
algorithms

Article

The NIRS Brain AnalyzIR Toolbox

Hendrik Santosa 1, Xuetong Zhai 2, Frank Fishburn 3 ID and Theodore Huppert 4,*
1 Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA;

hendrik.santosa@pitt.edu
2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA; xuz19@pitt.edu
3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA; fishburnf@upmc.edu
4 Departments of Radiology and Bioengineering, University of Pittsburgh, Clinical Science Translational

Institute, and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213-2536, USA
* Correspondence: huppertt@upmc.edu

Received: 30 March 2018; Accepted: 12 May 2018; Published: 16 May 2018
����������
�������

Abstract: Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique
that uses low-levels of light (650–900 nm) to measure changes in cerebral blood volume and
oxygenation. Over the last several decades, this technique has been utilized in a growing number of
functional and resting-state brain studies. The lower operation cost, portability, and versatility of this
method make it an alternative to methods such as functional magnetic resonance imaging for studies
in pediatric and special populations and for studies without the confining limitations of a supine and
motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming
from the unique physics of the technique, the unique statistical properties of data, and the growing
diversity of non-traditional experimental designs being utilized in studies due to the flexibility of
this technology. For these reasons, specific analysis methods for this technology must be developed.
In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis
package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject
and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox,
which is based on the object-oriented programming paradigm. We also detail the algorithms for
several of the major components of the toolbox including statistical analysis, probe registration, image
reconstruction, and region-of-interest based statistics.

Keywords: Functional near-infrared spectroscopy; toolbox; statistical analysis

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive technique that uses low levels
of red to near-infrared light (650–900 nm) to measure changes in the optical properties of tissue;
particularly those due to changes in blood/hemoglobin volume and oxygenation [1–3]. For brain
imaging, fNIRS uses discrete light emitters and detectors (collectively termed optodes) placed on the
surface of the scalp either directly or through fiber optics to measure changes in the absorption of light
as it passes along a diffuse path between the two optodes. By positioning multiple optodes around
the head, different brain regions can be simultaneously recorded and used to infer underlying brain
activity based on the brain’s localized hemodynamic response. In comparison to other modalities, such
as functional magnetic response imaging (fMRI), fNIRS is more portable, has a lower operating cost,
and allows for measurements from a wide range of populations such as those with contraindications
to MRI. However, a limitation of this method is its lower spatial resolution and depth of penetration
compared to fMRI. FNIRS is limited to the outer cortex of the brain (roughly 5–8 mm of the brain’s
surface) [4], but this sensitivity also varies according to subject anatomy. In addition, since these

Algorithms 2018, 11, 73; doi:10.3390/a11050073 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-1227-2834
http://www.mdpi.com/1999-4893/11/5/73?type=check_update&version=1
http://dx.doi.org/10.3390/a11050073
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 73 2 of 33

measurements are recorded from the scalp’s surface, fNIRS is also more sensitive to contamination
from superficial physiology in the skin, which poses unique challenges for data analysis [5,6].

Over the last three decades, fNIRS has been used in a wide range of studies including pediatric
populations (e.g., [7]), clinical studies (e.g., [8]), multimodal validations (e.g., [9]), and cognitive
testing (e.g., [10]). However, as the fNIRS field has evolved and this technology has found more
acceptance, the complexity of the scientific questions being asked of fNIRS data has dramatically
increased. Group-level comparisons, longitudinal analysis, or complex comparisons between different
task events are now status quo. In addition, fNIRS studies have been expanded to child and infant
populations (reviewed in [7]), to allow a range of motion (including fNIRS studies of brain activity
during gait or balance [11]), and more “real-world” experience (reviewed in [12]). However, these
studies create challenges to analysis such as the need to deal with complex sources of motion and/or
physiological noise artifacts. To date, the majority of fNIRS studies using tools and methods have
either borrowed from other fields (primarily functional MRI) or have used modality-agnostic methods
such as ordinary least-squares regression or methods coded in general programs such as statistical
package for the social sciences (SPSS) [13] or statistical analysis system (SAS) [14]. However, in general
these methods are not designed to address the specific and unique features of fNIRS data and thus
these make some assumptions that may not be optimal for the non-ideal noise structures and types of
artifacts typically present in fNIRS signals.

As recently reviewed by Huppert [15], fNIRS data and its sources of noise have unique properties
that require adjustment of the statistical methods in order to accurately control type-I error (false positive).
In particular, fNIRS has spatially and temporally structured noise and artifacts [10,15]. Additionally,
the typically sparse fNIRS measurement probe geometries have non-uniform measurement profiles
and are sensitive to placement, registration, and individual anatomy. These can vary with repeated
measurement sessions, longitudinal studies (e.g., child development), and are potentially biased across
populations (e.g., systematic differences in brain structure or brain atrophy across two subject groups).
Finally, due to factors such as the variability in anatomy of the head and optode coupling through hair,
there is often a high-degree of the variability in statistical power between subjects or different spatial
channels within the same fNIRS probe. It is not uncommon to observe a several-fold difference in the
signal-to-noise ratio in measurements between areas with little hair (e.g., the forehead) and those with
hair or thicker bone structure (e.g., the occipital). The use of statistical models whose assumptions do
not match these properties often results in unacceptable false-discovery and uncontrolled type-I errors.
As our group has reviewed in several recent publications [9,10,15–18], these noise features and unique
statistical properties of fNIRS data need to be properly considered and will be briefly summarized in this
publication in the context of a new fNIRS analysis toolbox.

The primary rationale for the development of the AnalyzIR (pronounced “an-a-lyze-er”) toolbox
was to create a statistical analysis package to specifically address the properties of fNIRS data. This
toolbox was designed to capture and preserve as much of this fNIRS-specific information and noise
as possible through the entire analysis pipeline such that first- and higher-level statistical analysis
methods could use this information in statistical models by utilizing covariance whitening, accounting
for dependent noise terms, and using robust statistical methods. For example, the spatial noise due to
structured physiological noise between channels of fNIRS data from the first-level (or single subject)
statistical models is preserved and accounted for in later region-of-interest or image reconstruction
analysis modules. The estimate of first level noise is also used to create whitened and weighted
second-level (group) statistical models. Preserving and using these noise structures is important
to fNIRS, since as previously mentioned, these can vary considerably across sensor positions or
across subjects. Furthermore, one of the key features of this toolbox is a framework for performing
sensitivity-specificity (receiver operator characteristics; ROC) analysis to compare analysis methods
and pipelines. The current toolbox interfaces to both the popular HOMER-2 [19] and NIRS-SPM [20]
fNIRS analysis packages, which allows a head-to-head comparison of various analysis options.

Algorithms 2018, 11, 73 3 of 33

2. Architecture of Toolbox

The AnalyzIR toolbox is an open-source analysis package. This toolbox utilizes both custom
namespace and class definitions written in MATLAB (MathWorks, Natick MA USA) language to
provide an object-oriented programming interface to performing fNIRS analysis. The toolbox is
maintained on a public BitBucket.org project (Atlassian Corp. Sydney Australia. www.bitbucket.org/
huppertt/nirs-toolbox) as well as the NIH’s NeuroImaging Tools & Resources Collaboratory (NITRC)
(https://www.nitrc.org/projects/AnalyzIR). In addition, several demos or examples (e.g., fNIRS
analysis, connectivity, group analysis, image reconstruction, registration, etc.) with explanations are
provided in the toolbox download.

The AnalyzIR toolbox requires MATLAB version 2014b or higher due to required support of
several data types such as the MATLAB table class and graphics modules. However, most core
functionality is written to only use the basic MATLAB program without the requirement for additional
toolbox libraries. Parts of the toolbox interface to fNIRS forward models (models of the light
propagation through tissue/brain) require separate download of the software such as NIRFAST
(Near-Infrared light transport in tissue and image reconstruction) [21,22], Matlab/Octave-based mesh
generation toolbox (Iso2mesh) [23], MCextreme (Monte Carlo Extreme) [24], MMC (mesh-based Monte
Carlo) [25], or the tMCimg software (Monte-Carlo photon transport) [26] packages.

The toolbox currently also includes several functions for generating synthetic or semi-synthetic
(experimental baseline data with synthetically added “evoked” responses) data for testing purposes
and offers several example scripts and tutorials including several full datasets that can be downloaded
with the code.

2.1. Data Classes

The framework of the AnalyzIR toolbox is based around an object/class-oriented programming
that defines several custom class definitions in the Matlab framework. These objects are self-contained
representations of the fNIRS data and contain all the information needed to pass between processing
modules. This makes bookkeeping of an fNIRS dataset for analysis easier and provides a very easy
framework to add, merge, or remove subsets of a dataset in analysis. These objects can be stacked
into arrays or matrices and concatenated or deleted by index using object arrays. Object classes define
context-specific methods, such as the drawing commands, which allow the same command (e.g.,)
“draw” to act differently depending on the type of object (e.g., time-course, statistics variable, or
reconstructed image) that is called upon (see Figure 1). Table 1 provides a partial list of the core
data classes and their purpose, methods, and description. This object-oriented coding makes the
programming environment very flexible and easy to use as only a few basic terms are needed. There
are currently several core data types in the AnalyzIR toolbox, which are detailed below.

www.bitbucket.org/huppertt/nirs-toolbox
www.bitbucket.org/huppertt/nirs-toolbox
https://www.nitrc.org/projects/AnalyzIR

Algorithms 2018, 11, 73 4 of 33

Table 1. List of the core data classes in the AnalyzIR toolbox.

Class Purpose Methods Description

nirs.core.Data Holds time-series information
including stimulus events < >.draw([channel index]) Draws the time-course of a channel of data

nirs.core.Probe Holds information about < >.draw() Draws the layout of the probe in 2D or 3D

the probe design and <> .default_draw_function Sets the default draw behavior on 3D registered probes

registration < >.link A table describing the connections of source-detector pairs

< >.optodes A table describing the source-detector and any additional
probe points

nirs.core.ChannelStats Holds the statistical maps in < >.draw(type,range,alpha) Draws the statistical map according to the probe

first and second-level < >.table Returns a formatted table of the statistical values

analysis < >.ttest(conditions) Performs a student’s t-test to compare two or more
contrasts

< >.jointTest() Returns a FChannelStats variable for the Tˆ2 test using
HbO2/Hb

< >.printAll(*, outfolder, imagetype) Draws and saves the figures in TIFF or JPEG format

< >.sorted Returns sorted stats by columns in variables

nirs.core.ChannelFStats Holds F-statistics in channel < >.draw(range, alpha) Draws the statistical map according to the probe

Space < >.table Returns a table of all channel wise stats

< >.getCritF Returns critical F value

nirs.core.ImageStats Holds the statistics for
reconstructed images < >.draw(type, range, alpha, beta, [power]) Draws the statistical map according to the probe

< >.jointTest() Performs a joint hypothesis test across all channels in each
source-detector pair

nirs.core.sFCStats Holds connectivity and < >.draw Draws the correlation values

hyper-scanning statistical < >.table Returns a table of all stats

models < >.graph Returns a graph object from the connectivity model

Algorithms 2018, 11, 73 5 of 33Algorithms 2018, 11, x FOR PEER REVIEW 5 of 32

Figure 1. Example plot for data objects: (a) Example time series from 3 fNIRS channels with stimulus
information shown along the bottom. An example of the same probe object shown in (b) 2D probe
geometry; (c) 10–20 International System, and (d) registered 3D probe geometry is also demonstrated.

2.1.1. nirs.core.Data

The Data class defines the object to hold fNIRS time-series information. This object contains a
data matrix variable that holds the channel-by-time information of the fNIRS measurements. The
Data class also holds both stimulus/event timing information and demographics information about
that specific data entry. The stimulus information encodes either discrete task events (termed
nirs.design.StimulusEvent objects in the program) or continuous vector regressors
(nirs.design.StimulusVector objects), which can encode additional continuous-time regressors in the
study. Stimulus events can carry metadata about the onsets, durations, and amplitude modulation of
discrete events. This allows specification of various linear models for first-level statistical analysis
including linear- and quadratic parametric-modulation of events based on metadata such as reaction
time encoded in the event amplitude fields. Stimulus vector models can be used to encode external
regressors such as independent measurements of systemic physiology or short-separation fNIRS data
as nuisance regressors. The demographics fields on the Data class hold categorical or continuous
metadata about the subject ID, gender, age, etc. which is populated upon loading of the data
(depending on the instrument/company) or imported from a spreadsheet. The inclusion of the
demographics information directly on the Data class allows bookkeeping to track the data and is later
used in second-level analysis modules.

The Data class can hold any type of NIRS data including continuous-wave, frequency-domain,
and hyper-spectral data. The same class and methods are used to store various time-series data along
the full processing pipeline from raw signals to hemoglobin and region-of-interest traces, which
allows full flexibility in the use of processing models such as the general linear model which can be
applied to any level of processing. Data objects can be plotted from command line methods by
evoking the “draw” method as shown in Figure 1 or through the time-series viewer (called
nirs.viz.nirsviewer) included in the toolbox, which provides a “HOMER”-like [19] graphical interface
and user interaction.

2.1.2. nirs.core.Data

Figure 1. Example plot for data objects: (a) Example time series from 3 fNIRS channels with stimulus
information shown along the bottom. An example of the same probe object shown in (b) 2D probe
geometry; (c) 10–20 International System, and (d) registered 3D probe geometry is also demonstrated.

2.1.1. nirs.core.Data

The Data class defines the object to hold fNIRS time-series information. This object
contains a data matrix variable that holds the channel-by-time information of the fNIRS
measurements. The Data class also holds both stimulus/event timing information and demographics
information about that specific data entry. The stimulus information encodes either discrete task
events (termed nirs.design.StimulusEvent objects in the program) or continuous vector regressors
(nirs.design.StimulusVector objects), which can encode additional continuous-time regressors in the
study. Stimulus events can carry metadata about the onsets, durations, and amplitude modulation
of discrete events. This allows specification of various linear models for first-level statistical analysis
including linear- and quadratic parametric-modulation of events based on metadata such as reaction
time encoded in the event amplitude fields. Stimulus vector models can be used to encode external
regressors such as independent measurements of systemic physiology or short-separation fNIRS data as
nuisance regressors. The demographics fields on the Data class hold categorical or continuous metadata
about the subject ID, gender, age, etc. which is populated upon loading of the data (depending on the
instrument/company) or imported from a spreadsheet. The inclusion of the demographics information
directly on the Data class allows bookkeeping to track the data and is later used in second-level
analysis modules.

The Data class can hold any type of NIRS data including continuous-wave, frequency-domain,
and hyper-spectral data. The same class and methods are used to store various time-series data along
the full processing pipeline from raw signals to hemoglobin and region-of-interest traces, which allows
full flexibility in the use of processing models such as the general linear model which can be applied to
any level of processing. Data objects can be plotted from command line methods by evoking the “draw”
method as shown in Figure 1 or through the time-series viewer (called nirs.viz.nirsviewer) included in
the toolbox, which provides a “HOMER”-like [19] graphical interface and user interaction.

2.1.2. nirs.core.Data

The Probe class is used to store information about the fNIRS head cap layout and registration. This
also encodes the source/detector identities of the individual channels of data. The Probe class controls

Algorithms 2018, 11, 73 6 of 33

its own drawing methods, which allows context-specific behavior for drawing statistical maps on
several representations of probes (e.g., flat, 10–20 mapped, 3D registered overlays on the brain or scalp,
or region-of-interest bar charts, which is controlled by the object’s default_draw_fcn field). The Probe
class is reused in the Data, Statistics, and Image object classes to provide a common interface for these
data types. Probes can be registered to individual or atlas based anatomical MRI within the toolbox or
imported from HOMER-2/AtlasViewer [19] and NIRx data formats. Figure 1b–d demonstrates the
probe.draw function for flat, 10–20, and 3D mesh drawing modes.

