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Abstract: The aim of this study has been to develop a novel two-level multi-objective genetic
algorithm (GA) to optimize time series forecasting data for fans used in road tunnels by the Swedish
Transport Administration (Trafikverket). Level 1 is for the process of forecasting time series cost
data, while level 2 evaluates the forecasting. Level 1 implements either a multi-objective GA based
on the ARIMA model or a multi-objective GA based on the dynamic regression model. Level 2
utilises a multi-objective GA based on different forecasting error rates to identify a proper forecasting.
Our method is compared with using the ARIMA model only. The results show the drawbacks of time
series forecasting using only the ARIMA model. In addition, the results of the two-level model show
the drawbacks of forecasting using a multi-objective GA based on the dynamic regression model.
A multi-objective GA based on the ARIMA model produces better forecasting results. In level 2, five
forecasting accuracy functions help in selecting the best forecasting. Selecting a proper methodology
for forecasting is based on the averages of the forecasted data, the historical data, the actual data and
the polynomial trends. The forecasted data can be used for life cycle cost (LCC) analysis.

Keywords: ARIMA model; data forecasting; multi-objective genetic algorithm; regression model

1. Introduction

Time series forecasting predicts future data points based on observed data over a period known
as the lead-time. The purpose of forecasting data points is to provide a basis for economic planning,
production planning, production control and optimizing industrial processes. The major objective is
to obtain the best forecast function, i.e., to ensure that the mean square of the deviation between the
actual and the forecasted values is as small as possible for each lead-time [1,2]. Much effort has been
devoted over the past few decades to the development and improvement of time series forecasting
models [3].

Traditional models for time series forecasting, such as the Box-Jenkins or autoregressive integrated
moving average (ARIMA) model, assume that the studied time series are generated from linear
processes. However, these models may be inappropriate if the underlying mechanism is nonlinear.
In fact, real-world systems are often nonlinear [4,5]. The multi-objective genetic algorithm (GA) is
often compatible with nonlinear systems and uses a particular optimization from the principle of
natural selection of the optimal solution on a wide range of forecasting populations [6,7].

The proposed multi-objective GA optimizes a particular function based on the ARIMA model.
The ARIMA model is a stochastic process modelling framework [1] that is defined by three parameters
(p, d, q). The parameter p stands for the order of the autoregressive AR(p) process, d for the order of
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integration (needed for the transformation into a stationary stochastic process), and q for the order
of the moving average process, MA(q) [8]. A stationary stochastic process means a process where
the data properties have the same variance and autocorrelation [9]. The weakness of the ARIMA
model is the difficulty of estimating the parameters. To address this problem, a process for automated
model selection needs to be implemented in the automated optimization to achieve an accurate
forecasting [10].

The GA is a well-established method which helps in solving complex and nonlinear problems
that often lead to cases where the search space shows a curvy landscape with numerous local
minima. The multi-objective GA is designed to find the best forecasting solution through automated
optimization of the ARIMA model and to select the best parameters (p, d, q) to compute point forecasts
based on time series data. The parameters of the ARIMA model are influenced by the selecting process
of the GA. In addition, the multi-objective GA can evaluate the forecasting accuracy using multiple
fitness functions based on statistics models.

Vantuch and Zelinka [11] modified the ARIMA model based on the genetic algorithm and
particle swarm optimization (PSO) to estimate and predict data of time. They found that the genetic
algorithm could find a suitable ARIMA model and pointed to improvements through individual
binary randomization for every parameter input of the ARIMA model. Their model shows the best
set of coefficients obtained with PSO compared with the best set obtained with a classical ARIMA
prediction. However, these authors present the ARIMA parameters in a binary setting with limited
possibilities and they consider the forecasting based on an ARIMA evaluation only.

