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Abstract: A novel noise filtering algorithm based on averaging Intrinsic Mode Function 

(aIMF), which is a derivation of Empirical Mode Decomposition (EMD), is proposed to 

remove white-Gaussian noise of foreign currency exchange rates that are nonlinear 

nonstationary times series signals. Noise patterns with different amplitudes and frequencies 

were randomly mixed into the five exchange rates. A number of filters, namely; Extended 

Kalman Filter (EKF), Wavelet Transform (WT), Particle Filter (PF) and the averaging 

Intrinsic Mode Function (aIMF) algorithm were used to compare filtering and smoothing 

performance. The aIMF algorithm demonstrated high noise reduction among the 

performance of these filters. 
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1. Introduction 

Kalmam Filter (KF) was conceptualised for use in a linear system. In a nonlinear filter, Extended 

KF (EKF) requires Jacobian mappings, which can be computationally intensive if the vector 

measurement is high. However, limitations in computer processing may be a problem [1,2]. In brief, an 

EKF can estimate a highly non-stationary data series, with a known state space model incorporated 

along with EKF [3].  

Sanjeev et al. explained that Particle Filter (PF) has received much attention in various fields over 

the past decades [4]. The basic principle of PF is to use a set of weighted samples, also known as 

particles, to approximate the posterior probability of a time-varying signal of interest, given related 

observations. PFs generalize traditional KFs and can be applied to nonlinear and non-Gaussian  

state-space models. Similar to EKF, the PF algorithm is a two-state approach, i.e., prediction and 

correction; and is a technique for implementing recursive Bayesian filters by Monte Carlo sampling. In 

summary, PF represents the posterior density using a set of random particles with associated weights 

and requires a large number of particles. The most common applications of PFs are in the areas of 

image processing and segmentation, model selection, tracking and navigation, channel estimation, 

blind equalization, positioning in wireless networks, biochemistry, economics, finance, geosciences, 

immunology, materials science, pharmacology, and toxicology. Theoretically, the advantages of PF 

over EKF are in the representation of nonlinear functions because optimal estimation also uses 

nonlinear non-Gaussian state-space models [5–7].  

In 1996, Huang and Okine [8] developed a posteriori algorithm for analysing nonlinear and 

nonstationary datasets using EMD, which is known as the Hilbert-Huang transform (HHT). It was 

applied in many applications such as bioinformatics [6,7], signal processing [5,8,9], geophysics [10,11], 

and finance [8,9,12]. It was claimed that the HHT model could replace the narrow-band filter 

technique proposed by Hilbert-Gabor, when Fourier analysis was a vital tool for signal detections in 

the early days. EMD is based on the local time scale of the signal, which is decomposed using a sifting 

process [13,14]. The principle of Wavelet Transform (WT) is that an input signal is split into various 

small waves, which are compact or are functions with finite length. In recent years, a few studies have 

used a method that combines EMD and WT to reduce nonlinear, nonstationary signals such as 

electrocardiography (ECG) signals. However, there is no end solution to determine the stop criteria of 

the EMD process. A comparison of WT and HHT shows that both have similar time and frequency 

distributions using amplitude as the common axis, where the analytical results for WT indicate a 

number of deficiencies such as harmonics and small spikes in the frequency scale. Thus, WT may not 

be suitable for the analysis and capture of large volumes of data [15]. 

This paper presents a new novel digital filter termed ―aIMF‖ which is a derivative of EMD. The 

aIMF algorithm is used to reduce a noise associated with nonlinear nonstationary time series data sets 

(exchange rates). To verify the performance of the proposed aIMF digital filter, we compare it with 

WT, EKF and PF. The result shows the aIMF algorithm outperforms those mentioned filters. Section 2 

presents theoretical considerations of EMD, aIMF, WT, EKF and PF. The simulation and results 

including robustness test are presented in Section 3, whereas conclusion and discussion are in  

Section 4. 



Algorithms 2013, 6 409 

 

 

2. Theoretical Considerations of the Digital Filter 

Referring to Section 1, we propose theoretical considerations of existing algorithms using for 

filtering nonlinear nonstationary times series data; and those are, WT, EKF, PF, and our proposed 

aIMF, which is a derivative of EMD . 

2.1. EMD Algorithm 

The key part of the HHT algorithm is EMD because any complex dataset can be decomposed into a 

finite that admits a well-behaved Hilbert transform. Because the decomposition is based on the local 

characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes [8]. 

During signal processing, high frequency noise from the input data may be considered as different 

simple intrinsic mode oscillations [8]. In terms of signal processing, the EMD algorithm is viewed as 

an a posteriori method based on adaptive characteristic scale separation. This process is useful when 

the input signal oscillation is nonlinear and/or nonstationary. EMD is not suitable for sampling using a 

fixed time slot in the time series because the local mean of a signal is defined by enveloping without 

resorting to any time scale. Technically, EMD employs a sifting process and a cubic spline technique 

for smoothing and filtering a signal [8]. The cubic spline interpolation is applied as a two-sided filter, 

which improves the confidence interval of the dataset distribution. 