2.1.3. nirs.core.ChannelStats

Both first- and higher-level channel-based statistical analysis are encapsulated in the general
ChannelStats class object. The ChannelStats class is created as the result of either the first-level
general linear model (GLM) modules or the second (or higher) level group-level models and
contains the estimates of “brain activity” for the various task conditions as well as their uncertainty
covariance models. Statistical estimates within the class are computed by Student’s t-statistic
estimates. False-discovery rates are controlled by a Benjamini–Hochberg [27] correction applied
to all data contained within the class. Thus, if the class contains multiple fNIRS source-detector pairs,
oxy-/deoxy-hemoglobin, and multiple conditions, the correction will be very conservative over all of
these estimates. This can be relaxed by separating the task conditions via calls to the “t-test” function
or by removing the data types to separate oxy- and deoxy-hemoglobin. This class can hold any data
type (raw, optical density, hemoglobin, or derived measures such as oxygen saturation or metabolism
estimates).

The “t-test” function can be evoked from the ChannelStats class to create composite statistics and
is returned in a similar ChannelStats object. The t-test is computed by the expression

t = c·β/
√

c·Covβ·cT (1)

where c is the contrast vector, β is the activity strength, and T is the transpose operator. For example, if
there were five total task conditions, then the test of condition #1 > condition #2 would be given by
c = [1–1000]T. In the toolbox, the contrast can be specified directly as a vector or by human-readable
strings; e.g., MyStats.ttest([1–1000]) or MyStats.ttest(“task1–task2”) where “task1/2” are the names of
two event types in the data.

The ChannelStats object also retains information about the linear model that was used to
create it, which allows a hemodynamic response curve to be returned using the function call of
form <MyStats>.HRF which returns the estimated time course of the hemodynamic response as a
nirs.core.Data variable. Block averaging, deconvolution, nonlinear, and canonical forms of the first level
regression model are all handled.

In addition, the statistics contained within the ChannelStats class may also be recalled using the
command “table” (e.g., MyStats.table), which returns a table of the regression coefficients, t-statistics,
p-values, Benjamini-Hochberg FDR-corrected p-values (termed q-values), and an estimate of the type-II
power for that entry of data. This table can be saved to an Excel or SPSS format or copied to the virtual
clipboard. The type-II power calculation is estimated by computing the minimum detectable change
(MDC) [28] and given by the expression

MDC =
(
Tα(n + m− 2) + T2β(n + m− 2)

)
·
√

MSE
n

+
MSE

m
(2)

where Tα(n + m− 2) and T2β(n + m− 2) are the Student’s t-value for the type-I error (α) and statistical
power (1-β) control with n + m − 2 degrees-of-freedom. The MDC defines the value of the change
in the fNIRS signal needed to reach a specific power to reject the null hypothesis at a given alpha.
Given an experimentally measured value, we can use the inverse of this equation to solve for the
power (1-β). For example, given a measured Student’s t-value of T (998,1) = 3.0 for the fNIRS signal

Algorithms 2018, 11, 73 7 of 33

change (=MDC/
√

MSE
n + MSE

m) with n = m = 500, then Tα (998,1) = 1.64 at α = 0.05. Solving for the
power, (1-β) = 0.82 or the measurement is 82% powered to detect a p < 0.05 change for the one-sided
test. For both first- and higher-level models, the power for an fNIRS measurement is returned within
the ChannelStats object using this equation. Compared to other modalities, such as fMRI, where the
measurement error (and therefore power) is more uniform across space or participants, the power in
fNIRS measurements can vary significantly across the probe or between subjects with more or less hair
under the fNIRS sensors.

In addition, the ChannelStats variable can also compute multi-variate contrast (e.g., oxy- and
deoxy-hemoglobin joint estimates) using a Hotelling’s t2 test [29]. t2 statistic is defined as

T2
p,n−1 =

(n− p− 1)
np

βTΣ̂−1
β (3)

where β is the vector of regression coefficients and Σ is the covariance of these estimates both spanning
across data-types (e.g., oxy-/deoxy-hemoglobin covariance). Thus, this T2 value is used within
the toolbox to define contrast across hemoglobin species (e.g., the null hypothesis of no change in
signal given the joint probability of oxy- and deoxy-hemoglobin) and follows a F (p,n−1) statistical
distribution. This value is stored in a related object class called ChannelFStats is also contained within
the toolbox, which is also used in the higher-level ANOVA models.

2.1.4. nirs.core.ImageStats

Similar to the ChannelStats object class, ImageStats holds statistical parametric maps following
image reconstruction and is created by one of the reconstruction modules. ImageStats objects contain
the statistics associated with the reconstructed single subject or group-level data into brain space
and are displayed by specification of both the type-I error control (e.g., p < 0.05) and type-II power
(e.g., β > 0.80). The later is based on the estimate of the minimum detectable change Equation (2) using
the optical forward model (measurement sensitivity) and can be used to delineate the edges or blind
spots of the fNIRS probe. Section 4 of this work is devoted to further details of the forward and inverse
models and ImageStats variable class.

2.1.5. Multimodal Object Classes

While the AnalyzIR toolbox is written primarily for fNIRS data, it does provide limited
support for electroencephalography (EEG), magnetoencephalography (MEG), and surface-based
fMRI (connectivity informatics technology initiative; CIFTI) dense time-series data [30]). Most
of the NIRS data object classes are either reused or slightly modified for this multimodal data
(e.g., nirs.core.ChannelStats→ eeg.core.ChannelStats), which allows for most of the processing modules
and utility functions to operate on any type of data. Most importantly, the similarity of the
object definitions allows the development of multimodal methods, such as joint Bayesian image
reconstruction [31–33] and other multimodal statistical and fusion methods.

2.2. Processing Modules Classes

Within the AnalyzIR toolbox, data analysis is performed by a collection of processing modules,
which are encapsulated within an abstract nirs.modules class definition. Processing modules can be
concatenated together to create analysis pipelines, which automatically feed the output of upstream
modules forward. Table 2 provides a list of the basic processing modules and their citations as used in
the toolbox. It is noted that there are more functions/modules in the AnalyzIR toolbox, which are not
including in Table 2. Processing modules are chained together to form analysis pipelines, which route
the output of one module into the next.

Algorithms 2018, 11, 73 8 of 33

Table 2. List of the basic processing modules in the AnalyzIR toolbox.

Modules Description Citation

Pre-processing

BeerLambertLaw Converts optical density to hemoglobin [34]

Resample Nyquist filter and resample the data Matlab: resample.m function

OpticalDensity Conversion of raw data to optical density

Data management

AddDemographics Add subject information from the table

ChangeStimulusInfo Change stimulus info to data given a table

DiscardStims Removes specified stimulus conditions from design

FixStims Modify onset/duration/amplitude of stimulus

KeepStims Removes all stimuli except those specified

RemoveStimLess Discard data files with no stimulus information

Filter

BaselineCorrection Motion-correction filter to remove DC sifts See Section 2.2.2.1

PCAFilter PCA filter for motion or physiology [19]

WaveletFilter Filter to remove outliers and low-frequency
characteristics [35]

Statistical analysis

ANOVA Group-level ANOVA model Matlab: fitlme.m function

AR-IRLS GLM analysis using autoregressive model [16]

Connectivity Computes all-to-all connectivity model [18]

Hyperscanning Computes all-to-all connectivity between two files [18]

ImageReconstruction Subject or group-level image reconstruction model [33,36,37]

MixedEffects Group-level linear mixed effects model Matlab: fitlme.m function

NIRS-SPM GLM analysis using NIRS-SPM [20]

OLS GLM analysis using ordinary least squares [19]

RemoveOutlierSubjects Flags and removes outlier subjects based on leverage

SubjLevelStats Subject-level analysis Matlab: fitlme.m function

Additional

HOMER2 Interface to HOMER2 code [10,19]

2.2.1. Data Management

Several processing modules are designed for data management including renaming, removing,
or splitting stimulus conditions, importing demographics information to data variables, and editing
stimulus timing information.

2.2.2. Pre-Processing

The toolbox offers several standard basic pre-processing modules including resampling,
conversion to optical density and the modified Beer-Lambert law. In addition, there are several
more unique processing modules implemented which are detailed below as a reference to the method.

2.2.2.1. Baseline Correction

The baseline correction algorithm is designed to remove statistical outliers in the innovations of
the data following an autoregressive integrative (ARI) model fit of the data. In this code, a pth-order
ARI (p,1) model is first fit to each channel of fNIRS data,

(Y(k)−Y(k− 1)) =
p

∑
i=1

ai·(Y(k− i)−Y(k− 1− i)) + innov(k) (4)

Algorithms 2018, 11, 73 9 of 33

where k is the index of the measurement sample. The optimal model order (p) is computed from a Bayesian
information criterion with a default maximum of 8 times the sample rate (e.g., 8 × 10 Hz = 80 samples).
The integrative order is set at 1 and is not adjusted. Based on the estimated model coefficients, the
innovations time course is extracted. The innovations of the model are the unique information “injected”
at each time point, which is not predicted by the autoregressive history of the data. As described in our
work on AR pre-whitening of the GLM model [16] both spike and shift variations of motion artifacts in
fNIRS data are often statistical outliers in this innovations space. Although not all motion artifacts will be
outliers, fixing non-statistical outliers are less relevant for the model. From the studentized innovations,
a weighting function is computed using the Huber bisquare function

w
(

inn
σ

)
=

1−
(

inn
σ·κ

)2 ∣∣∣ inn
σ

∣∣∣ < κ

0
∣∣∣ inn

σ

∣∣∣ ≥ κ
(5)

where the weight (w) varies from 0 (discard; definitely an outlier) to 1 (keep), σ is the standard
deviations of the errors, and κ is the tuning constant (κ = 4.685 for the bisquare produce 95% efficiency
when the errors are normal). This weighting is then applied to the innovations and the autoregressive
process is then applied in the forward direction to recover the filtered original time-course.

2.2.2.2. PCAfilter

The PCAfilter module within the toolbox implements a spatial principal component filter. There
are flags on the module to control the behavior of this filter to correct for motion (components
computed across all data-types) or physiology (components computed within data-types from either
the entire same file, the baseline periods of the same file, or a separate baseline file). The PCA filter is
implemented as described in Zhang et al. 2005 [38]. The removed components can either be defined
directly based on the number of components or based on a fraction (e.g., 80%) of the spatial covariance
to remove. A related module called Kurtosis filter, uses the same PCA approach but defines the
components to down-weight or remove based on the estimated kurtosis of the component time-course.
A Huber bisquare function Equation (5) is used to down-weight components with high Kurtosis.

2.2.3. Calculate CMRO2

In addition to raw signal intensity and oxy-/deoxy-hemoglobin time traces, the nirs.core.data data
class is able to store any arbitrary derived time-course data such as total-hemoglobin, tissue oxygen
saturation (StO2), relative pulsatile blood flow (pCBF) [39], and estimates of the cerebral metabolic rate
of oxygen (CMRO2). The CMRO2 module within the toolbox pipeline supports both a steady-state
and dynamic model of metabolism. The CMRO2 models are given by the two models:

Steady state Equations [40]:

q(t) = 1 +
∆Hb(t)

OEF0·HbT0
(6a)

v(t) = 1 +
∆Hb(t) + ∆HbO2(t)

HbT0
(6b)

f (t) = v(t)
1
α (6c)

OEF(t) =
q(t)
v(t)

+
τ

f (t)
·
(

dq(t)
dt
− q(t)

v(t)
·dv(t)

dt

)
(6d)

CMRO2(t) = f (t)·OEF(t) (6e)

Dynamic Equations [41]:

dI f low(t)
dt

= a0·U f low(t)− τs·I f low(t)− τf eedback·(f (t)− 1) (7a)

Algorithms 2018, 11, 73 10 of 33

dICMRO2(t)
dt

= b0·UCMRO2(t)− τs·ICMRO2(t)− τf eedback·(CMRO2(t)− 1) (7b)

d f (t)
dt

= I f low(t) (7c)

dCMRO2(t)
dt

= ICMRO2(t) (7d)

dv(t)
dt

=
1
τ
·
(

f (t)− v(t)
1
α

)
(7e)

dOEF(t)
dt

=

(
f (t)·ICMRO2(t)− CMRO2(t)·I f low(t)

)
f (t)2 (7f)

dq(t)
dt

=
1
τ

f (t)·
(

OEF(t)− q(t)
v(t)

)
+

q(t)
v(t)
·dv(t)

dt
(7g)

In both of these models, q(t), v(t), and f (t) are the normalized deoxy-hemoglobin (Hb(t)/Hb0)
and blood volume/total hemoglobin (HbT(t)/HbT0), and blood flow signals respectively. OEF(t) is
the oxygen extraction fraction (OEF = (SaO2 − SvO2)/SaO2 where SaO2 and SvO2 are the arterial and
venous oxygen saturations). Further details of these models can be found in Hoge et al. [40] and
Rierra et al. [41]. These two model versions are then fit to the fNIRS data using the option of either a
nonlinear search method or an extended Kalman filter implementation. The output of these modules
is an estimate of the state variables (flow, CMRO2) as time-course variables in the toolbox. Using these
models, oxygen metabolism, oxygen extraction fraction, and blood flow can be estimated as hidden
state variables from fNIRS measurements of the changes in oxy- and deoxy-hemoglobin under the
assumptions of the two models. It is important to note that these are not directly measured variables
and users are strongly encouraged to background in the Hoge et al. [40] and Rierra et al. [41] in order
to understand the limitations of these models. Although some research shows that these simplified
models may not estimate oxygen metabolism as accurately when compared to more detailed multiple
compartment models [42–44], these models may provide some basis to interpret the relationships of
oxy- and deoxy-hemoglobin signals.

2.2.4. HOMER-2 Interface

The AnalyzIR toolbox contains a module for evoking many of the functions of the external
HOMER-2 NIRS toolbox [19]. This provides access to many of the pre-processing tools that are not
included directly in our toolbox. This module contains the means to translate many of the keywords
used in the HOMER-2 code (such as sample rate or data-type access) such that most of the bookkeeping
to use the HOMER-2 code is accounted for through our toolbox. This also uses internal protected
variables to pass options between HOMER-2 functions, such that entire pipelines can be built around
the HOMER-2 functionality. Due to major differences in the handling of statistical variables, only the
pre-processing and filtering HOMER-2 modules are supported. A generic MATLAB wrapping module
is also included to call any arbitrary function as part of an AnalyzIR toolbox pipeline.

3. Statistical Modules

The AnalyzIR toolbox contains a number of processing modules for statistical analysis for
both first level (single scans) and higher-level models. These include time-series regression models,
functional connectivity models, image reconstruction methods, and higher order mixed effects and
ANOVA models.

3.1. First-Level Statistical Models

In many fNIRS experimental studies, the fNIRS signals between each source-to-detector pair are
analyzed using a general linear regression model to test for statistical differences between the baseline

Algorithms 2018, 11, 73 11 of 33

and task conditions for each scan. This approach is similar to functional MRI, although several differences
in the structure of noise in fNIRS compared to other modalities should be noted (see [15] for review).

In general, first level statistical models for examining evoked signal changes are given by a
regression model described by the equation

Y = X× β + ε (8)

where X is the design matrix encoding the timing of stimulus events, β is the coefficient (weight) of that
stimulus condition for that source-detector channel, and Y is the vector of measurements. The design
matrix (X) can come from either a canonical model of the expected response or a deconvolution model
(see Section 3.2).