Wang & Hsu [12] proposed a combination of grey theory and the genetic algorithm to overcome
industrial development constraints and establish a high-precision forecasting model. They used a
genetic algorithm to optimize grey forecasting model parameters. They demonstrated a successful
application of their model which provided an accurate forecasting with a low forecasting error rate.
However, these authors proposed randomization in combination with grey theory without integrating
grey theory functionality within the GA. They used only one forecasting error rate to judge the
forecasting accuracy.

Ervural et al. [13] proposed a forecasting method based on an integrated genetic algorithm and the
ARMA model in order to gain the advantage of both of these tools in the forecasting of data. They used
a genetic algorithm to optimize AR(p) and MA(q) and find the best ARMA model for the problem.
They found that their model had an effective identification for estimating ARMA autoregression and
moving averages. However, these authors presented ARIMA parameters with limited possibilities.
In addition, they used only one forecasting error rate to judge the forecasting accuracy.

Lin et al. [14] maintained that the back-propagation neural network (BPNN) can easily fall into
the local minimum point in time series forecasting. They developed a hybrid approach that combines
the adaptive differential evolution (ADE) algorithm with the BPNN. This approach was called the
ADE-BPNN and was designed to improve the forecasting accuracy of the BPNN. The initial connection
weights and thresholds of the BPNN as a single hidden layer are selected by combining the ADE with
the BPNN. The ADE is used to search preliminarily for the global optimal connection weights and
thresholds of the BPNN. The ADE is adopted to explore the search space and detect potential regions.
The model of Lin et al. [14] shows good performance in solving complex optimization problems.
However, their model needs to be improved to handle complex application problems and find the best
appropriate structure and parameters.

Yu-Rong et al. [15] utilised the ADE-BPNN to estimate energy consumption. The hybrid
model created by these authors incorporates gross domestic product, population, import, and
export data as inputs. In this approach, an improved differential evolution with adaptive mutation
and crossover is utilised to find appropriate global initial connection weights and thresholds to
enhance the forecasting performance of the BPNN. Yu-Rong et al. [15] used an adaptive DE (ADE)
algorithm to find appropriate initial connection weights and thresholds of a BPNN for obtaining
more accurate forecasting. The BPNN was utilised to achieve good-fitting performance and high



Algorithms 2018, 11, 123 3 of 19

forecasting precision. A BPNN is a multilayer mapping network that minimizes errors backward
while transmitting information. The prediction accuracy of the authors’ method is relatively high
because an improved ADE with good balance between the search speed and accuracy assists in finding
appropriate global initial connection weights and thresholds to enhance the forecasting performance
of the BPNN effectively. However, their model needs to be improved for long-term forecasts and
processing big data.

Lin et al. [16] proposed a combination model resulting from a new neural networks-based linear
ensemble framework (NNsLEF). The proposed framework can merge the advantages of component
neural networks and dynamic weight combination approaches to improve the forecasting performance.
Four neural network models are applied to impart their superior performance to the combination
approach while maintaining their diversity. The framework proposed by Lin et al. [16] adheres to three
primary principles. (a) Four kinds of neural network models, namely the back-propagation neural
network, an artificial neural network with a dynamic architecture, the Elman artificial neural network,
and the echo state network, are selected as component forecasting models. (b) An input-hidden
selection heuristic (IHSH) is designed to determine the input-hidden neuron combination for each
component neural network. (c) An in-sample training-validation pair-based neural network weighting
(ITVPNNW) mechanism is studied to generate the associated combination weights. The NNsLEF aims
to improve the accuracy of time series forecasting and could provide an effective forecast through the
mentioned combination model. However, this approach has limitations and its complexity means that
there are a low number of relevant application areas with large data samples.

Hatzakis & Wallace [6] proposed a method that combines the ARIMA forecasting technique and a
multi-objective GA based on the Pareto optimal to predict the next optimum. Their method is based on
historical optimums and is used to optimize AR(p) and MA(q) to find a non-dominated Pareto front
solution with an infinite number of points. They found that their method improved the prediction
accuracy. However, these authors assumed that the data were accurate and used the Pareto front
solution to select a proper forecasting. In addition, they did not use any forecasting error rate to
evaluate the forecasting results.