HHT is designed to decompose nonlinear and nonstationary signals, especially those with high 

volatility and fast frequency changes. The signal is adaptively decomposed into components and, after 

the decomposition of each step, the transformed signal is known as an Intrinsic Mode Function (IMF), 

which includes the different time scales intrinsic to the signal. IMF is a mono-component and can be 

transformed into an instantaneous frequency. IMF signals have also been defined as a function with a 

zero mean and with as many zero crossings as maxima or minima. The HHT process is divided into 

two parts: EMD and Hilbert Spectral Analysis (HSA). Figure 1 shows the EMD mechanism using a 

sifting process. It starts by identifying the maxima and minima points, extracting them, interpolating 

the maxima and minima envelopes, and computing the means of the local envelope.  
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Figure 1. Flowchart of Empirical Mode Decomposition (EMD) in the Hilbert-Huang 

transform (HHT). 

 

A nonlinear and nonstationary time series dataset is denoted as xi(t). The IMF, ci(t) is defined under 

the conditions that: (i) The numbers of extrema (maxima plus minima) and zero crossings in the entire 

data series must either be equal to or differ by at most one; and (ii) At any point, the mean value of the 

envelope defined by the local maxima and that defined by the local minima, must be zero [10]. These 

conditions are met  

( ) ( ) ( ),

( ) ( ) ( ) 1

i i i

i i i

nU t nL t nZ t

nU t nL t nZ t

  
 

     
(1) 
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( ) ( )
0

2

i iU t L t 
  

 

where nUi(t), nLi(t) and nZi(t), are the values of the maxima (upper peak), minima (lower peak) and 

zero crossing, of the EMD respectively. The EMD algorithm can be represented as follows. 
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Step 1: Spline the EMD datasets denoted to xk(t) by interrelating using Ui(t) and Li(t), which is 

given by 

 int 1int 2int 3int int( ), ( ) ( ), ( ), ( ),...., ( )k k nf U t x t U t U t U t U t  (2) 

and 

 int 1int 2int 3int 1int( ), ( ) ( ), ( ), ( ),...., ( )i kf L t x t L t L t L t L t  (3) 

The algorithm used for parabolic interpolation can be described as follows. 

(1) When constructing the upper and lower envelopes, we calculate the parabola coefficients of  

ax
2
 + bx + c using x(k − 1), x(k), (k + 1); 

(2) If the second-degree coefficient, a, equals zero, is x(k) is certainly not an extremum so the 

sliding window moves further on a discrete value of x(k); 

(3) If the first-degree coefficient, b, equals zero, x(k) is an extremum, either a maximum or 

minimum, depending on the sign. We then calculate the top of this parabola by introducing 

top
2

b
t

a


 ; similarly, applying to the bottom part of the parabolic curves; 

(4) Repeat (2) and (3) and stop after executing x(k + n). 

Step 2: Average the maxima and minima in order of the time series, which is represented as 

1int 1int 2int 2int 3int 3int int int( ) , , ,...,
2 2 2 2

n n
i

U L U L U L U L
m t

   
  (4) 

Step 3: Subtract the xi(t) 
from the average of the local extrema (maxima and minima) mi(t) in order 

of the time series, and the new decomposed signal is  

( ) ( ) ( )i k ih t x t m t 
 (5) 

Step 4: Repeat steps (i) through (iii) k times until 1 ( )kh t
 
equals c1(t). Using Equation (5) where

1( 1) 1 1( ) ( )k k kh t m h t   , we designate c1(t) as the first IMF. 

Step 5: Find other IMFs by calculating the first residual, which is given by 

1 1( ) ( ) ( )kr t x t c t   (6) 

We derive 2 3 4( ), ( ), ( ),..., ( )nc t c t c t c t ; thus, 1( )r t  is treated as a new dataset in the next loop, which is 

completes after obtaining cn(t). This procedure is represented by 

2 1 2( ) ( ) ( )r t r t c t 
 (7) 

                                                                           …… 

1( ) ( ) ( )n n nr t r t c t 
 (8) 

IMFs are narrowed band, zero-mean signals and the signal is decomposed into k IMFs by EMD, so 

each IMF is located in lower frequency regions in the time-frequency domain than the lagged signal. 

EMD can act as a dyadic filter bank for noise [16] and can be expressed as follows.  
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Since HHT has formed forms another function, HSA, it can be used as a tool for the time-frequency 

analysis of nonlinear and nonstationary datasets to present the results as a time-frequency-energy 

distribution [12]. For a comprehensive explanation of the Hilbert transform, refer to Cohen [16]. Given 

a real signal , the analytic signal  is defined as 

 (10) 

where is the Hilbert transform defined using the Cauchy principle value denoted by p.v. of  

 such that 

( )
( ) [ ( )] . . d

π( )

x
y t H x t p v

t










 
  (11) 

We can define the complex signals, amplitude A(t) and phase  as follows [8]  

 (12) 

( )
( ) arg ( ) arctan

( )

y t
t z t

x t
  

 
(13) 

where the time-varying phase or instantaneous frequency  can be given as 
d ( )

( )
d

t
t

t


  .  

From Equation (9), the original data is rearranged as follows: 

1

( ) Re ( )exp( ( )d )
n

i i

i

x t A t j t t


    (14) 

where 
 
denotes real part of the complex quantity. 

Using Equation (14) and performing the Hilbert transform on each IMF cn(t), the analytical data can 

be expressed in terms of the Hilbert amplitude and instantaneous frequency, as follows: 

1

( ) ( )exp[ ( )d ]
n

i i

i

x t R t j t t


   (15) 

As the HHT model comprises two main parts: EMD and HSA, the EMD process under a cubic 

spline and sifting technique decomposes the original signals into IMF. HSA calculates the 

instantaneous frequency using the Hilbert transform and analyses the entire time-varying instantaneous 

spectrum. It is crucial to mention that the analysis of the Hilbert spectrum is conducted to view the 

spectrum after the EMD process is finished. 

