (10) and (11) due to the non-standardised dimensions of an AF field. The stadium-
specific scaling and translation coefficients are presented in Table 1.

Table 1. Optimisation problem coefficient results grouped by stadium. Pix-uv is the pixel coordinates;
m Coeff and c Coeff are the scaling and translation coefficients, respectively.

Stadium (No. Matches) Pix-uv m Coeff (Mean ± Std) c Coeff (Mean ± Std)

Optus Stadium (10) u 0.15 ± 4.32 × 10−3 −160.02 ± 3.99
v 0.13 ± 3.46 × 10−3 −69.36 ± 2.04

Metricon Stadium (1) u 0.13 ± 7.85 × 10−4 −129.01 ± 0.62
v 0.15 ± 3.76 × 10−4 −81.69 ± 0.51

Adelaide Oval (2) u 0.12 ± 3.60 × 10−4 −117.23 ± 0.40
v 0.15 ± 3.96 × 10−4 −84.85 ± 0.38

Melbourne Cricket Ground (1.75) u 0.18 ± 3.13 × 10−4 −172.77 ± 0.24
v 0.14 ± 6.11 × 10−4 −81.65 ± 0.43

University of Tasmania Stadium (1) u 0.14 ± 6.42 × 10−4 −131.02 ± 0.52
v 0.18 ± 2.22 × 10−3 −101.01 ± 0.91

Manuka Oval (0.75) u 0.14 ± 1.17 × 10−4 −132.54 ± 0.22
v 0.17 ± 1.07 × 10−3 −95.14 ± 0.29

The median Euclidean distance between the GPS Cartesian coordinates and the trans-
formed pixel coordinates across the entire season was 2.63 m, with lower and upper quartile
values of 1.58 m and 4.04 m, respectively (Figure 4).
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Figure 4. Boxplot of the distribution of the 95% confidence interval Euclidean distance between the
transformed pixel coordinates and GPS field-relative coordinates. The distribution of the Euclidean
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distance for round 20 had a greater spread than all other matches. Further investigations revealed
an issue with the number reader implementation in this match. It was found that two athletes with
similar playing numbers were repeatedly misidentified.

4. Discussion

The aims of this research were to develop a tracking-by-detection technique to obtain the
field-relative positions of AF athletes based on commercially available GPS-based player
animations and to establish unique pixel-to-Cartesian coordinate transformation equations
for each AF stadium. Due to the vast ground sizes in AF, standard optical tracking methods
cannot be applied in AF [3]. Athlete tracking systems have therefore been largely confined
to GPS data that are not available for the opposing team. Hence, the novel method using
animated GPS data presented in this research is a valuable first step to analyse tactical
behaviour of both playing teams.

The high accuracy of the custom athlete detector (mAP 0.94, precision 0.95, recall 0.97,
F1-score 0.96) was comparable to previous successful attempts of similar tasks [3,9,14,17,53].
These results support the position that fine-tuning a multiple object detector is sufficient
for detecting AF athlete’s in animations. Due to the data volume and time requirements
to train a fully customised multiple object detector from scratch, the most appropriate
approach was to utilise a pre-trained object detector and fine-tune the model on our custom
dataset [16]. As such, the training time was reduced while also achieving favourable results
with a reduced data volume. Future work in this area may compare different multiple
object detectors, e.g., [54–57], to improve detection accuracy and reduce the time taken for
inference. Additionally, the model developed in this study may be used to generate a larger
athlete detection dataset to enable a multiple object detector to be trained from scratch as a
means for comparison. The dataset should also be expanded to include multiple teams to
increase the applicability of the athlete detector method presented here.

The use of a customised two-digit number reader for identifying the player numbers of
each tracked athlete, similar to the approach taken by Yoon and colleagues (2019) [17], was
substantively different to previous tracking-by-detection methods used in sports [9,15,36]
and achieved a high accuracy of 0.98. Although the combination of using multiple, separate
deep learning architectures in the athlete tracking pipeline is not an efficient process,
the good performance allowed for the determination of stadium-specific pixel-to-Cartesian
coordinate transformation coefficients, which can be used in future research. Previously
implemented pre-trained tracking models [15,35] were not suitable for implementation in
the current study due to the uniqueness of the dataset (i.e., athletes represented as dots with
playing numbers) in comparison to the data used to develop open-source tracking methods
(i.e., real-world images of humans). The application of pre-trained tracking models should
be explored by using the current method to generate the required data for training custom
tracking models specific to AF. In doing so, future work may develop alternative and more
streamlined tracking-by-detection methods.

The stadium-grouped coefficients of the pixel-to-Cartesian coordinate transformation
equations (Table 1) demonstrated low variability, thereby establishing a stadium-specific
method for transforming pixel coordinates to field-relative Cartesian coordinates. The slight
differences in the scaling and translation coefficients between stadiums demonstrated the
robustness of the approach in accounting for the varying field sizes used in AF [41].

The average positional accuracy of the current approach (2.63 m) is considered high
compared to the reported accuracy of commonly used GPS and LPS devices (0.96 ± 0.49 m
and 0.23 ± 0.07 m, respectively [43]). However, it was observed that the positional dif-
ferences between the transformed pixel coordinates and the GPS Cartesian coordinates
were systematic in nature (i.e., the magnitude and direction of was consistent for each
detected athlete). These observations suggest that the Euclidean distance between the trans-
formed pixel coordinates and GPS Cartesian coordinates can be reduced by fine-tuning the
transformation equations. Additionally, it is evident that the novel approach resulted in
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significant outliers (Figure 4) that were found to be attributable to detection method errors
and the subsequent misidentification of athletes. This error may be mitigated by adopting
more sophisticated post-processing and filtering protocols, or through the use of custom
tracking models. The applied conditional filter removed large outliers but at the same time
introduced large gaps without any information. Custom tracking models or filters such as
a Kalman filter could be used to minimise large detection gaps and therefore, by extension,
the misidentification of athletes [35]. The unequal representation of matches played at each
stadium impacted the present work, which can be attributed to idiosyncrasies of the AF
playing season draw, which saw the industry research partner not having played at every
AF stadium over the course of the 2019 season. This limitation could be addressed by using
data from multiple teams and seasons in future work, which, however, is challenging due
to the limited data availability of GPS data of different professional AF teams. Therefore,
the proposed method offers the opportunity to create a larger dataset that can be used in
the future to train more sophisticated and streamlined machine learning models for player
detection and tracking based on unique AF animations.

This research is the first step towards an automated tool for the determination of the on-
field position of players of both teams in AF. This information will allow sport professionals
to better understand tactical behaviour and interactions of a team or individual [5,6] and
support decision-making pertaining to performance and injury risk [4].

5. Conclusions

This study introduced a novel method to obtain the on-field location of AF athletes
with high accuracy from commercially available animations of athlete’s GPS data, circum-
venting the pitfalls of video data. The ability to obtain the on-field location of athletes in
this manner unlocks the potential of recent analytic advances in the study of collective
team behaviour, a research stream currently hampered by the unavailability of opposition
team athlete tracking data in AF. The method may easily be extended to obtain the on-field
locations of opposition team athletes and for the analysis of opposition team strategies.
Athlete tracking data of this type may also be used to develop interactive play sketching
tools in AF, which have recently been realised in the context of basketball and soccer [58,59].

Future work should expand on these methods across multiple areas. First, the total
volume of data should be increased by including multiple teams from the competition.
Second, variations in the proposed CNN architectures should be explored to realise a
real-time pipeline. And last, matches played at all stadiums should be included to ensure
that the transformation equations developed are applicable for any given competition.
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