The aim of this study has been to develop a novel two-level multi-objective GA to optimize time
series forecasting in order to forecast cost data for fans used in road tunnels. The first level of the GA
is responsible for the process of forecasting time series cost data, while the second level evaluates the
forecasting. The first level implements either a multi-objective GA based on the ARIMA model or a
multi-objective GA based on the dynamic regression model. This level gives possibilities of finding
the optimal forecasting solution. The second level utilises a multi-objective GA based on different
forecasting error rates to identify a proper forecasting. Our method is compared with the approach of
using an ARIMA model only. We argue that a multi-objective GA decreases the complexity, increases
the flexibility, and is very effective when selecting an approximate solution interval for forecasting.

The remainder of the paper is organized as follows. The next section presents the materials and
methods, which include data collection, the ARIMA model, a two-level multi-objective GA based
on the ARIMA model, a two-level multi-objective GA based on the dynamic regression model and a
model evaluation method. Section 3 describes the results and decisions for each method presented in
the previous section. Section 4 offers the concluding remarks.

2. Materials and Methods

2.1. Data Collection

The cost data concern tunnel fans installed in Stockholm in Sweden. The data had been collected
over ten years from 2005 to 2015 by Trafikverket and were stored in the MAXIMO computerized
maintenance management system (CMMS). In this CMMS, the cost data are recorded based on the
work orders for the maintenance of the tunnel fans. Every work order contains corrective maintenance
data, a component description, the reporting date, a problem description, and a description of the



Algorithms 2018, 11, 123 4 of 19

actions performed. Also included are the repair time used and the labour, material and tool cost of
each work order.

In this study, we consider the two cost objects of labour and materials based on the work order
input into the CMMS for the ten-year period mentioned above. The tool cost data were not selected
due to the huge number of missing data that could not be used for forecasting. The selected data were
clustered, filtered and imputed for the present study using a multi-objective GA based on a fuzzy
c-means algorithm. It is important to mention that all the cost data used in this study concern real
costs without any adjustment for inflation. Due to company regulations, all the cost data have been
encoded and are expressed as currency units (cu).

2.2. The ARIMA Model

The main part of the ARIMA model concerns the combination of autoregression (AR) and
moving-average (MA) polynomials into a complex polynomial, as seen in the Equation (1) [1].
The ARIMA model is applied to all the data points for each cost data object (labour and material).

yt = µ +
p

∑
i=1

(σyt−1) +
q

∑
i−1

(θiεt−1) + εt (1)

where the notation is as follows:

yt: the actual data over time;
µ: the mean value of the time series data;
p: the number of autoregressive cut-off lags;
d: the number of differences calculated with the equation ∆yt = yt − yt−1;
q: the number of cut-off lags of the moving average process;
σ: autoregressive coefficients (AR);
θ: moving average coefficients (MA);
t: time {1, . . . , k};
ε: the white noise of the time series data.

The value of the ARIMA parameters (p, d, q) for AR and MA can be obtained from the behaviour
of the autocorrelation function (ACF) and the partial autocorrelation function (PACF) [1]. These
functions help in estimating parameters that can be used to forecast data by using the ARIMA model.

2.3. Two-Level System of Multi-Objective Genetic Algorithms

In this study, a novel two-level multi-objective GA has been developed, as shown in Figure 1.
The levels of the GA are as follows: (1) a multi-objective GA based on the ARIMA model for forecasting
the cost data, and (2) a multi-objective GA based on multiple functions for measuring the forecasting
accuracy for validation of the forecasted data. Level 1 of the multi-objective GA is applied to the cost
data objects (labour and material) at four different times (four populations) to forecast data for the
next level and for each of 15 different generations. The second level validates the forecasted data for
the two cost objects. Using two levels allows us to reduce the computational cost [17], while reaching
an effective and reasonable solution [18].
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Figure 1. Two-level system of multi-objective GAs.