2.2. Creating the aIMF Algorithm 

Kaslovsky and Meyer [17] explained that a meaningful instantaneous frequency (IF) decomposed 

by the EMD algorithm must be nearly monochromatic, of which is a condition that is not guaranteed 

by the algorithm and fails to be met clearly when the signals is corrupted by noise. Several reports 

demonstrated that the EMD performance is likely to be sensitive and produces a large quantity of  

( )x t ( )z t

( ) ( ) ( )z t x t iy t 

( )y t

( )x t

( )t

2 2( ) ( ) ( ) ( )A t z t x t y t  

( )t
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noise [12,18]. Moreover, the accuracy of HHT analysis suffers from several mathematical and 

numerical effects that require further studies. This is mainly because HHT signals emerged from EMD 

algorithm are not shift-invariant in times (stationary) and is likely be full narrow band [18]. To reduce 

noise, one of the solutions was to normalise the analytic signal prior to Hilbert transform [8,19]. There 

were many studies to improve the HHT algorithms, and those at least are; adoption of wavelet packet 

transform as the pre-processes to decompose the signals into a set of narrow-band signals prior to the 

application of the EMD [20,21], and an ensemble empirical mode decomposition (EEMD) which 

consists of shifting an ensemble of white-added noise signals and treats the mean as a final true result, 

using a windowed average. One of the publications of the EEMD was used to add noise to provide 

stoppage criteria for the EMD process [9]. Kaiser [22] mentioned that Fourier spectral analysis and its 

derivatives such as WT encountered with a limited time window width by sliding a predetermined 

window(s) along the time axis. Moreover, there is a trade-off between the time consumed in the 

window width and the frequency resolution, and this phenomenon has been considered by the 

uncertainty principle Heisenberg [21]. In the WT, the window width must be preselected and it is 

known as the primary or mother wavelet which is a prototype that provides less flexibility when 

handling datasets where the mean and variances are highly volatile. 

It is imperative to restate that two conditions of EMD process defined in Section 2.1. However, with 

more iteration, the more residual rn(t) becomes either over-distorted or a monochromatic function from 

which no further IMF can be decomposed [11]. The other study confirmed that the real complex 

quantity of all IMFs decomposed i.e., IMF1 to IMF7, which are in the amplitude-frequency domain, 

shifted to the lower region [19]. 

To reduce noise produced in the EMD process, we propose to extract noise spreading to all of the 

spectrums by averaging all IMFs and subtract them from the original signals in which is represented by 

1

( )

( )

n

i

i
a

c t

c t
n




 
(16) 

Next, we subtract the averaged IMF in Equation (16), ca(t), from the original nonlinear, 

nonstationary times series datasets, xn(t). Thus, a new digital filter is created, which is given by 

aIMF( ) ( ) ( ) ( )n i at y t x t c t    (17) 

where yn(t) is a function of the aIMF algorithm. 

In Figure 2, the aIMF process starts by inputting the nonlinear, nonstationary times series data, Euro 

and US dollars (EUR-USD), exchange rates into the EMD process. The next block uses the results 

from the EMD process whereas the aIMF algorithm begins in the third block where all of the IMFs are 

averaged and the averaged IMFs are subtracted from the original datasets. 
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Figure 2. Block diagram of the proposed averaging Intrinsic Mode Function  

(aIMF) algorithm. 

 

Referring to Figure 2, the proposed algorithm aIMF has an advantage which provides stoppage 

criteria once the two conditions of the EMD process defined in Section 2.1 are accomplished. This is 

because with more iteration, the more residual rn(t) becomes either over-distorted or a monochromatic 

function from which no further IMF can be decomposed. 

2.3. Theoretical Considerations of the WT Algorithm 

Helong et al. [23] applied the WT of a signal , which was early defined in [21] as follows 

1
2( , ; , ) ( ) d

a

x b
WT a b x a f x x

a
 






 
  

 
  (18) 

where WT represents the calculated coefficients, and  are the translation parameters and scale, 

respectively,  is the transforming function (mother wavelet) and the bar over  indicates its 

complex conjugate. A wavelet is classified as an adaptive algorithm, which is used in many fields such 

as astronomy, acoustics, nuclear engineering, signal processing and the prediction of earthquakes by 

solving partial optimized equations and reducing the random noise [15]. A factorization of f at 

different resolution levels is defined by  

1

, , , ,J i J i j i j i

i j J i

f c d 
 

  

    (19) 

where  represents the information in the signal on the coarsest level, 
 
is the scaling function and 

 represents the details (wavelet coefficients) at the different scales necessary to reconstruct the 

function at the fine scale 0, at which the wavelet and scaling functions are compactly supported. 