3.1.1. OLS

The ordinary least-squares (OLS) processing module will solve Equation (8). This is the model
historically implemented in the HOMER and HOMER-2 toolboxes [19]. The OLS solution to Equation (8)
is given by

β =
(

XT ·X
)−1

XT ·Y (9a)

Covβ =
(

XT ·X
)−1
·σ2 (9b)

σ2 = (Y−X× β)T·(Y−X·β) (9c)

3.1.2. AR-IRLS

As detailed in Huppert 2016 [15], two of the issues in fNIRS noise are serially-correlated errors
and heavy-tailed noise distributions due to slow systemic physiology and motion-related artifacts
respectively. Our previous work in Barker et al. 2013 [16] described an autoregressive pre-whitening
approach using iteratively reweighted least-squares (AR-IRLS) to control type-I errors in the fNIRS
statistical model. In brief, this regression model uses an n-th order auto-regressive filter (WAR)
determined by an Akaike model-order (AIC) selection to whiten both sides of this expression, e.g.,

WAR ×Y = WAR ×X× β + WAR × ε (10)

As described in Barker et al. 2013 [16], the regression model is first solved using robust regression
and the residual noise is then fit to an AR model. This filter (WAR) is applied to both sides of the
original model and then resolved and repeated until convergence. This AR filter alleviates serially
correlated errors in the data that result from physiological noise and/or motion artifacts. AR whitening,
however, does not address the heavy-tailed noise from motion artifacts. To do this, the AR-whitened
model is solved using robust weighted regression, which is a procedure to iteratively down-weight
outliers such as motion artifacts.

S·WAR ×Y = S·WAR ×X× β + S·WAR × ε (11a)

where S is

S
(rW

σ

)
=

{
1−

(rW
σ·κ
)2 ∣∣ rW

σ

∣∣ < κ

0
∣∣ rw

σ

∣∣ ≥ κ
(11b)

which is simply the square root of Tukey’s bisquare function [45] and is the same model as used in
Equation (4) from Barker et al. [16]. The tuning constant κ is typically set to 4.685 which provides 95%
efficiency of the model in the presence of normally distributed errors σ is the standard deviation of the
residual noise in the model.

Algorithms 2018, 11, 73 12 of 33

Using this model, the regression coefficients (β) and their error-covariance is estimated, which
is used to define statistical tests between task conditions or baseline. The regression model is
solved sequentially for each data file for each subject. All source-detector pairs within a file are
solved concurrently yielding a full covariance model of the noise, which is used in group-level and
region-of-interest analysis to correct for the spatial inter-dependence of measurement channels. The
estimate of β and its covariance matrix is given by the expressions

β =
(

XT ·WT
AR·ST·S·WAR·X

)−1
·XT ·WT

AR·ST·S·WAR·Y (12a)

Covβ = ((WAR·X)T ×WAR·X)
−1·σ2 (12b)

σ2 = (WAR·Y−WAR·X× β)T·(WAR·Y−WAR·X·β) (12c)

3.1.3. NIRS-SPM

The GLM module can access the model implemented as part of NIRS-SPM [20]. The NIRS-SPM
toolbox must be separately downloaded from our methods. Details on the NIRS-SPM model are found
in [20]. Our toolbox allows interfacing to both the pre-whitening and pre-coloring SPM modules,
as well as the autoregressive models and minimum descriptive length (MDL) wavelet [46] approaches.
The output of the NIRS-SPM code is modified to be consistent with the ChannelStats object class.

3.1.4. Nonlinear GLM

A nonlinear GLM is also implemented to estimate the first level statistical model. In this module,
a canonical hemodynamic response function (HRF) model is nonlinearly estimated by iteratively
estimating the FIR based regression model using derivative terms for time and dispersion of the canonical
model followed by update of the canonical model parameters. The nonlinear basis set is controlled
by the same basis set dictionary as the other GLM versions (see Section 3.2), which allows it to be
adjusted to use the same shape fit from all data within a single file, separate shapes for different data types
(e.g., oxy-/deoxy-hemoglobin), or even allow different shapes and timing for each separate task condition.

3.2. Canonical and Basis Sets

There are several basis sets offered within the toolbox as described below. In the first-level
statistical model estimators (GLM, OLS, NIRS-SPM modules), the basis set is prescribed to one or
more task conditions using a dictionary class. The assignment to “default” will use the basis set for
all conditions that are not explicitly assigned a different basis. Oxy- and deoxy-hemoglobin can be
assigned different basis sets using an assignment such as “default:hbo”. The default in the toolbox is
to use the same basis set (canonical HRF) for all task conditions and data types.

3.2.1. Canonical HRF

The canonical HRF (or double gamma function) is the default basis set in the toolbox and models
a hemodynamic response with an undershoot period. This is defined by the equation:

HRF =
b1

a1 × t(a1−1)

Γ(a1)
× e(−b1∗t) − c× b2

a2 × t(a2−1)

Γ(a2)
× e(−b2×t) (13)

where b1 (default: 1 s−1) and b2 (default 1 s−1) are the dispersion times constants for the peak and
undershoot period, and a1 (default 4 s) and a2 (default 16 s) are the peak time and undershoot time.
c (default 1/6) is the ratio of the height of the main peak to the undershoot. Γ(.) is the scalar value of
the gamma function and is a normalizing factor. The canonical basis set has the option to include the
first derivatives in the regression model, which are computed as a finite difference with respect to the
a1 and b1 variables.

Algorithms 2018, 11, 73 13 of 33

3.2.2. Gamma Function

The gamma HRF basis set models a hemodynamic response without an undershoot period. This
is defined by the equation:

HRF =
b1

a1 × t(a1−1)

Γ(a1)
× e(−b1×t) (14)

where b1 (default: 1 s−1) is the dispersion times constants and a1 (default 6 s) is the peak time.

3.2.3. Boxcar Function

The boxcar model uses a constant amplitude block for the duration of the task event. The boxcar
model contains two user-defined variables for the lag-time, which shifts the onset of the boxcar
(default 3-s) and the IRF-duration (default 5 s), which extends the duration of the event. The regressor
is the convolution of the task duration per event with the IRF-duration.

3.2.4. FIR-Deconvolution

The finite impulse response (FIR) model allows an unconstrained deconvolution and estimation
of the full hemodynamic response. In this basis set, the “bin width” and “n[umber] bins” must be
specified. The bin width defines the temporal resolution of the estimator and is either specified as the
number of samples (when binwidth is a numeric) or in seconds (when binwidth is a string ending in
“s” such as “1.5 s”). The binwidth allows down sampling of the estimated hemodynamic response by
binning sample points in the design matrix (X). The variable nbins specifies the number of bins used in
the design model such that the total length of the deconvolution window is the nbins * binwidth. This
product must be wide enough to fit the entire expected response curve (generally 12–18 s longer then
the task duration). A limitation of FIR-deconvolution is that the same window is used for all trials and
thus the blocks must have the same task duration. The basis dictionary in the GLM processing module
can be used to assign a different FIR basis set to each condition, which allows different windows to
be used for different event tasks. The deconvolution results in a large number of “betas” (regression
coefficients) to be estimated and stored in the ChannelStats variable. The statistical contrast over a
window of the response can be estimated using a callback of the form MyStats.ttest(“taskA[4:10]”)
[for the 4th−10th coefficient] or MyStats.ttest(“taskA[2:8s]”) [for the window of 2 s – 8 s] where MyStats
is the name of the ChannelStats variable and taskA is the condition name. When a window of time used
in the contrast is a non-integer of the FIR binwidth, the contrast vector used is a linear interpretation
(e.g., c = [0 0.2 0.8 1 1 1] in Equation (1) (Section 2.1.3)) starts the contrast at 1.8 s or 80% between the
2nd and 3rd sample for the example at a 1 Hz sample rate. The callback MyStats.HRF will return
a nirs.core.data (time-series) variable from the estimated hemodynamic response which can then be
drawn to show the response shape.

3.2.5. FIR-Impulse Response Deconvolution

The FIR basis set also can be used to estimate an impulse-response model using the flag “useIRF”
in the basis set object. In this case, the task duration is used to convolve the deconvolution model by a
boxcar of the duration of the event. This reduces the number of coefficients in the model and allows
modeling of scans with varied task durations in the same file (e.g., self-paced tasks). In this option,
the nbins and binwidth variables define the window and resolution of the impulse response, which is
generally about 12–18 s in duration regardless of the duration of the task event. This model assumes
that the hemodynamic response is linearly additive (e.g., a 10 s duration response is the same as two
consecutive 5 s durations added together).

3.2.6. General Canonical

The general canonical basis set allows the user to define a custom canonical model by specifying
the impulse response (IRF) vector and a time vector corresponding to the sample points of the IRF.

Algorithms 2018, 11, 73 14 of 33

3.2.7. Vestibular Canonical

Previous research by our group using fNIRS to study human vestibular function [47–49] has
noted that the hemodynamic response to vestibular stimulation is very elongated compared to the
canonical response. A specific basis for modeling these responses is included, which elongates the
response by a user-defined parameter (default 40 s).

3.3. Parametric Models

The StimulusEvents data class, which holds the onsets and durations of task events, is also used
to encode amplitude information that can be used in parametric regression models. In the parametric
model, the amplitude of each task block is varied. This can be used to test for brain regions where the
amplitude of the brain response covaries with, e.g., reaction time or some other block-dependent variable
encoded in the amplitude of the stimulus events. The tool function nirs.design.split_parametric is used to
construct and manipulate these models. This function requires a formula to be specified, for example
“<condition> * (1 + amp + ampˆ2)” would encode three regressors for (i) a term that is constant for all
blocks; (ii) a term that linearly varies by the amplitude parameter across blocks, and (iii) a quadratically
varied term. This can be used to specify a condition-specific model where “<condition>” is replaced by
the name of the condition in the files. The notation “?” is used to apply the formula to all conditions.
The formula supports higher order (including negative) power models as well. The formula can also use
the keywords “dur” [duration] and “time” in addition to “amp” [amplitude] to allow models where the
regressors vary over the experiment time (within each scan) or by task duration. The function also takes a
flag for centering the variables (amplitude, time, or duration) in the model, which subtracts the mean
of the variable before encoding the model such that the DC-term (e.g., <condition>*1) part of the model
represents the average response. An example of the design model returned by the split_parametric function
is shown in Figure 2. In this example, a subject repeats a blocked task three times and we wish to test the
hypothesis of “did learning occur?” over the blocks. To do this, we use a parametric model modulated by
time (e.g., “<condition> * (1 + time)”) which creates two regressors in the GLM model. The first regressor
shown in Figure 2a represent the conventional stimulus information produced by a box-car function and
models brain activity that stays the same for all three trials. The second regressor shown in Figure 2b is
modulated by time and models brain activity is higher for the first block then the last block. Figure 2c
shows the example of hemodynamic response generated by convolving the parametric stimuli pattern in
Figure 2b and the simulated raw signal. When this model is solved, the second regressor can be used to
test the null hypothesis of whether the event blocks did not change linearly over time (e.g., was there
a learning effect?). The toolbox has the option to mean center the variables (default is true as used in
this example).

Algorithms 2018, 11, x FOR PEER REVIEW 14 of 32

canonical response. A specific basis for modeling these responses is included, which elongates the
response by a user-defined parameter (default 40 s).

3.3. Parametric Models

The StimulusEvents data class, which holds the onsets and durations of task events, is also used
to encode amplitude information that can be used in parametric regression models. In the parametric
model, the amplitude of each task block is varied. This can be used to test for brain regions where the
amplitude of the brain response covaries with, e.g., reaction time or some other block-dependent
variable encoded in the amplitude of the stimulus events. The tool function nirs.design.split_parametric
is used to construct and manipulate these models. This function requires a formula to be specified,
for example “<condition> * (1 + amp + amp^2)” would encode three regressors for (i) a term that is
constant for all blocks; (ii) a term that linearly varies by the amplitude parameter across blocks, and
(iii) a quadratically varied term. This can be used to specify a condition-specific model where
“<condition>” is replaced by the name of the condition in the files. The notation “?” is used to apply
the formula to all conditions. The formula supports higher order (including negative) power models
as well. The formula can also use the keywords “dur” [duration] and “time” in addition to “amp”
[amplitude] to allow models where the regressors vary over the experiment time (within each scan)
or by task duration. The function also takes a flag for centering the variables (amplitude, time, or
duration) in the model, which subtracts the mean of the variable before encoding the model such that
the DC-term (e.g., <condition>*1) part of the model represents the average response. An example of
the design model returned by the split_parametric function is shown in Figure 2. In this example, a
subject repeats a blocked task three times and we wish to test the hypothesis of “did learning occur?”
over the blocks. To do this, we use a parametric model modulated by time (e.g., “<condition> * (1 +
time)”) which creates two regressors in the GLM model. The first regressor shown in Figure 2a
represent the conventional stimulus information produced by a box-car function and models brain
activity that stays the same for all three trials. The second regressor shown in Figure 2b is modulated
by time and models brain activity is higher for the first block then the last block. Figure 2c shows the
example of hemodynamic response generated by convolving the parametric stimuli pattern in Figure
2b and the simulated raw signal. When this model is solved, the second regressor can be used to test
the null hypothesis of whether the event blocks did not change linearly over time (e.g., was there a
learning effect?). The toolbox has the option to mean center the variables (default is true as used in
this example).

Figure 2. Illustration of the parametric stimulus design: (a) Conventional box-car function as the
stimulus design; (b) parametric stimulus design with time varying models; (c) evoked signal from
parametric stimulus design in (b).

Figure 2. Illustration of the parametric stimulus design: (a) Conventional box-car function as the
stimulus design; (b) parametric stimulus design with time varying models; (c) evoked signal from
parametric stimulus design in (b).

Algorithms 2018, 11, 73 15 of 33

3.4. Comparison of Models

As described later in this paper (Section 6.4), a key feature of our toolbox is the ability to
quantitatively compare analysis pipelines using receiver operator curve analysis (ROC). This allows
varied configurations of the pipeline to be compared and their performance quantified. We demonstrate
this feature in Figure 3 by comparing the performance of the variations of the GLM model described
in the previous sections. Using the toolbox’s code for simulating test data (see Section 6.4.1) fNIRS
time courses were simulated with physiological auto-regressive noise without (Figure 3a) or with
(Figure 3d) motion artifacts. A ROC curve analysis (see Section 6.4) was then run from 200 iterations
of each model. In Figure 3b,c,e,f, we show the output of one of the demonstration scripts included
in our toolbox comparing the performance of ordinary least-squares (OLS) [19], NIRS-SPM with
pre-coloring [20], NIRS-SPM with pre-whitening [20], and our AR-IRLS [16] version of the first-level
statistical estimators. Figure 3b,e describe the ROC curves (sensitivity-specificity) with no motion and
with motion artifacts, respectively. The two plots types presented show the ROC curve (Figure 3b/e)
and the control for type-I error (Figure 3c/f). The control for type-I error plots show the actual
false-positive rate (as determined by the ROC curve) plotted against the estimated theoretical error
(p-hat). The ideal behavior is a line of slope unity meaning the type-I error is properly reported by
the model. In the case of OLS and some of the options of the NIRS-SPM models, these lines are above
unity indicating that the statistical estimates are over-reporting the significance compared to the ROC
curve (e.g., the model reported p = 0.05 but the false-positive rate was actually closer to 30%). This has
been reviewed in our recent publication [15]. In general, our proposed method of AR-IRLS [16] has
higher area under the curve (AUC) than other methods. Figure 3e has lower AUC than Figure 3b due
to motion artifacts affected. However, the response of AR-IRLS has the AUC above the chance level
(other methods has the AUC about 0.5) as shown in Figure 3e. Figure 3c,f depict the control of type-I
error (false positive rate) against the p-hat at various threshold from the ROC curves in the second
row (Figure 3b,e). For the control of type-I error, AR-IRLS has better control for both no motion and
motion-affected than other methods, which is close to the ideal condition (“truth”).