2.3.1. Level 1: Multi-Objective GA Based on the ARIMA Model

The proposed multi-objective GA method uses a particular optimization based on the principle of
natural selection of the optimal solution and applies this optimization on a wide range of forecasting
populations. The multi-objective GA creates populations of chromosomes as possible answers to
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estimate the optimum forecasting [6]. This algorithm is robust, generic and easily adaptable because it
can be broken down into the following steps: initialization, evaluation, selection, crossover, mutation,
update and completion. The evaluation (fitness function) step creates the basis for a new population
of chromosomes. The new population is formed using specific genetic operators, such as crossover
and mutation [19,20]. The fitness function is derived from the ARIMA forecasting model. A GA with
automated optimization avoids the weakness of the ARIMA model by estimating the parameters for
forecasting [10].

The multi-objective GA is a global optimization technique that can be used to achieve an accurate
forecasting based on the ARIMA model. The GA is known to help in solving complex nonlinear
problems that often lead to cases where the search space shows a curvy landscape with numerous local
minima. Moreover, the multi-objective GA is designed to find the optimal forecasting solution through
automated optimization of the ARIMA model. In addition, the multi-objective GA can evaluate the
forecasting accuracy using multiple fitness functions based on statistical models.

The first level utilises a multi-objective GA which is based on the ARIMA model and is
implemented four different times using a cross-validation randomization technique. The technique
aims to select the best time series data for forecasting. The process is the following: a random number
of cost data are selected based on encoding in each of the four implementations; the modified random
cost data are generated 15 times. The modifications are used to find the optimal cost data for forecasting.
The following steps are implemented when applying the multi-objective GA in level 1.

Step 1: Initial population

A longitudinal study of each cost object (Zlabour, Zmaterial) is used to forecast data using the
multi-objective GA for the two objects in parallel.

Step 2: First GA generation and selection

The first generation is performed by selecting each cost object and checking whether the data are
stationary (i.e., trend-stationary) or non-stationary using a Dickey-Fuller test as in the Equation (2) [21].
To apply the ARIMA model, the data should be stationary, i.e., the null hypothesis of stationarity
should not be rejected. When applying the Dickey-Fuller test equation, the hypothesis p = 1 means
that the data are non-stationary and p < 1 that the data are stationary [21].

The Dickey-Fuller test equation is as in the Equation (2):

Dickey− Fuller test (yt) = α + pxt−k + εt (2)

where the notation is as follows:

yt: the actual data over time;
α: constant estimated value of the time series data;
p: the hypothesis is either p = 1 or p < 1;
t: time {1, . . . , k};
ε: the white noise of the time series data.

Step 3: Encoding

Random values, either ones or zeros, are generated for each cost data object. Encoding is
the process of transforming from the phenotype to the genotype space before proceeding with
multi-objective GA operators and finding the local optima.

Step 4: Fitness function

The fitness function in the Equation (3) is based on the ARIMA model for the forecasting of time
series cost data objects individually, as seen in the equation below. The fitness function consists of an
autoregression (AR) part and a moving average (MA) part [1]. The ARIMA model uses AR and MA
polynomials to estimate (p) and (q) [1].
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The fitness function is formulated as in the Equation (3):

f itness(p, d, q) = µ +
p

∑
i=1

(σyt−1) +
q

∑
i−1

(θiεt−1) + εt (3)

where the following notation is used:

µ: the mean value of the time series data;
p: the number of autoregressive cut-off lags;
d: the number of differences calculated with the equation ∆yt = yt − yt−1;
q: the number of cut-off lags of the moving average process;
σ: autoregressive coefficients (AR);
θ: moving average coefficients (MA);
t: time {1, . . . , k};
ε: the white noise of the time series data.