The next step is to introduce the thresholding technique that is used to remove noise from each local 

set of , which are normally affected at different levels of the scale j. This is given by Li [24] 

0

i i

i

i i

d d

d

d d

 

 

 




 
    

where  is the indicator and  is the thresholding value. To find the thresholding value , we 

introduce factorizing  and we obtain , which approximates . The error (risk) between  and its 

approximation  is given by  

( )f x

b

( )x 
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,J id
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   (20) 

In terms of the wavelet coefficients under Parseval’s identity [24], the transform shown in  

Equation (20) can be expressed as 

  2 2

, ,2

ˆ ˆ, ( )j k j k

j k

R f f d d d d     
(21) 

Applying Equations (19) and (21) with respect to any resolution level, j = 1, 2, ..., J, we use Stein’s 

principle [25] to minimize the risk in Equation (21). The thresholding value  is finally obtained as 

2

, ,

1 ˆ2 ( )j k j k

j k

d d
N

    (22) 

2.4. Theoretical Considerations of the EKF Algorithm 

In a nonlinear system, however, KF can be enhanced using a Taylor series to expand the state 

Equation (23) and output Equation (24) around a nominal state, known as a linearized KF. A summary 

of the linearized KF algorithm is  

 (23) 

 
(24) 

where  is the state of the system, denoted for the next time series of the original datasets xk; k is the 

time index; uk is the driving function that may call a signal control or distribution function;  is a 

noise, independent and identically distributed (i.i.d.) N(0,Q), where Q is the covariance (matrix) of the 

state; 
 
and is another noise, i.i.d. N(0,R), where R is the covariance (matrix) of the measurement of 

noise; 
 
is the measured output; and f(.) and h(.) are the state equation and output equation, 

respectively. The state and output functions in the case are nonlinear functions. Thus, Equations (27) 

and (28) are nominal states that are known (predicted) ahead of time, which are represented by  

 (25) 

 
(26) 

where  is the nominal state of the system and  is the nominal measured output state. 

During each step, we compute the partial derivative matrices of Ak and Ck with respect to xk, and we 

obtain in the following equations 

 (27) 

 
(28) 

where A and C are matrices. Next, we define 
 
as the difference between the actual measurement 

 

and the nominal measurement , which is given by 



1 ( , )k k k kx f x u w  

( )k k ky h x v 

1kx 

kw

kv

ky

1 ( , )k kx f x u 

( )ky h x

1kx  y

( , )k k kA f x u

( )k kC h x

ky ky
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( )k k k k ky y y y h x      
(29) 

In this state, the following linearized KF equations can be executed as follows: 

 (30) 

1
ˆ ˆ ˆ( )k k k k k K kx A x K y C x      

 
(31) 

 
(32) 

1 1 1
ˆ ˆ

k k kx x x   
 

(33) 

where Kk is the Kalman gain, Pk is the covariance of the error of the estimation and I is the  

identity matrix. 

In the linearized KF, there is a limitation that the nominal state  must be set prior the execution. 

EKF then assumes that  equals  in the bootstrapping approach to the state equation. Thus, 

Equations (27) and (28) are subsequently changed to  

 (34) 

ˆ( )k kC h x
 

(35) 

In Equation (31), where  equals , Equation (31) can be rearranged to produce 

 (36) 

substitute Equations (34) and (35) into Equation (36), we obtain Equation (37). As a result, EKF 

equation can be represented by applying Equations (31), (32) and (37) which is given by 

1
ˆ ˆ ˆ( , ) [ ( )]k k k k k kx f x u K y h x     (37) 

In the initial state where k = 0,  is predetermined using its means and Qk and Rk are relevant to . In 

the execution mode, the measurement update (output state) adjusts the projected estimate based on an 

actual measurement at that time. It should be noted that EKF applies Equations (30), (31) and (37) to 

update the prediction mode after the state is changed periodically and the Kalman gain Kk determines 

how the observer responds to the difference between its estimated output and the noisy measurement. 

To simplify this, we can present EKF as the system block diagram shown in Figure 3. 

  

1( )T T

k k k k k kK P C C P C R  

1 ( ) T

k k k k k kP A I K C P A Q   

x

x x̂

ˆ( , )k k kA f x u

x x̂

1
ˆ ( )k k k k kx A K y C   

x x
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Figure 3. System block diagram of Extended Kalman Filter (EKF). 

 

2.5. Theoretical Considerations of the PF Algorithm 

The theoretical considerations of the PF model start by considering a hidden Markov model (HMM) 

that observes the outputs xi indirectly using state yi, and we can specify a simple model as follows  

 (38) 

 
(39) 

where in state equation (transition) for k > 1, and  

( )k kh y x
 
in measured state (observation) (40) 

where all states are homogeneous, and the probabilities of transitions and observations are independent 

of time, see Figure 4. 

Figure 4. HMM showing the transition and observation states. 

 

1 1~ ( )x x

1( )k kf x x 
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The goal is to estimate xk, which is equivalent to xi the original datasets, given all observations up to 

point (y1:n). Alternatively, we need to find the posterior distribution of . Using Bayes, we 

end up with two steps as follows:  

(i) Update step:  

1: 1

1:

1: 1

( ) ( )
( )

( )

k k k k

k k

k k

h y x p x y
p x y

p y y







 
(41) 

(ii) Prediction step: 

1: 1 1 1 1: 1 1( ) ( ) ( )k k k k k k kp x y f x x p x y dx       (42) 

We often find that these distributions were intractable, especially the nonlinear and Gaussian model 

in closed form. The solution is to approximate the distributions using a large number of samples 

(particles). To address the problems in Equations (41) and (42), it might not be too difficult to 

appropriate the intractable integrals appearing in those equations directly, where the alternative is to 

use important sampling or sequential importance sampling (SIS). The advantage of SIS is that it does 

not guarantee to fail as t increases and it becomes more and more skewed, especially when sampling 

high-dimensional spaces [26]. 