Algorithms 2018, 11, x FOR PEER REVIEW 15 of 32

3.4. Comparison of Models

As described later in this paper (Section 6.4), a key feature of our toolbox is the ability to
quantitatively compare analysis pipelines using receiver operator curve analysis (ROC). This allows
varied configurations of the pipeline to be compared and their performance quantified. We
demonstrate this feature in Figure 3 by comparing the performance of the variations of the GLM
model described in the previous sections. Using the toolbox’s code for simulating test data (see
Section 6.4.1) fNIRS time courses were simulated with physiological auto-regressive noise without
(Figure 3a) or with (Figure 3d) motion artifacts. A ROC curve analysis (see Section 6.4) was then run
from 200 iterations of each model. In Figure 3b,c,e,f, we show the output of one of the demonstration
scripts included in our toolbox comparing the performance of ordinary least-squares (OLS) [19],
NIRS-SPM with pre-coloring [20], NIRS-SPM with pre-whitening [20], and our AR-IRLS [16] version
of the first-level statistical estimators. Figure 3b,e describe the ROC curves (sensitivity-specificity)
with no motion and with motion artifacts, respectively. The two plots types presented show the ROC
curve (Figure 3b/e) and the control for type-I error (Figure 3c/f). The control for type-I error plots
show the actual false-positive rate (as determined by the ROC curve) plotted against the estimated
theoretical error (p-hat). The ideal behavior is a line of slope unity meaning the type-I error is properly
reported by the model. In the case of OLS and some of the options of the NIRS-SPM models, these
lines are above unity indicating that the statistical estimates are over-reporting the significance
compared to the ROC curve (e.g., the model reported p = 0.05 but the false-positive rate was actually
closer to 30%). This has been reviewed in our recent publication [15]. In general, our proposed method
of AR-IRLS [16] has higher area under the curve (AUC) than other methods. Figure 3e has lower AUC
than Figure 3b due to motion artifacts affected. However, the response of AR-IRLS has the AUC
above the chance level (other methods has the AUC about 0.5) as shown in Figure 3e. Figure 3c,f
depict the control of type-I error (false positive rate) against the p-hat at various threshold from the
ROC curves in the second row (Figure 3b,e). For the control of type-I error, AR-IRLS has better control
for both no motion and motion-affected than other methods, which is close to the ideal condition
(“truth”).

0 20 40 60 80 100
Seconds

90

100

110

120

130

a.
u.

(a)

No Motion

Example A
Example B

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

iti
ve

 R
at

e

(b)

0 20 40 60 80 100
Seconds

90

100

110

120

130

a.
u.

(d)

Motion-affected

Example A
Example B

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

iti
ve

 R
at

e

(e)

Figure 3. Cont.

Algorithms 2018, 11, 73 16 of 33
Algorithms 2018, 11, x FOR PEER REVIEW 16 of 32

Figure 3. General linear model (GLM) comparison of no motion (left column) and motion-affected
(right column). In panels (a,d), raw signals with no motion artifacts and with artifacts are shown.
After simulations, the ROC curves for the various processing applied to the simulated data are shown
in (b,e). Panels (c,f) show control for type-I errors for the same data and processing. An ideal curve
would be along the diagonal (slope = 1), where the reported and actual FPRs would be the same.

3.5. Second-Level Statistical Models

Second-level (e.g., group) models using fixed-effects, mixed-effects, or ANOVA are offered as
modules in the toolbox. For all three of these processing modules, a formula is specified to define the
statistical model used. This formula is defined in Wilkinson-Rogers notation [50], which is also used
in Matlab (e.g., fitlme.m function) and R software packages. The statistical model formula is able to
use any demographics variables stored in the first-level ChannelStats variables such as subject ID,
group membership, age, etc. Both categorical and continuous variables are supported in these
models. Examples of the Wilkinson–Roger’s notation is shown in Table 3.

Table 3. Examples of Wilkinson–Rogers notation.

Formula Interpretation
beta ~ −1 + cond + (1|subject) Effect of condition, controlling for subject
beta ~ −1 + group:cond + (1|age) Effect of condition for each group, controlling for age
beta ~ −1 + group + cond +
group*cond + (1|IQ)

Main effects of group and condition, and a group x condition
interaction, controlling for IQ

As an example, let’s consider a group level model consisting of 20 subjects with a range of ages.
Each subject preformed three tasks (low, medium, and high) and therefore there are a total of 60
variables (20 ;ߚ subjects x tasks) from the first-level models. For the moment, we are only dealing
with a single source-detector pair to simplify the example. We wish to use a mixed effects model to
examine the group response and the effect of age on the brain response. The formula we will use has
the form “beta ~ −1 + cond + cond × age + (1|subject)”, which encodes a model with a term for each
task conditions (independent of the subject age) and a second term capturing how the brain response
to the condition covaries according to subject age. We will center the variables in the model (the
default option in the toolbox), which means that the age-independent term will represent the brain
activity for a subject of the average age in our group. In this formula, the demographics variable
“subject” is denoted as a random effect, which will pool across the three conditions for each of the 20
subjects. The group-level mixed effects model is described by the equation ߚ = ∙ Γ + ∙ Θ + (15) ߝ

where ߚ is the vector of weights obtained from the first level statistical model entries for each subject,
task condition, and source-detector pair. A is the fixed effects model and B is the random effects
model matrices. In this example of using inclusion of the age as a cofactor is given by

0 0.2 0.4 0.6 0.8 1
 p-hat

0

0.2

0.4

0.6

0.8

1

Fa
ls

e
Po

si
tiv

e
R

at
e

(c)

Truth

OLS (HOMER)
Pre-whitening-AR(n)/Robust (Barker 2013)

Pre-whitening-[AR(1) & DCT] (NIRS-SPM)
Pre-whitening-[AR(1) & MDL] (NIRS-SPM)

Pre-coloring-[Low/High pass] (NIRS-SPM)
Pre-whitening-[High pass] (NIRS-SPM)

0 0.2 0.4 0.6 0.8 1
 p-hat

0

0.2

0.4

0.6

0.8

1

Fa
ls

e
Po

si
tiv

e
R

at
e

(f)

Truth

Figure 3. General linear model (GLM) comparison of no motion (left column) and motion-affected
(right column). In panels (a,d), raw signals with no motion artifacts and with artifacts are shown. After
simulations, the ROC curves for the various processing applied to the simulated data are shown in
(b,e). Panels (c,f) show control for type-I errors for the same data and processing. An ideal curve would
be along the diagonal (slope = 1), where the reported and actual FPRs would be the same.

3.5. Second-Level Statistical Models

Second-level (e.g., group) models using fixed-effects, mixed-effects, or ANOVA are offered as
modules in the toolbox. For all three of these processing modules, a formula is specified to define
the statistical model used. This formula is defined in Wilkinson-Rogers notation [50], which is also
used in Matlab (e.g., fitlme.m function) and R software packages. The statistical model formula is able
to use any demographics variables stored in the first-level ChannelStats variables such as subject ID,
group membership, age, etc. Both categorical and continuous variables are supported in these models.
Examples of the Wilkinson–Roger’s notation is shown in Table 3.

Table 3. Examples of Wilkinson–Rogers notation.

Formula Interpretation

beta ~−1 + cond + (1|subject) Effect of condition, controlling for subject

beta ~−1 + group:cond + (1|age) Effect of condition for each group, controlling for age

beta ~−1 + group + cond + group*cond + (1|IQ) Main effects of group and condition, and a group x
condition interaction, controlling for IQ

As an example, let’s consider a group level model consisting of 20 subjects with a range of
ages. Each subject preformed three tasks (low, medium, and high) and therefore there are a total of
60 variables (β; 20 subjects x tasks) from the first-level models. For the moment, we are only dealing
with a single source-detector pair to simplify the example. We wish to use a mixed effects model to
examine the group response and the effect of age on the brain response. The formula we will use has
the form “beta ~−1 + cond + cond × age + (1|subject)”, which encodes a model with a term for each
task conditions (independent of the subject age) and a second term capturing how the brain response
to the condition covaries according to subject age. We will center the variables in the model (the default
option in the toolbox), which means that the age-independent term will represent the brain activity
for a subject of the average age in our group. In this formula, the demographics variable “subject” is
denoted as a random effect, which will pool across the three conditions for each of the 20 subjects.
The group-level mixed effects model is described by the equation

β = A·Γ + B·Θ + ε (15)

where β is the vector of weights obtained from the first level statistical model entries for each subject,
task condition, and source-detector pair. A is the fixed effects model and B is the random effects model
matrices. In this example of using inclusion of the age as a cofactor is given by

Algorithms 2018, 11, 73 17 of 33

βSubjA ,CondLow

βSubjA ,CondMed

βSubjA ,CondHigh
...

βSubjN ,CondLow

βSubjN ,CondMed

βSubjN ,CondHigh

=

1 ageA
1 ageA

1 ageA
.

1 ageN
1 ageN

1 ageN

ΓLow
ΓMed
ΓHigh

ΓLow:Age
ΓMed:Age
ΓHigh:Age

+

1
1
1

...
1
1
1

×

 ΘA
...

ΘN

+ ν (16)

where the terms Γlow, Γmed, and ΓhighT denote the main group level effects for the three task conditions
and the terms ΓX:Age denote the interaction terms between the three conditions and age. The
second matrix (B) and coefficients (Θ) denote the random effects terms (here indicating subject as a
random effect).

Since the covariance of this model is known from the first level model (Section 3.1), the mixed
effects model is then solved for using weighted least-squares regression where a weighting matrix (Ω)
is applied to the left and right hand sides of the expression and given by

Ω·β = Ω·A× Γ + Ω·B·Θ + Ω·ν (17a)

where the whitening matrix is defined as

ΩT ×Ω = Cov−1
β (17b)

and Covβ is the noise covariance matrix given in Equations (9b) and (12b), which was estimated from
the temporal general linear model (Section 3.1) Ω is estimated from a singular value decomposition
of the symmetric covariance matrix. Note that we have written this expression only for one fNIRS
measurement channel for simplicity, but in reality this model also includes all source-to-detector
channels simultaneously and is given by the form

Ω (A⊗ ICHAN)·Γ + Ω(B⊗ ICHAN)·Θ + ν, (18)

where ICHAN is an identity matrix of size number of fNIRS source-to-detector pairs and ⊗ is the
Kronecker operator. In this way, all fNIRS source-detector pairs are analyzed simultaneously, which
allows the use of the full covariance noise model (including spatial relationships) to be used in
whitening the model via Equation (17). When running the higher-order statistical models, there is a
program flag for including “diagnostics” as part of the toolbox. If selected, this flag will store additional
model assessment information in the output variable which can be used to select outlier subjects,
examine goodness-of-fit of the model, and plot the model (e.g., showing a scatter plot of how brain
activity varies with age).

In our second-level models, we are able to use the full covariance from the first-level model to
performed weighted least-squares. This model additionally supports iterative (robust) statistics to
down-weight outliers. This allows us to account for the fact that the noise in measurement channels
may vary across the fNIRS probe or across subjects. In particular, contact of the optodes to the scalp
will be have a large impact on the spatial variations of noise. In comparison to second level analysis
using external programs such as SPSS, where either all measurements are considered to have the same
noise or where the diagonal component of the noise covariance can be used to created a weighted
model, by using the full covariance noise model we are able to control for the interdependence of
measurements (e.g., artifacts or physiology that share noise across multiple channels). Figure 4 shows
the comparison in the second-level or group-level analysis with no outliers (left column) and with
outliers (right column) as shown in 4(a–c) and 4(d–f), respectively. In this simulation, we used 10 files
for analyzing the second-level analysis. In the mixed effects model (see Table 3), we modeled the
first-level beta values as the dependent variable with either only fixed effects (FE) or fixed and random
effects (RE), combining with/without robust and covariance-weighting flags. Thirty-two channels from

Algorithms 2018, 11, 73 18 of 33

one file with no outliers (Figure 4a) and with 4 out of 32 channels outliers (4(b)) are shown. In this case,
the outlier channels simulate a few positions with poor coupling to the scalp. In comparing Figure 4b,e,
the weighted version has higher AUC in ROC curves with outliers affected for both FE and RE. For
control of type-I error, all the methods have good control in the second-level analysis as shown in
Figure 4c,f. As expected, when the noise across channels/subjects is uniform (Figure 4a), all models
preform the same. However, when subsets of channels are simulated as noise outliers mimicking bad
contact of the fNIRS sensors, then using the first-level covariance models to weight the regression
produces better estimates.

Algorithms 2018, 11, x FOR PEER REVIEW 18 of 32

good control in the second-level analysis as shown in Figure 4c,f. As expected, when the noise across
channels/subjects is uniform (Figure 4a), all models preform the same. However, when subsets of
channels are simulated as noise outliers mimicking bad contact of the fNIRS sensors, then using the
first-level covariance models to weight the regression produces better estimates.

Figure 4. Group level comparison of no outliers (left column) and with outliers (right column). In
panels (a,d), raw signals with no outliers and with outliers are shown. After simulations, the ROC
curves for the various processing in the group level applied to the simulated data are shown in (b,e).
Panels (c,f) show control for type-I errors for the same data and processing. An ideal curve would be
along the diagonal (slope = 1), where the reported and actual FPRs would be the same.

4. Image Reconstruction Modules

Based on the optical forward model, the toolbox reconstructs the subject image by solving the
underdetermined linear system between changes in concentrations of HbO2 and Hb in the tissue and
the changes in optical density using a hierarchal Bayesian inverse model. The group-level image is
reconstructed by involving random-effects. The statistical testing for the significance of the solution
is also given in the image reconstruction module.

4.1. Optical Forward Model

Optical forward model describes the relationship between changes in concentrations of HbO2
and Hb in the tissue, and the changes in optical density as recorded on the surface between optical
sources and detectors. The toolbox is using the implementation of optical forward model in NIRFAST
toolbox [19,20] that is integrated into our toolbox as an external resource. The toolbox also interfaces
with the Mesh-based Monte Carlo (MMC) [51], graphics processing unit (GPU) based Monte Carlo
eXtreme (MCX) [24], and volume-based Monte Carlo (tMCimg) [26] models. A semi-infinite slab

0 20 40 60 80 100
Seconds

80

100

120

140

a.
u.

(a)

No Outliers

0 20 40 60 80 100
Seconds

80

100

120

140

a.
u.

(d)

With Outliers

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

iti
ve

 R
at

e

(b)

beta-FE
beta-FE-weighted-robust
beta-RE
beta-RE-weighted-robust

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1
Tr

ue
 P

os
iti

ve
 R

at
e

(e)

beta-FE
beta-FE-weighted-robust
beta-RE
beta-RE-weighted-robust

0 0.2 0.4 0.6 0.8 1
 p-hat

0

0.2

0.4

0.6

0.8

1

Fa
ls

e
Po

si
tiv

e
R

at
e

(c)

beta-FE
beta-FE-weighted-robust
beta-RE
beta-RE-weighted-robust
Truth

0 0.2 0.4 0.6 0.8 1
 p-hat

0

0.2

0.4

0.6

0.8

1

Fa
ls

e
Po

si
tiv

e
R

at
e

(f)

beta-FE
beta-FE-weighted-robust
beta-RE
beta-RE-weighted-robust
Truth

Figure 4. Group level comparison of no outliers (left column) and with outliers (right column).
In panels (a,d), raw signals with no outliers and with outliers are shown. After simulations, the ROC
curves for the various processing in the group level applied to the simulated data are shown in (b,e).
Panels (c,f) show control for type-I errors for the same data and processing. An ideal curve would be
along the diagonal (slope = 1), where the reported and actual FPRs would be the same.