The parameters (p, q) are estimated using an autocorrelation function (ACF) and a partial
autocorrelation function (PACF) [1]. The estimated values produced by the previous equation will be
used to create a forecast for 20 months (m) using the Equation (4) [22]. These forecasted values will
be evaluated using the second level of the multi-objective GA to find the optimal forecasting with
high accuracy.

f itness(t + m) = µ +
p

∑
i=1

(σyt−1) +
q

∑
i−1

(θiεt−1) + εt (4)

where f itness(t + m) is the time series forecasting at time (t + m) and

m: months {1, 2, 3, . . . , m}.

Step 5: Crossover and mutation

In this study, a one-point crossover with a fixed crossover probability is used. This probability
decreases the bias of the results over different generations caused by the huge data values.
For chromosomes of length l, a crossover point is generated in the range [1, 1/2l] and [1/2l, l].
The values of objects are connected and should be exchanged to produce two new offspring. We select
two points to create more value ranges and find the best fit.

Randomly, ten percent of the selected chromosomes undergo mutation with the arrival of new
chromosomes. For the cost object values, we swap two opposite data values. The purpose of this small
mutation percentage is to keep the forecasting changes steady over different generations.

Step 6: New generation

The new generation step repeats steps 3–5 continuously for 15 generations. Fifteen generations are
enough for these data because the curves of the fitness functions are repeated after fifteen generations.
The selected fifteen generations are used individually for the second level to validate the forecasting
accuracy for each object and population. This step yields fully correlated data for the next step.

2.3.2. Level 2: Multi-Objective GA for Measuring the Forecasting Accuracy

In this level, the multi-objective GA is applied longitudinally to the data. The multi-objective GA
operates with a population of chromosomes that contains labour cost and material cost objects. The GA
operates on the selected population over different generations to find the appropriate forecasting
accuracy. During the GA generations, the chromosomes in the population are rated concerning their
adaptation, and their mechanism of selection for the new population is evaluated. Their adaptability
(fitness function) is the basis for a new population of chromosomes. The new population is formed
using specific genetic operators such as crossover and mutation. The multi-objective GA is used to
evaluate the forecasting accuracy for each generation of the first level.
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Level 2 utilises a multi-objective GA which is based on different forecasting error rates and
is implemented for each generation from the first level and for four different populations using a
cross-validation randomization technique. This technique aims to select the best evaluation of the time
series data forecasting and the process is as follows. A random number of cost data are selected based
on the encoding in each generation of the four implementations, and the modified random cost data
are generated five times. The modifications are then used to find the optimal cost data forecasting.
In this study, due to the size of the training data, five generations are sufficient to obtain valid results.
The following steps are implemented when applying the multi-objective GA in level 2.

Step 1: Initial population

A longitudinal study is performed of each generation and each cost object (Zlabour, Zmaterial) with
its forecasted data using the multi-objective GA in parallel.

Step 2: First GA generation, encoding and selection

The first generation is performed by selecting each cost object and encoding through generating
random values, either ones or zeros, for each cost data object. The selection for each cost data object is
based on encodings with the value of 1. This selection is used to evaluate the forecasted data using the
multi-objective fitness function.

Step 3: Fitness function

The multi-objective fitness function is based on multiple functions for measuring the forecasting
accuracy. The mean absolute percentage error (MAPE), the median absolute percentage error (MdAPE),
the root mean square percentage error (RMSPE), the root median square percentage error (RMdSPE),
and the mean absolute scaled error (MASE) are different fitness functions used to evaluate the selected
forecasting data from the previous step. The fitness functions are formulated as follows in the
Equations (5)–(9) [23]:

f itness(MAPE) = mean(|pt|) (5)

where pt =
100et

Yi
and et = Yt − Ft

f itness(MdAPE) = median(|pt|) (6)

where pt =
100et

Yi
and et = Yt − Ft,

f itness(RMSPE) =
√

mean
(

p2
t
)

(7)

where pt =
100et

Yi
and et = Yt − Ft

f itness(RMdSPE) =
√

median
(

p2
t
)