Thus, we propose a bootstrap PF, which is an iterative method of Bayesian inference for a dynamic 

state space. The algorithm of the bootstrap PF model is described as follows:  

(1) Assume  is the posterior probability distribution at k − 1 where the transition 

state (state equation) is
 

  

(2) Resample , which is the prior probability distribution at k − 1 using the  

bootstrap algorithm  

(3) Find a weight by Monte Carlo integration using 
 
and  to obtain,

 
     1 1 1 1 1 1d i i

k k k k k k k k

i

p x x p x y x w p x x        

(4) From (3), use  to estimate the particle at k − 1 and obtain

 1 1 1
ˆ ˆ ˆ( , ); 1,2,...,i i

k k kS x w i N    . 

(5) Update the likelihood function 
 
with 

 
and . 

(6) From (5) use the new updated likelihood to update
 

, which is the posterior 

probability distribution at k using a normalised weight from time to time. The weight can 

either be the averaging of all the weights or the last weight only. 

(7) Finally, we obtain 
 
the posterior probability distribution at k. 

3. Simulation and Results 

The aim of this section is to compare the performances of all the proposed digital filters and 

recommend the best fit filter. We use R Programming to simulate the original datasets that has a suite 

of noise added to it. After completing the simulations, we applied a variety of loss estimations, i.e., 

1: 1:( )n np x y

 1 1k kp x y 

  1 1 1, ; 1,2, ,i i

k k kS x w i N   

 1k kp x x 

 1 1k kp x y   1k kp x x 

 1 1

i i

k k k

i

w p x x 

 k kp y x 1
ˆ i

kx  1
ˆ i

kw 

 k kp x y

 k kp x y
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Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), 

R
2
, AIC, BIC and Accuracy count which is a sum of the upward and downward movements of all the 

underlying local signals after they had transited the reversion points. See flowchart of simulation and 

results in Figure 5. 

Figure 5. Flowchart shows simulation and results of aIMF, WT, EKF and PF. 

 

3.1. Adding White-Gaussian Noise 

We created six sets of sine wave which is i.i.d. N(0, 2 ) for the frequencies in Hz of 1, 5 and 10 

with the amplitude of 10% and 20% of the original datasets, at 100% random distribution. Those 

parameters were applied to the exchange rates data points xk(t) in time series. The distribution of these 

added noise are similar to white-Gaussian noise as shown in Figure 6.  

Figure 6. Six sets of sine wave as frequencies in Hz of 1, 5 and 10 with the amplitude of 

10% and 20% of exchange rates. 
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For ease of presentation, Figure 6 shows the x-axis representing just 100 data points out of the total 

2322 data points in the time series, whereas the y-axis is representing the amplitude. We introduced a 

variety of testing methods, namely; (a) Anderson-Darling, Lilliefors (Kolmogorov-Smirnov) and 

Pearson chi-square for nonlinear test; and (b) Augmented Dickey-Fuller and Elliott-Rothenberg-Stock 

for nonstationary test. Referring to Equation (23) xk represented datasets, EUR-USD, exchange rates, 

in which their nonlinear and nonstationary characteristics were verified by all the testing methods; and 

wk represented the six sets of sine wave created in Section 3.1. The equation which used to add white 

Gaussian noise to the original datasets can be rearranged as follows  

( ) ( ) ( )kg k kgx t x t t   (43) 

where xkg(t) is the original signal with the noise, xk(t) is the original datasets and ( )kg t  is the added 

noise with i.i.d. N(0,1) at section of various frequencies in Hz of 1, 5 and 10 with 100% of random 

distribution of xk(t). To verify that the Equation (43) is nonlinear equation, we tested the xkg(t) with the 

different parameters of the noise added. As per the results, all of the p-value generated by all the 

testing methods mentioned earlier were less than 0.05. This served to imply that the characteristics of 

xkg(t) was nonlinear and nonstationary. Later, xkg(t) was used as input signal to estimate the 

performance of the following algorithms: (i) aIMF, (ii) WT, (iii) EKF and (iv) PF. 

3.2. Simulation and Performance Measurements of the aIMF Algorithm 

The objective of this section is to measure the performance of the aIMF algorithm compared with 

the original datasets, i.e., the EUR-USD exchange rates. To test the performance of the proposed aIMF 

algorithm when filtering the original signals with white Gaussian noise, we applied a variety of loss 

estimators, i.e., MSE, MAE, MAPE, R
2
 and Accuracy count.  

At the beginning, we tested the five exchange rates i.e., EUR-USD with Normality and Unit Root 

tests and found that they are nonlinear and nonstationary time series. Next, we simulated the aIMF 

algorithm using an R Programming that comprised C++ scripts, which followed the logic in  

Section 2.2. Figure 7 shows that we produced a new signal, which was filtered by the aIMF algorithm.  

Figure 7. Plots of the original datasets, original datasets + noise, and the aIMF algorithm. 
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Having simulated the aIMF algorithm with all noise parameters mentioned in the early of  

Section 3.1, the results are in the same magnitude and directions. To simplify the graph presentation, 

we selected the x-axis representing the data points in the time series of overall data range, and two sets 

of y-axis representing the original datasets, EUR-USD exchange rates (Y2) and the original datasets + 

noise (Y1) of which shows only the noise’s plot of 1 Hz at 10% amplitude (Y1) with 100% random 

distribution. We analysed the plots and found that the aIMF curve resided within the curve of  

―the original datasets + noise‖. The trend of those three plots was in the same direction. In terms of 

estimation, Tables 1–6 indicate that all loss estimators, namely; MSE, MAE, and MAPE are relatively 

low ranging from 0.00296–0.00596, 0.04838–0.06618 and 4.08815–5.59678, respectively.  