4. Image Reconstruction Modules

Based on the optical forward model, the toolbox reconstructs the subject image by solving the
underdetermined linear system between changes in concentrations of HbO2 and Hb in the tissue and
the changes in optical density using a hierarchal Bayesian inverse model. The group-level image is
reconstructed by involving random-effects. The statistical testing for the significance of the solution is
also given in the image reconstruction module.

4.1. Optical Forward Model

Optical forward model describes the relationship between changes in concentrations of HbO2

and Hb in the tissue, and the changes in optical density as recorded on the surface between optical
sources and detectors. The toolbox is using the implementation of optical forward model in NIRFAST

Algorithms 2018, 11, 73 19 of 33

toolbox [19,20] that is integrated into our toolbox as an external resource. The toolbox also interfaces
with the Mesh-based Monte Carlo (MMC) [51], graphics processing unit (GPU) based Monte Carlo
eXtreme (MCX) [24], and volume-based Monte Carlo (tMCimg) [26] models. A semi-infinite slab
solution is also included. These forward model solvers will generate the linear optical forward
model jacobian (Ai,j) in a consistent form across all solvers. The optical forward model describes the
relationship between changes in hemoglobin in the underlying brain space and the optical density
measurements between optodes and is given by the expression

∆ODλ
i,j = Aλ

i,j·
[
ελ

HbO2
·
(
∆[HbO2] + ωHbO2

)
+ ελ

Hb·(∆[Hb] + ωHb)
]
+ υλ

i,j (19)

where ∆ODλ
i,j is the change in optical density, Aλ

i,j is the jacobian of the optical measurement model

corresponding to the sensitivity matrix [52], and υλ
i,j is an additive noise in the measurement space along

the diffuse path traveled by the light between light emitter and detector pair (i, j) at the wavelength λ.
ελ

HbX is the molar extinction coefficient, ∆[HbX] is the change in molar concentration (fixed effect), and
ωHbX is an additive noise (random effect) in the image space for oxy- or deoxy-hemoglobin. ∆[HbX]
and ω are vectors representing the changes at each position.

Changes in oxy- and deoxy-hemoglobin can be inferred from optical measurements at multiple
(N) wavelengths by solving the forward model with spectral priors given by the expression

∆ODλ1
i,j

∆ODλ2
i,j

...
∆ODλN

i,j

 =

Aλ1

i,j ·ε
λ1
HbO2

Aλ1
i,j ·ε

λ1
Hb

Aλ2
i,j ·ε

λ2
HbO2

Aλ2
i,j ·ε

λ2
Hb

...
...

AλN
i,j ·ε

λN
HbO2

AλN
i,j ·ε

λN
Hb

·
([

∆[HbO2]

∆[Hb]

]
+

[
ωHbO2

ωHb

])
+

υλ1

i,j

υλ2
i,j
...

υλN
i,j

 (20)

where λN denotes the N-th wavelength. The optical forward model can be written in a compact form
using matrix notation.

Y = H·(β + ω) + υ (21a)

where β is used to describe the unknown values of the combination of oxy- or deoxy-hemoglobin
changes in the tissue, given by

β =

[
∆[HbO2]

∆[Hb]

]
(21b)

The details of the derivation from basic theories can be found in [33]. This model is then solved in
the toolbox using an inverse operator.

4.2. Hierarchal Bayesian Inverse Models

The estimation of optical images by the inversion of Equation (21) entail an underdetermined
problem where there generally are significantly less available measurements (Y) than unknown
parameters (β) in the image to-be-estimated. In the toolbox, a restricted maximum likelihood (ReML)
model is built and solved based on Bayesian theories. The maximization of the log-likelihood function
is equivalent to maximizing the free-energy of the model and is given by the expression:

arg max
{β,CN,CP}

− 1
2
‖Y−H·β‖2

CN
− 1

2
‖β− β0‖2

CP
− 1

2
log|CN| −

1
2

log|CP| (22)

where ‖X‖2
N denote the weighted norm (‖X‖2

N = XT·N·X), β0 is a prior assumed to be zero by default
in the toolbox in the optical inverse model, CN and CP are the inverse of the measurement and

Algorithms 2018, 11, 73 20 of 33

parameter covariance matrices that are parameterized as a linear combination of symmetric prior
matrices QN and QP:

CN = ∑
i

Λi·QN,i; CP = ∑
j

Λj·QP,j (23)

where Λ is the hyperparameter to adjust the weighting of these covariance components. The ReML
model is an iterative approach that estimates both the underlying image and the hyper-parameters
of the noise models (Cn and Cp). Thus, this model provides a objective estimate of the “tuning”
parameters in the inverse model without additional user input (see [33] for details).

In order to solve the ReML model, the expectation-maximization (EM) algorithm is used. Firstly,
in the expectation step β is estimated by solving the Gauss-Markov, which is equivalent to maximize
Equation (22) with an estimated Λ is given. Then Λ is varied to maximize the quantity of Equation (22)
in the maximization step. The value of optimal Λ is used in the expectation step of the next iteration.
These two steps are iterated until the parameters converge. The final estimated values of β are the
estimation of the oxy- or deoxy-hemoglobin changes in the tissue.

β = β0 +
(

HT·C−1
N ·H + C−1

P

)−1
HT·C−1

N ·(Y−H·β0) (24)

More details about derivation and covariance components can be found in Abdelnour et al. [33].

4.3. Group-Level Image Reconstruction

The image reconstruction code in the AnalyzIR toolbox can be used for either single subject
reconstructions or as a group-level model. In the group-level model, a linear mixed effects model
is used and specified using the same Wilkinson-Rogers notation as the channel space group-level
statistical models. In the group-level image reconstruction, a single inverse model is simultaneously
solved for all subjects and task conditions within a large-scale inverse rather than a separate inverse
for each image. As detailed in our previous work [36], this allows the estimate of a single group-level
image, which is based on finding a solution to the model that concurrently fits all the subjects’ data. This
was previously shown to greatly improve group-level image estimates by reducing the uncertainties
added by the ill-posed nature of the problem [36].

In the group-level reconstruction, the optical forward model can be represented using a three-level
model and given by the following equations

Level I—Measurement level:

YSubject = H·βSubject + υSubject (25a)

Level II—Subject level:
βSubject = βGroup + ∆βSubject (25b)

Level III—Group level:
βGroup = β

Group
0 + ωGroup (25c)

where β
Group
0 is a prior on the expected value of the brain image for the group and the three noise

terms (υ, ∆β, ω) are defined as follows (NN(µ, Σ) denotes a N-variate normal distribution with mean
vector µ and covariance matrix Σ where N is the number of measurements):

υSubject ∼ NN

(
0, C−1

N

)
∆βSubject ∼ NN

(
0, C−1

B

)
ωGroup ∼ NN

(
0, C−1

G

)
(25d)

The free-energy expression for the model is given by

arg max
{β,CN,CB,CG}

− 1
2‖Y−H·βSubject‖2

CN
− 1

2‖∆βSubject‖2
CB
− 1

2‖βGroup − β
Group
0 ‖

2

CG

− 1
2 log|CN| − 1

2 log|CB| − 1
2 log|CG|

(26)

Algorithms 2018, 11, 73 21 of 33

To solve the model, the covariance matrices are parameterized and ReML is implemented to solve
the model, which is very similar to the inverse model in 4.2. The details can be found in [36]. In this
model, all the subjects are simultaneously used to estimate the most consistent underlying image of
the group-level brain activity. Our previous work [36] demonstrated that this greatly reduced the
spatial point-spread introduced by probe registration and head anatomy differences and helped to
avoid the effects of “blind-spots” in low density fNIRS probes by additionally using the information
from all the subjects. The group-level random effects model described in Abdelnour et al. [36] is
implemented in the image reconstruction code of our toolbox. In addition, this model has been
extended to allow additional covariates and terms similar to the channel-level mixed effects model
discussed in Section 3.5. Our image reconstruction model uses the same Wilkinson–Rogers’ notation
as the channel-level version.

4.4. Statistical Testing

The toolbox also provides statistical testing for the significance of image space estimates of brain
activity. For, the j-th voxel, the null and alternative hypotheses are:

H0 : β j = 0; H1 : β j 6= 0 (27)

where β j is the j-th element of β. Previous study [53] describes a method to perform significance
testing in ridge regression whose solution is a special condition of Equation (24). A similar Student
t-test is used in the toolbox for the significance testing. The test statistic is defined as

T =
β̂ j

se
(

β̂ j
) (28)

where β̂ j is the estimate of β j and se
(

β̂ j
)

is the estimate of its standard error. Analogous to the previous
study [53] se

(
β̂ j
)

is obtained as the square root of the j-th element of the diagonal of the covariance
matrix

Covβ̂ = σ2
(

HT·C−1
N ·H + C−1

P

)−1
·HT·C−1

N ·
(

C−1
N

)T
·H·
(

HT·C−1
N ·H + C−1

P

)−1
(29)

In practice, σ2 is estimated using the residual mean square of the model given by

σ̂2 =

(
Y−H·β̂

)′(
Y−H·β̂

)
ν

(30)

Here ν is the residual effective degrees of freedom that can be calculated by v = N− tr(2H−H·H′)
(tr() returns the trace of the matrix) and H is the “hat matrix” defined as

H = H·
(

HT·C−1
N ·H + C−1

P

)−1
·HT·C−1

N (31)

Under H0, T follows a Student t distribution with N− tr(H) degrees of freedom. Then the statistic
and degrees of freedom can be used to report the p-value for the significance of β j. In order to save
memory in the code, the Cholesky decomposition of the covariance matrix Equation (17b) is stored
instead of the full model and the full elements are computed as needed.

5. Connectivity and Hyper-Scanning Modules

Two main challenges for spontaneous functional connectivity fNIRS (sFC-fNIRS) analysis are the
slow temporal structure of both systemic physiology and blood vessels, and motion related artifacts
from movement of the fNIRS sensors on the participants’ head. In order to protect the sFC-fNIRS
from false-discoveries, the noise model needs to be generalized to account for auto-correlative errors
and motion-related outliers from a normal distribution. The approach is similar with the general

Algorithms 2018, 11, 73 22 of 33

linear model for time series regression analysis of evoked signals chances (e.g., [15,20]). However, the
GLM approach in fNIRS model requires additional steps or higher order corrections than those often
used in other modalities (e.g., fMRI), because the properties of noise in fNIRS are different and the
fNIRS is typically temporally over-sampled compared to the slower physiological signals. We have
previously detailed and compared these approaches for evoked time-series analysis of fNIRS [15].
In this section, we will briefly describe the similar pre-conditioning of fNIRS for sFC connectivity to
deal with statistical outliers in a linear model. The models used in the AnalyzIR toolbox are further
detailed in our previous work [18].

5.1. Correlation Models

The traditional approach to connectivity analysis is to simply compute the Pearson correlation
between all possible pairs of channels. However, artifacts arising from systemic physiological noise
and head motion necessitate special considerations [18].

5.1.1. Pre-Whitening

Physiological noise in the fNIRS signals are temporally correlated (colored) noise. In this case,
pre-whitening filter removes the autocorrelation and whiten the frequency content of the signal.
A pre-whitening filter can be defined from an autoregressive model of the data. The effect of this
approach on fNIRS signals has been presented in our previous work [16]. Once applied to the data,
yields an uncorrelated innovations signal. The autoregressive model for a signal (Y) is defined as

Y{t} =
P

∑
i=1

ai·Y{t−i} + ε{t} (32a)

ε{t} ∈ N
(

0, σ2
)

(32b)

where t indicates the sample point (time) and the set ai is the autoregressive coefficients of the model,
which need to be estimated. P is the model order, which can be selected using an information criteria
such as BIC (Bayesian information criteria) [54]. Equations (32a) and (32b) says that the current sample
point (Y{t}) can be predicted based on the last several time-points in its history (a1

.Y{t−1} . . . ap
.Y{t−1}) and

newly added information at that time point, which is called the innovations (ε{t}). The innovations can
be thought of as the new information that is added to the total signal at each time point. The innovations
time-course is a whitened signal with no autocorrelation representing the signal information added at
each time point. The innovations signal can be estimated by first fitting the autoregressive coefficients
of the model and using them to filter the original signal. Pre-whitening is applied to any two signals
A and B to yield their respective whitened innovations models Aw and Bw. Instead of correlating the
original signals, the two innovations (Aw and Bw) are compared which estimates the correlation of the
addition of only the new information being added to both signals at each time point. So-called Wiener
causality models [55] are an implementation of this concept that specially look at the relationship of
lagged cross terms in the innovations (e.g., the history of signal B predicts the current value of A). In the
remainder of this section however, we focus on the zeroth lag correlation terms.

The pre-whitening will remove the serially correlated errors between two signals for both no
motion and motion affected confirming. After pre-whitening using an appropriate high model order,
the autocorrelation of both motion-affected and –unaffected drops to random change within a single
time point. The comparison of the analysis of original data, whitened signal, and autocorrelation have
been examined in depth in Santosa et al. [18] (see Figure 2 in [18] for detail).

5.1.2. Robust Methods

Pre-whitening via autoregressive removes serial correlations and autocorrelations between sample
points. However, the whited signals will still contain outliers (e.g., heavy-tailed noise) due to motion

Algorithms 2018, 11, 73 23 of 33

artifacts [15]. Robust regression methods or pre-weighting is an approach for dealing with statistical
outliers in a linear model through iteratively estimating the residual noise of the model using a
weighted least-squares fit and computing the weight based on outliers in the residual. Previously,
this model as applied to reduce the effect of motion in fNIRS functional data [16]. Robust regression is a
regression method in which one signal is considered the data and the other is considered the regression.
This approach would fix leverage from motion-artifacts related that act independently between channels.
We have detailed the use of robust regression for investigating evoked signals in fNIRS in several our
previous publications [15,16]. We propose a joint weighting matrix, which is computed from the geometric
length of both time-courses in order to reduce outliers and normalize the noise distributions. Thus,
we propose to compute the correlation between two signals, which are now the two weighted and
pre-whitened signals. The weighting function used in this work is given by Tukey’s bisquare function [45]
and is the same model as used in Barker et al. [16] (see Equation (4) in [16]).

5.2. Coherence Models

In addition to correlation models, wavelet coherence can be used to define connectivity [56].
The continuous wavelet transform (CWT) of a signal is a representation of the power contained at each
time and frequency point. This is achieved using a time- and frequency-localized function known as a
wavelet. One common choice is the Morlet wavelet, defined as

ψ0(η) = π−
1
4 eiω0ηe−

1
2 η2

(33)

where ω0 is dimensionless frequency and η is dimensionless time. The continuous wavelet transform
is then computed by convolving the input signal with wavelets at different time-scales, resulting in a
time by frequency matrix of signal power. The CWT (W) for a signal x at times n = 1 . . . N is defined as

Wt(s) =

√
δt
s

T

∑
t′=1

xt′ψ0

[(
t′ − t

) δt
s

]
(34)

where δt is the sampling period, and s is the time scale. This principle can be extended to connectivity by
computing the cross-wavelet transform of two input signals, e.g., the product of the CWT of one signal
and the complex conjugate of another (WXY = WXW∗Y). The power of cross-wavelet transform is then
normalized by the power of the CWTs for each signal to yield the wavelet transform coherence (R2):

R2 =
|WXY|2

|WX |2 |WY|2
(35)

The AnalyzIR implementation of wavelet coherence differs from other toolboxes in using robust
methods for estimating the wavelet transform and high-order AR pre-whitening to control type-I error
due to serial correlations in the data [18]. Currently only the Morlet wavelet is implemented based on
previous fNIRS studies [56], however other options may be explored in future work.