(8)

where pt =
100et

Yi
and et = Yt − Ft

f itness(MASE) = mean(|qt|) (9)

where qt =
et

1
n−1 ∑n

i=2|Yi−Yi−1|
, where et = Yt − Ft;

In the above equations, the following notation is used:

t: time {1, . . . , k};
Yt: the actual data over time;
Ft: the forecasted data over time.
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The MAPE is often substantially larger than the MdAPE when the data involve small counts.
In this study, it was impossible to use these measures since zero values of Yt frequently occurred.
The RMSPE and RMdSPE are more sensitive to the data. These methods are examples of a random
walk and measure the accuracy based on the last adjusted observation of forecasted seasonality. The
MASE is a scaled measure based on relative errors. This module tries to remove the scale of the data
by comparing the forecasted data with data obtained from some benchmark forecast method [23].

Step 4: Crossover and mutation

In this study, we use a one-point crossover with a fixed crossover probability. This probability
decreases the bias of the results over different generations due to the huge data values.
For chromosomes of length l, a crossover point is generated in the range [1, 1/2l] and [1/2l, l].
The values of objects are connected and should be exchanged to produce two new offspring. We select
two points to create more value ranges and find the best fit.

Randomly ten percent of the selected chromosomes undergo mutation with the arrival of new
chromosomes. For the cost object values, we swap two opposite data values. The purpose of this small
mutation percentage is to keep the forecasting changes steady over different generations.

Step 5: New generation

The new generation step repeats steps 2 to 4 continuously for five generations. Five generations
are enough for these data, because the fitness function is repeated after the fifth generation. The selected
generation is used for the second level to validate the forecasting accuracy for each object. This step
yields fully correlated data that can be used for forecasts covering several months.

2.4. Multi-Objective Genetic Algorithms (GAs) Based on the Dynamic Regression Model

The study has developed a multi-objective GA based on the dynamic regression model.
The dynamic regression (DR) model differs from the ordinary regression model in that it can handle
both contemporaneous and time-lagged relationships [24]. A dynamic model is a family of functions
of the data, of relatively simple form and devised by a researcher to produce more realistic results.
In addition, this model emphasizes the ripple effect which the input variables can have on the
dependent variables. Therefore, the DR model is one of the interspersing models to be compared with
the ARIMA model as one of the most popular models for forecasting. The developed GA consists of
the following levels: (1) a multi-objective GA based on the DR model and used to forecast cost data,
and (2) a multi-objective GA based on multiple functions for measuring the forecasting accuracy for
the purpose of validating the forecasted data. The multi-objective GA is applied to the cost data objects
(labour and material) for 15 different generations for four different populations to forecast data for the
next level. Then the forecasted data for the two cost objects are validated.

We use the same steps as those applied in the first level of the GA based on the ARIMA model,
applying them on the same data with the same method for every step. However, the fitness function
step is based on the regression model, as clarified below.

Step 3: Fitness function

The multi-objective fitness function is based on the DR model function, as expressed in the
fitness Equation (11) [24]. The fitness function is applied to a 20-month forecast. The data have been
normalized before calculating the fitness function. The purpose of the normalization is to decrease the
computation complexity, since the cost data values are huge. The equation used for the normalization
Y as in the Equation (10) [25]:

Y = (Yt −minYt) / (maxYt −minYt) (10)
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The fitness equation is as the Equation (11) [24]:

fitness(Yt) = C + b1Yt−1 + b1Yt−2 + WN (11)

where the notation is as follows:

C: constant value calculated with the normal equation, where XTXA = XTb;
b1 and b2: calculated with the normal equation, where XTXA = XTb;
Yt: related to Yt−1 and Yt−2;
WN: white noise.

The results of the fitness function for the 20-month forecast are denormalized to the original data
using the Equation (12) [25]. The denormalization values are used to evaluate the forecasting accuracy
using the second level.