The R
2
 is in the high ranging, from 0.8533–0.9228, whereas, AIC and BIC are high, up to −6305.47 

and −6974.09, respectively. The Accuracy count showed 57.69%–79.66%. As a result, the 

performance of the aIMF is acceptable.  

We continued the simulations using 5% of random distribution of the added noise instead of 100%. 

The results showed that the less numbers of the random noise distributed the better performance of the 

aIMF algorithm. For example, at 5% random distribution of the added noise at 1 Hz with 10% 

amplitude, the loss estimators, namely; MSE, MAE, MAPE, R
2
, AIC, BIC and Accuracy count were 

0.00014, 0.01019, 0.88981, 0.99820, −15723.93, −15706.68, and 95.86%, respectively; and it 

outperformed those of simulations with 100%  random distribution. 

Table 1. Performance measurements of original datasets using noise distribution at 100% 

with 1 Hz and 10% amplitude of the original signals. 

EUR-USD MSE MAE MAPE R
2 

AIC BIC Accuracy count (%) 

aIMF 0.00399 0.05636 4.77093 0.8962 −6305.47 −6288.22 77.34 

WT 0.00506 0.05402 5.54677 0.7231 −6877.81 −7857.63 53.82 

EKF 0.00548 0.06432 5.44475 0.8701 −5783.21 −5765.96 47.13 

PF 4.52658 1.65756 140.015 0.0062 −1060.50 −1043.25 50.32 

Table 2. Performance measurements of original datasets using noise distribution at 100% 

with 1 Hz and 20% amplitude of the original signals. 

EUR-USD MSE MAE MAPE R
2 

AIC BIC Accuracy count (%) 

aIMF 0.00296 0.04838 4.08815 0.9228 −6991.34 −6974.09 79.66 

WT 0.05439 0.05311 5.79178 0.6759 −6397.83 −6804.50 54.23 

EKF 0.02043 0.12765 10.7989 0.6385 −3407.66 −3390.41 48.51 

PF 4.43079 1.64779 139.747 0.0067 −1061.73 −1044.48 49.76 

Table 3. Performance measurements of original datasets using noise distribution at 100% 

with 5 Hz and 10% amplitude of the original signals. 

EUR-USD MSE MAE MAPE R
2 

AIC BIC Accuracy count (%) 

aIMF 0.00522 0.06303 5.32770 0.8760 −5891.33 −5874.08 74.92 

WT 0.00599 0.05636 4.77151 0.8962 −6303.39 −6286.15 55.51 

EKF 0.00503 0.06159 5.22073 0.8807 −5980.49 −5963.24 47.65 

PF 4.47322 1.64897 139.488 0.0096 −1067.39 −1050.14 50.24 
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Table 4. Performance measurements of original datasets using noise distribution at 100% 

with 5 Hz and 20% amplitude of the original signals. 

EUR-USD MSE MAE MAPE R
2 

AIC BIC Accuracy count (%) 

aIMF 0.00596 0.06415 5.42792 0.8534 −5501.99 −5484.74 64.41 

WT 0.00571 0.07660 4.78754 0.8761 −6890.19 −6897.21 56.13 

EKF 0.01870 0.12247 10.3683 0.6637 −3575.62 −3558.38 48.00 

PF 4.50770 1.64377 138.983 0.0074 −1063.27 −1046.02 50.58 

Table 5. Performance measurements of original datasets using noise distribution at 100% 

with 10 Hz and 10% amplitude of the original signals. 

EUR-USD MSE MAE MAPE R
2 

AIC BIC Accuracy count (%) 

aIMF 0.00527 0.06444 5.44396 0.8710 −5799.61 −5782.36 67.26 

WT 0.00508 0.06890 5.79883 0.8948 −6273.51 −6745.29 56.82 

EKF 0.00406 0.05546 4.69540 0.9017 −6429.89 −6412.64 51.66 

PF 4.47322 1.64897 139.487 0.0096 −1067.39 −1050.14 50.24 

Table 6. Performance measurements of original datasets using noise distribution at 100% 

with 10 Hz and 20% amplitude of the original signals. 

EUR-USD MSE MAE MAPE R
2 

AIC BIC Accuracy count (%) 

aIMF 0.00580 0.06618 5.59678 0.8533 −5501.09 −5483.84 57.69 

WT 0.00521 0.06003 4.57416 0.6941 −6843.56 −6899.78 53.34 

EKF 0.01490 0.11046 9.34639 0.7140 −3951.51 −3934.26 51.62 

PF 4.61609 1.67868 141.868 0.0049 −1057.44 −1040.19 50.45 

3.3. Simulation and Performance Measurements of the WT Algorithm 

The objective of this section was to measure the performance of the WT algorithm compared with 

the original datasets, i.e., the EUR-USD exchange rates using the same simulating model and loss 

estimators employed in Section 3.2. 

Similar to Figure 7, Figure 8 shows three plots, i.e., the original datasets (Y2), the ―original  

datasets + noise‖ (Y1) and ―WT‖ (Y1). We analysed the plots and found that the WT curve resided 

within the curve of ―the original datasets + noise‖ except a spike occurred at between the data 1112nd 

to 1213rd rank of the x-axis. The trend of those three plots was in the same direction. In terms of 

estimation, Tables 1–6 indicate that all loss estimators, namely; MSE, MAE, MAPE are relatively low, 

ranging from 0.00506–0.00599, 0.05402–0.07660 and 4.7715–5.79883, respectively. The R
2
 is in the 

below standard ranging from 0.85340–0.8948, whereas, AIC and BIC are relatively high, up to 

−6890.19 and −6286.15, respectively; whereas the Accuracy counts showed 53.82%–56.13%. As a 

result, we rated the performance of the WT algorithm is relatively low and hardly acceptable. 
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Figure 8. Plots of the original datasets, original datasets + noise, and the Wavelet 

Transform (WT) algorithm. 