5.3. Hyperscanning

The toolbox contains a module for hyperscanning analysis. Hyperscanning is a form of fNIRS
where two or more subjects are simultaneously recorded during an interactive task and the brain
signals between the subjects is analyzed. For example, if two subjects are talking to each other, the
Wernike’s and Broca’s brain regions would be expected to correlate. In the toolbox, the hyperscanning
module requires a user-defined table of subject pairs. This table is automatically populated in the case
of NIRx data files collected with a hyperscanning configuration. The module also requires specification
of the analysis model, which can be any of the correlation, wavelet coherence, or Granger’s causality
models previously described. Finally, the module has a flag for forcing symmetry in the estimate.
Symmetry is imposed to prevent arbitrary assignment of person “A” and “B” in the hyperscanning

Algorithms 2018, 11, 73 24 of 33

model. This is modeled by combining the results for A→B and B→A. For example, in the case of a
parent-child interaction, the parent might have more regions in their brain “connected” to the child’s
than the child does to the parent. To test this, the symmetry flag should be set to false in the model
since the definition of the parent (“A”) and the child (“B”) is not arbitrary. However, in the case of two
adults, these definitions could be arbitrary and the option is given in the code to allow either approach.

5.4. Group Connectivity Models

A processing module for fixed and mixed effects group-level connectivity analysis is offered in
the toolbox. This model is similar to the implementation used in activation analyses and similarly
supports Wilkinson-Roger’s notion allowing for complex linear and interaction models to be defined.
For first-level correlation model inputs, the correlation value is Fisher Z-transformed as the input to
the analysis. The model is then carried out for each unique connection in the connectivity matrix.
Calculation of Benjamini-Hochberg FDR-corrected p-values is done in a manner to take advantage of
the symmetry inherent in undirected connectivity matrices, as well as that introduced by imposing
symmetry to undirected hyperscanning models.

5.5. Graph-Models

An additional method of connectivity analyses is known as complex network analysis on
graph theory. This approach entails defining each measurement channel as a node in a graph,
and the relationship between any two measurements as an edge. The edges may be derived from
correlation, coherence, or any other similarity metric, and are often thresholded to produce a binary
graph of connected and disconnected nodes. Once in this form, a number of algorithms can be
employed to determine network-level characteristics, such as node clustering, network efficiency,
and small-worldness (the ratio of clustering to mean distance between nodes). The graph theoretic
approach allows large connectivity matrices to be characterized by a small number of scalar parameters,
making it particularly useful for the development of neural biomarkers. The AnalyzIR toolbox supports
the conversion of both first and higher-level connectivity (and hyperscanning) statistical models to
graph-based models which are compatible with the Brain Connectivity Toolbox [57].

Figure 5a demonstrate the connectivity of simultaneously measured brain activity using fNIRS on
two subjects (A and B) during a cooperative puzzle-solving task. The toolbox provides facilities to
calculate and visualize connectivity between two or more subjects. The page rank centrality of a single
subject is shown in Figure 5b. Page rank centrality is a variant of eigenvector, which was developed by
Google search to rank websites in their search engine results [58–60]. In brain network, researchers
use this technique to describe the connectivity patterns of nodes (or channels) and links of a network
based on adjacency matrix. The color bar in the right corner shows the degree of connection.

Algorithms 2018, 11, x FOR PEER REVIEW 24 of 32

5.5. Graph-Models

An additional method of connectivity analyses is known as complex network analysis on graph
theory. This approach entails defining each measurement channel as a node in a graph, and the
relationship between any two measurements as an edge. The edges may be derived from correlation,
coherence, or any other similarity metric, and are often thresholded to produce a binary graph of
connected and disconnected nodes. Once in this form, a number of algorithms can be employed to
determine network-level characteristics, such as node clustering, network efficiency, and small-
worldness (the ratio of clustering to mean distance between nodes). The graph theoretic approach
allows large connectivity matrices to be characterized by a small number of scalar parameters,
making it particularly useful for the development of neural biomarkers. The AnalyzIR toolbox
supports the conversion of both first and higher-level connectivity (and hyperscanning) statistical
models to graph-based models which are compatible with the Brain Connectivity Toolbox [57].

Figure 5a demonstrate the connectivity of simultaneously measured brain activity using fNIRS
on two subjects (A and B) during a cooperative puzzle-solving task. The toolbox provides facilities to
calculate and visualize connectivity between two or more subjects. The page rank centrality of a single
subject is shown in Figure 5b. Page rank centrality is a variant of eigenvector, which was developed
by Google search to rank websites in their search engine results [58–60]. In brain network, researchers
use this technique to describe the connectivity patterns of nodes (or channels) and links of a network
based on adjacency matrix. The color bar in the right corner shows the degree of connection.

Figure 5. Examples of connectivity analyses employed by AnalyzIR: (a) Connectivity between two
subjects during cooperation on a puzzle task; (b) relative PageRank centrality for a single subject.

6. Toolbox Utilities

In addition to processing modules, the toolbox offers additional utilities for probe registration
and adjusting for head size, region-of-interest analysis, and other features.

6.1. Probe Registration

The nirs.core.Probe object class encodes both two-dimensional and three-dimensional
information about the fNIRS sensor layout. Three-dimensionally registered information can be
imported directly from the raw data files (e.g., the case in NIRx data file format) or using third-party
code such as AtlasViewer [61]. Within the toolbox there are features to register the probe. To register
a fNIRS probe a set of landmarks need to be defined relative to the fNIRS sensors in the two-
dimensional space. For example, the 10–20 point FpZ might be located in between two specific
optodes on the probe. These landmarks are defined as either “anchors” or “attractors” and can be
any of the standard 10–20, 10–10, or 10–5 head point coordinates. Anchors define landmarks that are
fixed in position relative to the fNIRS optodes. Attractors define directional information. For
example, the y-axis of the fNIRS probe might be oriented in the direction of the 10–20 points FpZ to
Cz. This notation is similar to the use in the AtlasViewer program [61]. The probe is then registered
to a generic spherical shape using an interactive relaxation of a network of connected springs between

Figure 5. Examples of connectivity analyses employed by AnalyzIR: (a) Connectivity between two
subjects during cooperation on a puzzle task; (b) relative PageRank centrality for a single subject.

Algorithms 2018, 11, 73 25 of 33

6. Toolbox Utilities

In addition to processing modules, the toolbox offers additional utilities for probe registration
and adjusting for head size, region-of-interest analysis, and other features.

6.1. Probe Registration

The nirs.core.Probe object class encodes both two-dimensional and three-dimensional information
about the fNIRS sensor layout. Three-dimensionally registered information can be imported directly
from the raw data files (e.g., the case in NIRx data file format) or using third-party code such as
AtlasViewer [61]. Within the toolbox there are features to register the probe. To register a fNIRS
probe a set of landmarks need to be defined relative to the fNIRS sensors in the two-dimensional
space. For example, the 10–20 point FpZ might be located in between two specific optodes on the
probe. These landmarks are defined as either “anchors” or “attractors” and can be any of the standard
10–20, 10–10, or 10–5 head point coordinates. Anchors define landmarks that are fixed in position
relative to the fNIRS optodes. Attractors define directional information. For example, the y-axis of
the fNIRS probe might be oriented in the direction of the 10–20 points FpZ to Cz. This notation is
similar to the use in the AtlasViewer program [61]. The probe is then registered to a generic spherical
shape using an interactive relaxation of a network of connected springs between the optodes. In our
toolbox, the springs connecting optodes are automatically populated (c.f. AtlasViewer where this is
user-defined). For disjointed probes (e.g., where the probe on the left/right hemispheres are separate
pieces), an option is included to separate register each part as long as each piece has at least one anchor
point. In registering the probe to the spherical shape, the size of the shape (head) can be changed
by specifying the distance over the top of the head from the nasion to inion, left/right perarticular
points, and the head circumference. If only one of the three distances is specified, then the shape is
isotropically stretched.

Once the probe is registered into a 10–20 (spherical) space, a head/brain model can be registered
into the same space. A version of the Colin27 atlas [62] is included in the toolbox, which has been
preprocessed using FreeSurfer [63] to generate a layered head model (skin, skull, cerebral spinal fluid,
gray/white matter). The gray/white matter surfaces have been labeled using both the AAL2 [64,65]
and Freesurfer “aparc” [66] parcellation labels which is stored in the variable. Subject specific
models can also be imported from FreeSurfer or similar programs. The registration of the fNIRS
probe to the brain model can either be done by rescaling the brain to match the measured head
circumference of the subject or by re-registering the probe to match the measurements computed from
the brain/head model.

Once registered, the probe object’s drawing is controlled through the default_draw field, which
provides the choose of the original two-dimensional (“2D”), in 10–20 space (“10–20”; which uses
a Clarke azimuthal map projection), or as a three-dimensional drawing overlain on the head mesh
“3D mesh(<view>)”. The keyword “zoom” added to the end of the draw field string will cause the
view to be zoomed to show only the part of the map covered by the probe (c.f. showing the whole
10–20 map as demonstrated back in Figure 1).

6.2. Depth-Maps

The depth map function (nirs.util.depthmap) will compute the distance from each fNIRS probe
position (sources, detectors, and midpoint of the measurements) to the labeled anatomical pial surface
of the brain based on the registered head model. This can either be returned in table form or plotted as
a figure as shown in Figure 6. This function can be used to estimate the depth to a specific brain region
using labels from the parcellations stored brain model (e.g., “BA-46”; for the toolbox included Colin27
atlas these can be any of the AAL2 or Freesurfer labels) or to return the closest region to each fNIRS
sensor using the “?” keyword. The depth map table also includes an estimate of the relative sensitivity

Algorithms 2018, 11, 73 26 of 33

of each measurement to the brain region, which is based on a quick homogeneous slab-model version
of the forward solution (see Section 4).

Algorithms 2018, 11, x FOR PEER REVIEW 25 of 32

the optodes. In our toolbox, the springs connecting optodes are automatically populated (c.f.
AtlasViewer where this is user-defined). For disjointed probes (e.g., where the probe on the left/right
hemispheres are separate pieces), an option is included to separate register each part as long as each
piece has at least one anchor point. In registering the probe to the spherical shape, the size of the
shape (head) can be changed by specifying the distance over the top of the head from the nasion to
inion, left/right perarticular points, and the head circumference. If only one of the three distances is
specified, then the shape is isotropically stretched.

Once the probe is registered into a 10–20 (spherical) space, a head/brain model can be registered
into the same space. A version of the Colin27 atlas [62] is included in the toolbox, which has been
preprocessed using FreeSurfer [63] to generate a layered head model (skin, skull, cerebral spinal fluid,
gray/white matter). The gray/white matter surfaces have been labeled using both the AAL2 [64,65]
and Freesurfer “aparc” [66] parcellation labels which is stored in the variable. Subject specific models
can also be imported from FreeSurfer or similar programs. The registration of the fNIRS probe to the
brain model can either be done by rescaling the brain to match the measured head circumference of
the subject or by re-registering the probe to match the measurements computed from the brain/head
model.

Once registered, the probe object’s drawing is controlled through the default_draw field, which
provides the choose of the original two-dimensional (“2D”), in 10–20 space (“10–20”; which uses a
Clarke azimuthal map projection), or as a three-dimensional drawing overlain on the head mesh (“3D
mesh(<view>)”. The keyword “zoom” added to the end of the draw field string will cause the view
to be zoomed to show only the part of the map covered by the probe (c.f. showing the whole 10–20
map as demonstrated back in Figure 1).

6.2. Depth-Maps

The depth map function (nirs.util.depthmap) will compute the distance from each fNIRS probe
position (sources, detectors, and midpoint of the measurements) to the labeled anatomical pial
surface of the brain based on the registered head model. This can either be returned in table form or
plotted as a figure as shown in Figure 6. This function can be used to estimate the depth to a specific
brain region using labels from the parcellations stored brain model (e.g., “BA-46”; for the toolbox
included Colin27 atlas these can be any of the AAL2 or Freesurfer labels) or to return the closest
region to each fNIRS sensor using the “?” keyword. The depth map table also includes an estimate of
the relative sensitivity of each measurement to the brain region, which is based on a quick
homogeneous slab-model version of the forward solution (see Section 4).

Figure 6. The fNIRS probe was registered to the Colin27 atlas, which was used in combination with
the automatic anatomical labeling toolbox (AAL2) to label the Brodmann area 10. The images above
show topology maps (Clarke azimuthal map projection) showing the depth of the nearest cortical

Figure 6. The fNIRS probe was registered to the Colin27 atlas, which was used in combination with
the automatic anatomical labeling toolbox (AAL2) to label the Brodmann area 10. The images above
show topology maps (Clarke azimuthal map projection) showing the depth of the nearest cortical point
in the region-of-interest to the surface of the head. A yellow indicates a depth of greater than 30 mm,
which would be inaccessible to fNIRS.

6.3. Region of Interest Analysis

The toolbox includes support for region-of-interest analysis. Region-of-interest analysis can be
applied to either the time course (nirs.core.Data) or statistical model (nirs.core.ChannelStats) variables.
The region-of-interest code returns an object of the same form as either the time-course or ChannelStats
variables and can be used in the processing modules. Similar to computing the Student’s t-value over
several task conditions, region-of-interest analysis is done via the equation

βroi = c·βchannel (36a)

Covβroi = c·Covβ·cT (36b)

where c is the contrast vector and β is the channel-space values (either from the ChannelStats model
or as channel-by-time matrices for the time-series data). In a simple version, the contrast vector of
c = [0 0.5 0.5 0 0 . . .]T would average over the 2nd and 3rd channel entries.

Region-of-interests can be defined using tables defined by the list of the sources, detectors, and
weights used. This can be specified manually or based on anatomical registration. For three-dimensionally
registered probes, the expected relative sensitivity of each fNIRS source-to-detector channel to anatomical
parcellation labels can be used to define a weighted region-of-interest based on the optical forward model
(H). The optical forward model (see Section 4) defines the sensitivity of the measurements in channel
space to underlying changes in the brain space. This model is calculated by estimation or simulation of
the diffusion of light through the tissue (see [67] for details).

Algorithms 2018, 11, 73 27 of 33

For anatomical regions-of-interest, one can use the optical forward model and a brain-space region
mask define the contrast vector in channel-space. The contrast vector (c) is given by

croi = H·MaskROI (37a)

where

MaskROI(r) =

{
1

0

i f r ∈ ROI

else
(37b)

The Student’s t-test for a specific region-of-interest is then given by

TROI = c·Γ/
√

c× CovΓ × cT (37c)

and
c = cCOND · cROI (37d)

where cROI and cCOND are the contrast vectors for the region-of-interest (ROI) and for the pooling of
conditions. For statistical testing of the region-of-interest, this contrast vector defines the expected
response in channel space given the region in brain space. Thus, Equation (37) test the null hypothesis
that the signal from the region-of-interest is equal to zero. This does not test if the activity specifically
came from only that region. In other words, this does not test if the entire region is active or just a subset.
It also does not rule out that the activity could have been from a nearby region, which was also covered
by that source-detector pair. This also assumes the optical forward model and probe registration are
accurate. Any mismatch in the registration or forward model (e.g., as a result of anatomical differences
including brain atrophy) will mean that the contrast vector is testing a slightly non-optimal hypothesis.
As discussed in [15], using a sub-optimal contrast vector for the hypothesis is equivalent to using the
wrong time-window for computing the effect. In this case, it is akin to a weighted average across
the wrong combination of channels. This introduces type-II error (e.g., the false-negative rate will
increase and one might miss activity that actually was significant), but does not introduce type I error
(false-positive rate).

6.4. Regression Testing

One of the key features of the toolbox is the ability to quantitatively compare analysis methods and
pipelines. Datasets with and without stimulus are simulated and analyzed using different pipelines.
Receiver operating characteristics (ROC) curve is drawn for each pipeline given the analysis results of
the simulation data, which will be used in the comparison of different pipelines.