 

3.4. Simulation and Performance Measurements of the EKF Algorithm 

The objective of this section is to measure the performance of the EKF algorithm compared with 

the original datasets, i.e., the EUR-USD exchange rates using the same methods employed by  

Section 3.2.  

Similar to Figure 7, Figure 9 shows three plots, i.e., the original datasets (Y2), the ―original datasets 

+ noise‖ (Y1) and EKF (Y1). We analysed the plots and found that the EKF curve resided within the 

curve of ―the original datasets + noise‖ except a spike occurred at the beginning of the  

x-axis. The trend of those three plots was in the same direction. In terms of estimation, Tables 1–6 

indicate that all loss estimators, namely; MSE, MAE, MAPE are relatively low ranging from  

0.00406–0.01870, 0.05546–0.12765 and 4.69540–10.7989, respectively. The R
2
 is in the ranging from 

0.6637–0.9017, whereas, AIC and BIC are high, up to −6429.89 and −6412.64, respectively, and  

the Accuracy count showed 47.13%–51.66%. As a result, the performance of the EKF algorithm  

is unacceptable. 

Figure 9. Plots of the original datasets, original datasets + noise, and the EKF algorithm. 
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3.5. Simulation and Performance Measurements of the PF Algorithm 

The objective of this section is to measure the performance of the PF algorithm compared with the 

original datasets, i.e., the EUR-USD exchange rate using the same methods employed by Section 3.2.  

Similar to Figure 7, Figure 10 shows three plots, i.e., the original datasets (Y2), the ―original 

datasets + noise‖ (Y2) and PF (Y1). We analysed the plots and found that the PF curve did not agree 

with the curve of ―the original datasets + noise‖ and the original dataset’s, inasmuch as fluctuations of 

those three plots were not the same. The loss estimations emerged by varieties of noise parameters, in 

terms of estimation, Tables 1–6 indicate that all loss estimators, namely; MSE, MAE, MAPE are 

relatively low ranging from 4.43079–4.52658, 1.64377–1.67868 and 139.488–141.868, respectively. 

The R
2
 is unacceptable with the ranging of 0.0049–0.096, whereas, AIC and BIC are relatively too low 

i.e., −1067.39 and −1046.02, respectively, whereas the Accuracy count showed 49.76%–50.58%. As a 

result, the performance of the PF algorithm is also unacceptable. 

Figure 10. Plots of the original datasets, original datasets + noise, and the Particle Filter 

(PF) algorithm. 

 

3.6. Discussion  

Based on the simulations of the algorithms namely; aIMF, WT, EKF and PF, we have 

found that the aIMF performed the best, following in the order to WT, EKF and PF. 

Theoretically, the successful application of EMD resides on the fact that the noise is not biased. 

Therefore, there is not so much of a restrictive constraint, comparing to the scenario of 

encountering with non-zero mean noise. As mentioned, the characteristics of IMF after several 

iterations move towards the normal distribution; see Figure 11. Thus, subtracting the averaged 

IMF with the original signals, given aIMF, can reduce the noise inevitably. However, the 

proposed aIMF algorithm using cubic spline interpolation does not intend to preserve edges of 

the datasets/signals. This is because of our target to reduce noise that may associate with the 

upper and lower boundaries of the curves, which are in time series domain. In this particular 

case, preserving the edges/curves can unavoidably keep the noise mixing within the signals. 

Unlike the images whose distribution is random walk, the noise reduction can be achieved while 
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the edges are preserved [27]. Referring to Section 3.1, we manually added a variety of noises 

into the datasets with separate simulations; and later proved that the noises have been removed 

significantly, displayed in Figure 7 and Tables 1–6. To continue to prove the aIMF algorithm’s 

performance, we simulated the aIMF algorithm with the original datasets—without adding extra 

noise. The results measured by MSE, MAE, MAPE, R
2
 and Accuracy count were 8.20211E−05, 

0.00719, 0.57085, 0.9980 and 99.95%, respectively. It is noted that the original datasets,  

EUR-USD exchange rates, contained a certain level of noise, not pure signal only. In the real 

application, data of exchange rates are normally fluctuated before closing hours of trading by 

retailers and speculators who want to manipulate the price. The manipulations are always 

executed with low volumes of trade, but enable the price changes at the end of trading hours. In 

the financial community, we deem these trades as noise. Finally, the figures from the last loss 

estimators shown were similar to the results in Tables 1–6. Hence, it is safe to assume that the 

proposed aIMF algorithm can remove the unwanted signals.  

Figure 11. Graphs (a)–(c) show plots of IMF1, IMF5 and IMF7, of which their local 

extrema of higher order IMF moved toward the normal distribution. 

 

(a) 

 

(b) 
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Figure 11. Cont. 

 

(c) 

On another front, the simulation results from the WT algorithm seemed to be unacceptable under 

the rationale that Fourier spectral analysis and its derivatives such as WT encountered with a limited 

time window width by sliding a predetermined window(s) along the time axis [28]. Moreover, there is 

a trade-off between the time consumed in the window width and the frequency resolution, and this 

phenomenon has been considered by the uncertainty principle Heisenberg [21]. In this particular case, 

the WT’s window width must be preselected and it is known as the primary or mother wavelet which 

is a prototype that provides less flexibility when handling datasets were the mean and variances are 

highly volatile. In case of EKF simulation, the advantage of SIS is that it does not guarantee to fail as 

time increases and it becomes more and more skewed, especially when sampling high-dimensional 

spaces [26]. For the PF algorithm, we have found that the number of particles (data-points) was not 

adequate for Monte Carlo simulation. However, the drawback of the aIMF algorithm is that it requires 

long time to spline the local extrema.  

3.7. Robustness Test  

Robustness testing is any quality assurance methodology focused on testing the consistent accuracy 

of software. In this section, we test the algorithms of aIMF, WT, EKF and PF which function as noise 

reduction models. The testing strategies used different inputs other than the EUR-USD exchange rates 

with the added noise, which are created from 1 Hz sine wave at 10% amplitude of the original datasets 

with the 10% random distribution. Those different inputs are EUR-JPY with the added noise,  

EUR-CHF with the added noise, finally, EUR-GBP with the added noise. Later, we used loss 

estimators to measure the prediction performances of the proposed aIMF, WT, EKF and PF, i.e., MSE, 

MAE, MAPE, R
2
, AIC, BIC and Accuracy count. Having simulated with all the loss estimators 

indicated in Tables 7–9 under the same conditions used to test for EUR-USD as input, the results 

shared the same trend with few deviations from each other. This served to confirm that the aIMF 

algorithm performed significantly better when filtering a nonlinear nonstationary time series, i.e., 

EUR-JPY, EUR-CHF and EUR-GBP exchange rates, followed by WT and EKF algorithms. Moreover, 

we rejected using the PF algorithm to reduce the noise for the nonlinear nonstationary time series data. 

Additionally, we have discovered that the EKF and WT algorithm must be optimised in the areas of 

resampling and building up mother wavelet, respectively.  
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Table 7. Performance measurements of original dataset, EUR-JPY, using noise distribution 

at 10% with 10 Hz and 20% amplitude of the original signals’. 

EUR-JPY MSE MAE MAPE R
2 

AIC BIC Accuracy count (%) 

aIMF 0.00424 0.057854 8.29746 0.5219 −6782.23 −6764.98 63.85 

WT 0.00626 0.05676 8.67169 0.5514 −6839.68 −682.42 53.46 

EKF 0.00516 0.063797 9.15559 0.4046 −6272.94 −6255.69 49.50 

PF 3.37133 1.42611 204.696 0.0020 −5074.33 −5057.08 50.19 

Table 8. Performance measurements of original dataset, EUR-CHF, using noise 

distribution at 10% with 10 Hz and 20% amplitude of the original signals’.  

EUR-CHF MSE MAE MAPE R
2 

AIC BIC Accuracy count (%) 

aIMF 0.03772 0.145457 0.420782 0.9983 −1086.41 −1069.16 88.96 

WT 0.08124 0.1745481 0.53478 0.5905 −6852.24 −6699.54 53.20 

EKF 0.37038 0.176222 0.519026 0.5588 −11843.6 −11860.9 45.71 

PF 1218.50 34.52886 101.8893 0.4421 −12388.2 −12405.5 50.84 

Table 9. Performance measurements of original dataset, EUR-GBP, using noise 

distribution at 10% with 10 Hz and 20% amplitude the original signals’. 

EUR-CHF MSE MAE MAPE R
2 

AIC BIC 
Accuracy count 

(%) 

aIMF 0.00424 0.057854 8.306478 0.5191 −6802.20 −6784.98 64.92 

WT 0.00826 0.065946 9.319482 0.6435 −6699.65 −6382.98 51.08 

EKF 0.00517 0.063851 9.171988 0.4055 −6309.97 −6292.68 49.20 

PF 3.33789 1.435658 206.7395 0.0006 −5104.53 −5087.27 48.68 

The following configurations were used to perform all the simulations:  

(i) Intel(R) Xeon(R) server with 2 × 2.4 GHz E5620 CPUs, 3.99 GB RAM and a 64-bit 

Microsoft Windows Operating System is configured as the main processor.  

(ii) Sony Visio, Sony L2412M1EB Desktop with an Intel Core i5, 2.5 GHz, 8 GB RAM, and a 

64-bit Microsoft Windows Operating System is used as the front-end connection to the data 

terminal from Bloomberg via web access using a Citrix client. 

(iii) Application programs written using R programming scripts and some amendments to suit  

the requirements.  

The simulation results showed that there were no bugs in the software scripts, and an average 

execution time of 3 s for all the Ordinary Least Square (OLS) models. 

4. Conclusion  

Noise reduction for a nonlinear nonstationary time series is challenging since the models require a 

large amount of computational power and more complicated logic than conventional filters. This paper 

proposed a new filter, the aIMF algorithm, which demonstrated its accuracy and robustness, compared 

with the WT, EKF and PF algorithms. In this study, we discovered that PF is not suitable for this kind 

of work. Additionally, the EKF and WT algorithms should be optimised. It may be because the number 



Algorithms 2013, 6 428 

 

 

of particles for sampling and weights were not enough albeit the number of data-points used were 

more than 2000. Future work to enhance the efficiency of the aIMF algorithm are in the area of (i) 

optimising the cubic spline algorithm to be more suitable to the input which sometimes persisted to its 

mean, and (ii) investigating the possibility of designing a DSP chip for the aIMF algorithm. 
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