6.4.1. Data Simulation

The channel space noise and image space stimulus are generated in the data simulation. The noise
appears in all channels and the stimulus only generated within a specific ROI. Two datasets are
generated in every simulation iteration with one of which contains a simulated evoked response and
the other one only contains noise (null data).

Noise Generation

An autoregressive (AR) model is used to generate the noise. The notation AR(p) indicates an AR
model of order p, which is defined as

Yt = c +
p

∑
i=1

ϕiYi−1 + εt (38a)

where ϕ1, · · · , ϕp are the randomly generated parameters of the model, c is a constant representing the
baseline offset which is 0 in the toolbox for simulating changes in optical density, and εt is the noise.

Algorithms 2018, 11, 73 28 of 33

In our case, noises of different channels are correlated. Thus, ε is sampled from a N-variate normal
distribution as follows.

εt ∼ NN(0, S) (38b)

Here εt is the N × T dimensional noise matrix, in which N is the number of channels, T is the
total simulation time, and S is the N × N dimensional covariance matrix between channels.

Stimulus Generation

The time difference between two neighboring stimulus onsets is generated from an exponential
distribution with a specific mean that indicates the average difference. The responses (changes in
HbO2 and Hb) of the brain at stimulus onsets are simulated using the function given by Equation (15).

6.4.2. ROC Definitions

There are two levels ROC [68] curves that are produced by the toolbox – voxel level and ROI
level. The p-values for each voxel within the ROI and for the whole ROI in stimulus present data
and noise only data are used as the decision variable. The logic is that a smaller p-value indicates
more significant changes in HbO2 and Hb, i.e., stimulus present. Then, sort the p-values and use
each unique value as the threshold. The false positive rate (FPR) and true positive rate (TPR) at each
threshold can be calculated by the fraction of the voxels/ROIs with a p-value that is smaller than or
equal to the threshold using stimulus present and noise-only dataset respectively. The ROC curve is
defined as TPR against FPR. The area under the ROC curve (AUC) [68] means the probability that the
HbO2 and Hb changes in stimulus-containing voxels/ROIs are more significant than that in noise-only
voxels/ROIs based on the estimations given by the pipeline. Therefore, a larger AUC indicates higher
detection accuracy.

The statistical definition of p-value is the probability of rejecting the null hypothesis when it
is true. Hence, we use p-value as an estimate of the FPR. Another two plots the toolbox draws are
defined by FPR against p-values for voxels and ROIs respectively. A good curve should be close to
the diagonal of the plotting square. These two curves indicate the bias of the FPR estimates by the
pipeline. The curve above the diagonal means the FPR is underestimated and vice versa.

7. Graphical Interfaces

Although the Brain AnalyzIR toolbox is primarily a command-line interface, there are available
several graphical user interfaces (GUIs) (e.g., nirs.viz.jobmanager; a tool for building analysis
pipelines, nirs.viz.nirsviewer; a data display utility, and nirs.viz.StimUtil; a tool for modifying stimulus
information). Figure 7 shows the screenshot of nirs.viz.nirsviewer to visualize the time series of raw data
(690 nm) from two channels with its stimulus info. The menu commands (i.e., File, Data Management,
Probe Registration, Data Analysis, Reports, Help) provide access to most operations available in the
toolbox through the graphical interface for users who prefer not to use the command line. For example,
this GUI will provide the ability to load NIRS files, edit subject demographics, register probe, etc.
The GUI also provides access to data structures (e.g., raw, wavelength, hemoglobin data, etc.) and
NIRS files (subject information from demographics). The stimulus design and signal from a particular
channel can be viewed by selecting the corresponding source-detector pairs in the probe configuration.
In Figure 7, it shows two channels (channels from source 4—detector 6 and source 3—detector 5) from
300 s data of 690 nm with the stimulus design of the task (“Task”).

Algorithms 2018, 11, 73 29 of 33

Algorithms 2018, 11, x FOR PEER REVIEW 28 of 32

Although the Brain AnalyzIR toolbox is primarily a command-line interface, there are available
several graphical user interfaces (GUIs) (e.g., nirs.viz.jobmanager; a tool for building analysis pipelines,
nirs.viz.nirsviewer; a data display utility, and nirs.viz.StimUtil; a tool for modifying stimulus
information). Figure 7 shows the screenshot of nirs.viz.nirsviewer to visualize the time series of raw
data (690 nm) from two channels with its stimulus info. The menu commands (i.e., File, Data
Management, Probe Registration, Data Analysis, Reports, Help) provide access to most operations
available in the toolbox through the graphical interface for users who prefer not to use the command
line. For example, this GUI will provide the ability to load NIRS files, edit subject demographics,
register probe, etc. The GUI also provides access to data structures (e.g., raw, wavelength,
hemoglobin data, etc.) and NIRS files (subject information from demographics). The stimulus design
and signal from a particular channel can be viewed by selecting the corresponding source-detector
pairs in the probe configuration. In Figure 7, it shows two channels (channels from source 4—detector
6 and source 3—detector 5) from 300 s data of 690 nm with the stimulus design of the task (“Task”).

Figure 7. Graphical user interface of AnalyzIR toolbox.

8. Minimum Processing Recommendations

Our recommendation for standard analysis of fNIRS data is to do the minimum amount of
manipulations to the data possible. In particular, by using statistical models that are more robust to
the effects of physiology (serially-correlated errors and colored-noise) and motion-artifacts (statistical
outliers), we can control false-positive rates even without removing or pre-processing these artifacts
ahead of time. Thus, our preferred analysis pipeline does not include any motion-correction or pre-
filtering of any kind and instead focuses on using appropriate statistical models that are less biased
by these artifacts. Of course, the presence of these artifacts and noise does affect the effect sizes and
statistical power of the results, resulting in increased type-II error. Using pre-filtering or correction
methods will generally improve the size of the estimated effects, however, there is rarely a “one-size-
fits-all” solution to these pre-processing issues. In contrast, using these robust statistical models does
work for dealing with the issues seen in fNIRS data that often result in high false-positive rates.

In the toolbox, there are a series of default module pipelines that represent standard minimum
processing. These are found in nirs.modules.default_modules and include a single-subject canonical
model analysis, a single-subject deconvolution (FIR) model analysis, and a pipeline from raw data
through group-level mixed effects models. These pipelines only include standard steps like the

Figure 7. Graphical user interface of AnalyzIR toolbox.

8. Minimum Processing Recommendations

Our recommendation for standard analysis of fNIRS data is to do the minimum amount
of manipulations to the data possible. In particular, by using statistical models that are more
robust to the effects of physiology (serially-correlated errors and colored-noise) and motion-artifacts
(statistical outliers), we can control false-positive rates even without removing or pre-processing these
artifacts ahead of time. Thus, our preferred analysis pipeline does not include any motion-correction
or pre-filtering of any kind and instead focuses on using appropriate statistical models that are less
biased by these artifacts. Of course, the presence of these artifacts and noise does affect the effect
sizes and statistical power of the results, resulting in increased type-II error. Using pre-filtering
or correction methods will generally improve the size of the estimated effects, however, there is
rarely a “one-size-fits-all” solution to these pre-processing issues. In contrast, using these robust
statistical models does work for dealing with the issues seen in fNIRS data that often result in high
false-positive rates.

In the toolbox, there are a series of default module pipelines that represent standard minimum
processing. These are found in nirs.modules.default_modules and include a single-subject canonical
model analysis, a single-subject deconvolution (FIR) model analysis, and a pipeline from raw data
through group-level mixed effects models. These pipelines only include standard steps like the
conversion to optical density, the modified Beer–Lambert law, resampling to the default (5Hz), and
linear regression modeling using the AR-IRLS method.

9. Future Direction

FNIRS technology will continue to evolve alongside other modalities to improve our
understanding of human brain function. This open-source toolbox allows other researchers to freely
use, modify, or share, while respecting the original toolbox authorship. We welcome more interaction
with other researchers from various modalities (e.g., fNIRS, fMRI, MEG, EEG) on this AnalyzIR
toolbox with a particular focus on developing multimodal methods within this common framework.
The toolbox already supports all four of these modalities in some form. It is our hope that this toolbox
will continue to grow and advance with (but not restricted to) the NIRS field. In addition, we already
implemented the modules of the short-separation measurements in the toolbox as a popular technique

Algorithms 2018, 11, 73 30 of 33

to reduce the systemic physiological noises in the fNIRS signal. We also encourage researchers to use
ROC analysis when they are proposing new methods. Doing so will allow proper comparisons of the
performance of the proposed method with existing method.

Author Contributions: H.S., X.Z., and F.F. made the figures, updated several modules in the AnalyzIR toolbox
periodically, and contributed to the text file. Theodore Huppert supervised the toolbox, updated most of the
modules, and corrected the entire manuscript. All the authors read and approved the final manuscript.

Funding: This research was funded by [National Institutes of Health] grant number [NIH-NIBIB; RO1EB013210
[TJH]].

Acknowledgments: The authors thank Jeffrey Barker for developing initial AnalyzIR toolbox.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wolf, M.; Ferrari, M.; Quaresima, V. Progress of near-infrared spectroscopy and topography for brain and
muscle clinical applications. J. Biomed. Opt. 2007, 12, 062104. [PubMed]

2. Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy
(fNIRS) development and fields of application. Neuroimage 2012, 63, 921–935. [CrossRef] [PubMed]

3. Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Pavia, J.M.; Wolf, U.; Wolf, M. A review on
continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology.
Neuroimage 2014, 85, 6–27. [CrossRef] [PubMed]

4. Boas, D.A.; Dale, A.M.; Franceschini, M.A. Diffuse optical imaging of brain activation: Approaches to
optimizing image sensitivity, resolution, and accuracy. Neuroimage 2004, 23, 275S–S288. [CrossRef] [PubMed]

5. Tachtsidis, I.; Scholkmann, F. False positives and false negatives in functional near-infrared spectroscopy:
Issues, challenges, and the way forward. Neurophotonics 2016, 3, 031405. [CrossRef] [PubMed]

6. Takahashi, T.; Takikawa, Y.; Kawagoe, R.; Shibuya, S.; Iwano, T.; Kitazawa, S. Influence of skin blood flow on
near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage 2011,
57, 991–1002. [CrossRef] [PubMed]

7. Lloyd-Fox, S.; Blasi, A.; Elwell, C.E. Illuminating the developing brain: The past, present and future of
functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 2010, 34, 269–284. [CrossRef] [PubMed]

8. Obrig, H. NIRS in clinical neurology—A ‘promising’ tool? Neuroimage 2014, 85 Pt 1, 535–546. [CrossRef]
[PubMed]

9. Huppert, T.J.; Barker, J.W.; Schmidt, B.; Walls, S.; Ghuman, A. Comparison of group-level, source localized
activity for simultaneous functional near-infrared spectroscopy-magnetoencephalography and simultanous
fNIRS-fMRI during parametric median nerve stimulation. Neurophotonics 2017, 4, 015001. [CrossRef]
[PubMed]

10. Yucel, M.A.; Selb, J.J.; Huppert, T.J.; Franceschini, M.A.; Boas, D.A. Functional near infrared spectroscopy:
Enabling routine functional brain imaging. Curr. Opin. Biomed. Eng. 2017, 4, 78–86. [CrossRef] [PubMed]

11. Miyai, I.; Tanabe, H.C.; Sase, I.; Eda, H.; Oda, I.; Konishi, I.; Tsunazawa, Y.; Suzuki, T.; Yanagida, T.; Kubota, K.
Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. Neuroimage 2001, 14,
1186–1192. [CrossRef] [PubMed]

12. Quaresima, V.; Ferrari, M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex
function during human behavior in natural/social situations: A concise review. Organ. Res. Methods 2016.
[CrossRef]

13. SPSS. Available online: www.ibm.com/products/spss-statistics (accessed on 28 March 2018).
14. SAS. Available online: www.sas.com (accessed on 28 March 2018).
15. Huppert, T.J. Commentary on the statistical properties of noise and its implication on general linear models

in functional near-infrared spectroscopy. Neurophotonics 2016, 3, 010401. [CrossRef] [PubMed]
16. Barker, J.W.; Aarabi, A.; Huppert, T.J. Autoregressive model based algorithm for correcting motion and

serially correlated errors in fnirs. Biomed. Opt. Express 2013, 4, 1366–1379. [CrossRef] [PubMed]
17. Barker, J.W.; Rosso, A.L.; Sparto, P.J.; Huppert, T.J. Correction of motion artifacts and serial correlations for

real-time functional near-infrared spectroscopy. Neurophotonics 2016, 3, 031410. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/18163807
http://dx.doi.org/10.1016/j.neuroimage.2012.03.049
http://www.ncbi.nlm.nih.gov/pubmed/22510258
http://dx.doi.org/10.1016/j.neuroimage.2013.05.004
http://www.ncbi.nlm.nih.gov/pubmed/23684868
http://dx.doi.org/10.1016/j.neuroimage.2004.07.011
http://www.ncbi.nlm.nih.gov/pubmed/15501097
http://dx.doi.org/10.1117/1.NPh.3.3.031405
http://www.ncbi.nlm.nih.gov/pubmed/27054143
http://dx.doi.org/10.1016/j.neuroimage.2011.05.012
http://www.ncbi.nlm.nih.gov/pubmed/21600294
http://dx.doi.org/10.1016/j.neubiorev.2009.07.008
http://www.ncbi.nlm.nih.gov/pubmed/19632270
http://dx.doi.org/10.1016/j.neuroimage.2013.03.045
http://www.ncbi.nlm.nih.gov/pubmed/23558099
http://dx.doi.org/10.1117/1.NPh.4.1.015001
http://www.ncbi.nlm.nih.gov/pubmed/28149919
http://dx.doi.org/10.1016/j.cobme.2017.09.011
http://www.ncbi.nlm.nih.gov/pubmed/29457144
http://dx.doi.org/10.1006/nimg.2001.0905
http://www.ncbi.nlm.nih.gov/pubmed/11697950
http://dx.doi.org/10.1177/1094428116658959
www.ibm.com/products/spss-statistics
www.sas.com
http://dx.doi.org/10.1117/1.NPh.3.1.010401
http://www.ncbi.nlm.nih.gov/pubmed/26989756
http://dx.doi.org/10.1364/BOE.4.001366
http://www.ncbi.nlm.nih.gov/pubmed/24009999
http://dx.doi.org/10.1117/1.NPh.3.3.031410
http://www.ncbi.nlm.nih.gov/pubmed/27226974

Algorithms 2018, 11, 73 31 of 33

18. Santosa, H.; Aarabi, A.; Perlman, S.B.; Huppert, T.J. Characterization and correction of the false-discovery
rates in resting state connectivity using functional near-infrared spectroscopy. J. Biomed. Opt. 2017, 22, 055002.
[CrossRef] [PubMed]

19. Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. Homer: A review of time-series analysis
methods for near-infrared spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [CrossRef] [PubMed]

20. Ye, J.C.; Tak, S.; Jang, K.E.; Jung, J.; Jang, J. NIRS-SPM: Statistical parametric mapping for near-infrared
spectroscopy. Neuroimage 2009, 44, 428–447. [CrossRef] [PubMed]

21. Jermyn, M.; Ghadyani, H.; Mastanduno, M.A.; Turner, W.; Davis, S.C.; Dehghani, H.; Pogue, B.W. Fast
segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse
optical tomography. J. Biomed. Opt. 2013, 18, 086007. [CrossRef] [PubMed]

22. Dehghani, H.; Eames, M.E.; Yalavarthy, P.K.; Davis, S.C.; Srinivasan, S.; Carpenter, C.M.; Pogue, B.W.;
Paulsen, K.D. Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image
reconstruction. Commun. Numer. Methods Eng. 2008, 25, 711–732. [CrossRef] [PubMed]

23. Fang, Q.; Boas, D. Tetrahedral mesh generation from volumetric binary and gray-scale images. In Proceedings
of the IEEE International Symposium on Biomedical Imaging, Boston, MA, USA, 28 June–1 July 2009;
pp. 1142–1145.

24. Fang, Q.; Kaeli, D.R. Accelerating mesh-based Monte Carlo method on modern CPU architectures.
Biomed. Opt. Express 2012, 3, 3223–3230. [CrossRef] [PubMed]

25. Chen, J.; Fang, Q.; Intes, X. Mesh-based Monte Carlo method in time-domain widefield fluorescence
molecular tomography. J. Biomed. Opt. 2012, 17, 106009. [CrossRef] [PubMed]

26. Boas, D.; Culver, J.; Stott, J.; Dunn, A. Three dimensional Monte Carlo code for photon migration through
complex heterogeneous media including the adult human head. Opt. Express 2002, 10, 159–170. [CrossRef]
[PubMed]

27. Benjamini, Y.; Hochberg, E. Controlling the false discovery rate: A practical and powerful approach to
multiple testing. J. R. Stat. Soc. B Methodol. 1995, 57, 289–300.

28. Harcum, J.B.; Dressing, S.A. Technical Memorandum #3: Minimum Detectable Change and Power Analysis; Agency
USEP: Washington, DC, USA, 2015; p. 10.

29. Hotelling, H. The generalization of student’s ratio. Ann. Math. Stat. 1931, 2, 360–378. [CrossRef]
30. CIFTI-2 Specification. Available online: https://www.nitrc.org/projects/cifti/ (accessed on 28 March 2018).
31. Huppert, T.J.; Diamond, S.G.; Boas, D.A. Direct estimation of evoked hemoglobin changes by multimodality

fusion imaging. J. Biomed. Opt. 2008, 13, 054031. [CrossRef] [PubMed]
32. Yucel, M.A.; Evans, K.C.; Selb, J.; Huppert, T.J.; Boas, D.A.; Gagnon, L. Validation of the hypercapnic

calibrated fMRI method using DOT-fMRI fusion imaging. Neuroimage 2014, 102 Pt 2, 729–735. [CrossRef]
[PubMed]

33. Abdelnour, F.; Genovese, C.; Huppert, T. Hierarchical bayesian regularization of reconstructions for diffuse
optical tomography using multiple priors. Biomed. Opt. Express 2010, 1, 1084–1103. [CrossRef] [PubMed]

34. Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37–R61. [CrossRef]
[PubMed]

35. Molavi, B.; Dumont, G.A. Wavelet-based motion artifact removal for functional near-infrared spectroscopy.
Physiol. Meas. 2012, 33, 259–270. [CrossRef] [PubMed]

36. Abdelnour, F.; Huppert, T. A random-effects model for group-level analysis of diffuse optical brain imaging.
Biomed. Opt. Express 2010, 2, 1–25. [CrossRef] [PubMed]

37. Abdelnour, F.; Schmidt, B.; Huppert, T.J. Topographic localization of brain activation in diffuse optical
imaging using spherical wavelets. Phys. Med. Biol. 2009, 54, 6383–6413. [CrossRef] [PubMed]

38. Zhang, Y.; Brooks, D.H.; Franceschini, M.A.; Boas, D.A. Eigenvector-based spatial filtering for reduction of
physiological interference in diffuse optical imaging. J. Biomed. Opt. 2005, 10, 11014. [CrossRef] [PubMed]

39. Themelis, G.; D’Arceuil, H.; Diamond, S.G.; Thaker, S.; Huppert, T.J.; Boas, D.A.; Franceschini, M.A.
Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume
from arterial oscillations. J. Biomed. Opt. 2007, 12, 014033. [CrossRef] [PubMed]

40. Hoge, R.D.; Franceschini, M.A.; Covolan, R.J.; Huppert, T.; Mandeville, J.B.; Boas, D.A. Simultaneous
recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging
and arterial spin-labeling MRI. Neuroimage 2005, 25, 701–707. [CrossRef] [PubMed]

http://dx.doi.org/10.1117/1.JBO.22.5.055002
http://www.ncbi.nlm.nih.gov/pubmed/28492852
http://dx.doi.org/10.1364/AO.48.00D280
http://www.ncbi.nlm.nih.gov/pubmed/19340120
http://dx.doi.org/10.1016/j.neuroimage.2008.08.036
http://www.ncbi.nlm.nih.gov/pubmed/18848897
http://dx.doi.org/10.1117/1.JBO.18.8.086007
http://www.ncbi.nlm.nih.gov/pubmed/23942632
http://dx.doi.org/10.1002/cnm.1162
http://www.ncbi.nlm.nih.gov/pubmed/20182646
http://dx.doi.org/10.1364/BOE.3.003223
http://www.ncbi.nlm.nih.gov/pubmed/23243572
http://dx.doi.org/10.1117/1.JBO.17.10.106009
http://www.ncbi.nlm.nih.gov/pubmed/23224008
http://dx.doi.org/10.1364/OE.10.000159
http://www.ncbi.nlm.nih.gov/pubmed/19424345
http://dx.doi.org/10.1214/aoms/1177732979
https://www.nitrc.org/projects/cifti/
http://dx.doi.org/10.1117/1.2976432
http://www.ncbi.nlm.nih.gov/pubmed/19021411
http://dx.doi.org/10.1016/j.neuroimage.2014.08.052
http://www.ncbi.nlm.nih.gov/pubmed/25196509
http://dx.doi.org/10.1364/BOE.1.001084
http://www.ncbi.nlm.nih.gov/pubmed/21258532
http://dx.doi.org/10.1088/0031-9155/58/11/R37
http://www.ncbi.nlm.nih.gov/pubmed/23666068
http://dx.doi.org/10.1088/0967-3334/33/2/259
http://www.ncbi.nlm.nih.gov/pubmed/22273765
http://dx.doi.org/10.1364/BOE.2.000001
http://www.ncbi.nlm.nih.gov/pubmed/21326631
http://dx.doi.org/10.1088/0031-9155/54/20/023
http://www.ncbi.nlm.nih.gov/pubmed/19809125
http://dx.doi.org/10.1117/1.1852552
http://www.ncbi.nlm.nih.gov/pubmed/15847580
http://dx.doi.org/10.1117/1.2710250
http://www.ncbi.nlm.nih.gov/pubmed/17343508
http://dx.doi.org/10.1016/j.neuroimage.2004.12.032
http://www.ncbi.nlm.nih.gov/pubmed/15808971

Algorithms 2018, 11, 73 32 of 33

41. Riera, J.J.; Watanabe, J.; Kazuki, I.; Naoki, M.; Aubert, E.; Ozaki, T.; Kawashima, R. A state-space model of
the hemodynamic approach: Nonlinear filtering of bold signals. Neuroimage 2004, 21, 547–567. [CrossRef]
[PubMed]

42. Huppert, T.J.; Allen, M.S.; Diamond, S.G.; Boas, D.A. Estimating cerebral oxygen metabolism from fMRI
with a dynamic multicompartment windkessel model. Hum. Brain Mapp. 2009, 30, 1548–1567. [CrossRef]
[PubMed]

43. Boas, D.A.; Jones, S.R.; Devor, A.; Huppert, T.J.; Dale, A.M. A vascular anatomical network model of the
spatio-temporal response to brain activation. Neuroimage 2008, 40, 1116–1129. [CrossRef] [PubMed]

44. Huppert, T.J.; Allen, M.S.; Benav, H.; Jones, P.B.; Boas, D.A. A multicompartment vascular model for
inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation. J. Cereb. Blood
Flow Metab. 2007, 27, 1262–1279. [CrossRef] [PubMed]

45. Beaton, A.E.; Tukey, J.W. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic
data. Technometrics 1974, 16, 147–185. [CrossRef]

46. Jang, K.E.; Tak, S.; Jung, J.; Jang, J.; Jeong, Y.; Ye, J.C. Wavelet minimum description length detrending for
near-infrared spectroscopy. J. Biomed. Opt. 2009, 14, 034004. [CrossRef] [PubMed]

47. Karim, H.; Fuhrman, S.I.; Sparto, P.; Furman, J.; Huppert, T. Functional brain imaging of multi-sensory
vestibular processing during computerized dynamic posturography using near-infrared spectroscopy.
Neuroimage 2013, 74, 318–325. [CrossRef] [PubMed]

48. Karim, H.T.; Fuhrman, S.I.; Furman, J.M.; Huppert, T.J. Neuroimaging to detect cortical projection of
vestibular response to caloric stimulation in young and older adults using functional near-infrared
spectroscopy (fNIRS). Neuroimage 2013, 76, 1–10. [CrossRef] [PubMed]

49. Karim, H.T.; Sparto, P.J.; Aizenstein, H.J.; Furman, J.M.; Huppert, T.J.; Erickson, K.I.; Loughlin, P.J. Functional
MR imaging of a simulated balance task. Brain Res. 2014, 1555, 20–27. [CrossRef] [PubMed]

50. Wilkinson, G.N.; Rogers, C.E. Symbolic description of factorial models for analysis of variance. J. R. Stat. Soc.
Ser. C (Appl. Stat.) 1973, 22, 3920399. [CrossRef]

51. Fang, Q. Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates. Biomed. Opt. Express
2010, 1, 165–175. [CrossRef] [PubMed]

52. Arridge, S.R. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41. [CrossRef]
53. Cule, E.; Vineis, P.; De Iorio, M. Significance testing in ridge regression for genetic data. BMC Bioinform. 2011,

12, 372. [CrossRef] [PubMed]
54. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
55. Wiener, N. The theory of prediction. In Modern Mathematics for the Engineer; Beckenbach, E.F., Ed.; McGraw-Hill:

New York, NY, USA, 1956.
56. Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to

geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [CrossRef]
57. Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations.

Neuroimage 2010, 52, 1059–1069. [CrossRef] [PubMed]
58. Langville, A.; Meyer, C. Google’s PageRank and Beyond: The Science of Search Engine Rankings; Princeton

University Press: Princeton, NJ, USA, 2006.
59. Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol.

1972, 2, 113–120. [CrossRef]
60. Bonanich, P. Some unique properties of eigenvector centrality. Soc. Netw. 2007, 29, 555–564. [CrossRef]
61. Aasted, C.M.; Yücel, M.A.; Cooper, R.J.; Dubb, J.; Tsuzuki, D.; Becerra, L.; Petkov, M.P.; Borsook, D.;

Dan, I.; Boas, D.A. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial.
Neurophotonics 2015, 2, 020801. [CrossRef] [PubMed]

62. Holmes, C.J.; Hoge, R.; Collins, L.; Woods, R.; Toga, A.W.; Evans, A.C. Enhancement of mr images using
registration for signal averaging. J. Comput. Assist. Tomogr. 1998, 22, 324–333. [CrossRef] [PubMed]

63. Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction.
Neuroimage 1999, 9, 179–194. [CrossRef] [PubMed]

64. Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.;
Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation
of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.neuroimage.2003.09.052
http://www.ncbi.nlm.nih.gov/pubmed/14980557
http://dx.doi.org/10.1002/hbm.20628
http://www.ncbi.nlm.nih.gov/pubmed/18649348
http://dx.doi.org/10.1016/j.neuroimage.2007.12.061
http://www.ncbi.nlm.nih.gov/pubmed/18289880
http://dx.doi.org/10.1038/sj.jcbfm.9600435
http://www.ncbi.nlm.nih.gov/pubmed/17200678
http://dx.doi.org/10.1080/00401706.1974.10489171
http://dx.doi.org/10.1117/1.3127204
http://www.ncbi.nlm.nih.gov/pubmed/19566297
http://dx.doi.org/10.1016/j.neuroimage.2013.02.010
http://www.ncbi.nlm.nih.gov/pubmed/23419940
http://dx.doi.org/10.1016/j.neuroimage.2013.02.061
http://www.ncbi.nlm.nih.gov/pubmed/23523804
http://dx.doi.org/10.1016/j.brainres.2014.01.033
http://www.ncbi.nlm.nih.gov/pubmed/24480476
http://dx.doi.org/10.2307/2346786
http://dx.doi.org/10.1364/BOE.1.000165
http://www.ncbi.nlm.nih.gov/pubmed/21170299
http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1186/1471-2105-12-372
http://www.ncbi.nlm.nih.gov/pubmed/21929786
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.5194/npg-11-561-2004
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
http://dx.doi.org/10.1080/0022250X.1972.9989806
http://dx.doi.org/10.1016/j.socnet.2007.04.002
http://dx.doi.org/10.1117/1.NPh.2.2.020801
http://www.ncbi.nlm.nih.gov/pubmed/26157991
http://dx.doi.org/10.1097/00004728-199803000-00032
http://www.ncbi.nlm.nih.gov/pubmed/9530404
http://dx.doi.org/10.1006/nimg.1998.0395
http://www.ncbi.nlm.nih.gov/pubmed/9931268
http://dx.doi.org/10.1006/nimg.2001.0978
http://www.ncbi.nlm.nih.gov/pubmed/11771995

Algorithms 2018, 11, 73 33 of 33

65. Rolls, E.T.; Joliot, M.; Tzourio-Mazoyer, N. Implementation of a new parcellation of the orbitofrontal cortex
in the automated anatomical labeling atlas. Neuroimage 2015, 122, 1–5. [CrossRef] [PubMed]

66. Fischl, B.; van der Kouwe, A.; Destrieux, C.; Halgren, E.; Segonne, F.; Salat, D.H.; Busa, E.; Seidman, L.J.;
Goldstein, J.; Kennedy, D.; et al. Automatically parcellating the human cerebral cortex. Cereb. Cortex 2004, 14,
11–22. [CrossRef] [PubMed]

67. Huppert, T.J.; Karim, H.; Lin, C.C.; Alqahtani, B.A.; Greenspan, S.L.; Sparto, P.J. Functional imaging of
cognition in an old-old population: A case for portable functional near-infrared spectroscopy. PLoS ONE
2017, 12, e0184918. [CrossRef] [PubMed]

68. Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC)
curve. Radiology 1982, 143, 29–36. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neuroimage.2015.07.075
http://www.ncbi.nlm.nih.gov/pubmed/26241684
http://dx.doi.org/10.1093/cercor/bhg087
http://www.ncbi.nlm.nih.gov/pubmed/14654453
http://dx.doi.org/10.1371/journal.pone.0184918
http://www.ncbi.nlm.nih.gov/pubmed/29023452
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Architecture of Toolbox
	Data Classes
	nirs.core.Data
	nirs.core.Data
	nirs.core.ChannelStats
	nirs.core.ImageStats
	Multimodal Object Classes

	Processing Modules Classes
	Data Management
	Pre-Processing
	Calculate CMRO2
	HOMER-2 Interface

	Statistical Modules
	First-Level Statistical Models
	OLS
	AR-IRLS
	NIRS-SPM
	Nonlinear GLM

	Canonical and Basis Sets
	Canonical HRF
	Gamma Function
	Boxcar Function
	FIR-Deconvolution
	FIR-Impulse Response Deconvolution
	General Canonical
	Vestibular Canonical

	Parametric Models
	Comparison of Models
	Second-Level Statistical Models

	Image Reconstruction Modules
	Optical Forward Model
	Hierarchal Bayesian Inverse Models
	Group-Level Image Reconstruction
	Statistical Testing

	Connectivity and Hyper-Scanning Modules
	Correlation Models
	Pre-Whitening
	Robust Methods

	Coherence Models
	Hyperscanning
	Group Connectivity Models
	Graph-Models

	Toolbox Utilities
	Probe Registration
	Depth-Maps
	Region of Interest Analysis
	Regression Testing
	Data Simulation
	ROC Definitions

	Graphical Interfaces
	Minimum Processing Recommendations
	Future Direction
	References