Yt = Y ∗ (maxYt −minYt) + minYt (12)

The forecasting accuracy for every generation for every population is validated using the
multi-objective GA based on multiple functions for measuring the forecasting accuracy. The mean
absolute percentage error (MAPE), the median absolute percentage error (MdAPE), the root mean
square percentage error (RMSPE), the root median square percentage error (RMdSPE), and the mean
absolute scaled error (MASE) are different fitness functions used to evaluate the selected forecasting
data from the previous step [23]. The method used for validating the forecasting accuracy of the
GA based on the ARIMA model is used to validate the forecasting accuracy of the GA based on the
DR model.

2.5. Models Evaluation Method

A comparison of the three methods described above is performed based on the averages of the
historical data, the actual data and the polynomial trends. The polynomial trend is often used in many
applications and it was used in this study for the comparison of the models. Polynomial trending
describes a pattern that represents data with many fluctuations over the time line. The formula of
polynomial is presenting in each figure. The deviation average of Yt is calculated based on two different
functions for every method. This provides a means of comparing the different methods and finding a
proper forecasting, i.e., a forecasting where the deviation average is close to zero. This step confirms
our judgement on the best forecasting method for the data.

For each method and cost data object, the average is calculated for the historical data, A, the actual
data, B, the forecasted data, C, and the polynomial data, D. Figures 2 and 3 show the averages
calculated for the two cost objects of labour and materials. The average of the historical data (A) is the
average of the data before the vertical line. The average of the actual data (B) is the average of the data
after the vertical line. The average of the forecasted data (C) is the average of the forecasted data after
the vertical line. The average of the polynomial data (D) is the average of the polynomial data after the
vertical line. The following Equations (13) and (14) express the deviation average for each cost object:

deviation average DV1 (Yt) =
B− C

A
(13)

deviation average DV2 (Yt) =
B− D

A
(14)

Yt is the cost data object over t time.
Each method has been developed using Python programing language and implemented on a

server with special specifications to get the results. The server used in this study has 16 processors of
E5-2690V2 (25M cash), 128 GB of RAM, 300 GB of Hard disk, and Windows-10 Enterprise 64 bit.
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3. Results and Discussion

3.1. Results of the ARIMA Model

The ARIMA model was implemented stochastically based on the default values for the parameters
p, d and q for the different scenarios and individually for each cost object (Zlabour, Zmaterial). The values
assumed for each parameter in the scenarios were (1,1,1), (1,0,0), (1,0,1) and (2,0,1). For every scenario,
all the cost data points of each object were included, covering a period of 97 months. The scenarios do
not show a reasonable forecasting for a period of 20 months for each object. In this section, we present
the cost object forecasting of the ARIMA model (1,1,1) as the default input parameters.

Figure 2 shows the forecasting for the labour cost object with the polynomial trend to illustrate
the relationship between the values over a timeline with monthly intervals. Before the vertical line,
the historical labour cost data for 97 months are shown, and after the vertical line, the actual labour
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cost data for 20 months are shown. The forecasted data for the 20-month period do not seem to be
in sync with the actual data and are lower than the trend of the data. The forecasting based on the
ARIMA model does not reflect the real data for the labour cost object.

Figure 3 shows the forecasting for the material cost object with the polynomial trend to illustrate
the relationship between the values over a timeline with monthly intervals. Before the vertical line,
the historical material cost data for 97 months are presented, and after the vertical line, the actual
material cost data for 20 months are presented. The forecasted data for the 20-month period do not
seem to be in sync with the actual data and are lower than the trend of the data. The forecasting based
on the ARIMA model does not reflect the real data for the material cost object.

Overall, the forecasting based on the ARIMA model does not show sufficient accuracy over the
20-month period.

3.2. Results of the Two-Level System of Multi-Objective GAs

3.2.1. Results for Level 1: Multi-Objective GA Based on the ARIMA Model

In this part of the study, we tested four populations individually using the multi-objective
GA based on the ARIMA model to generate forecasting data for the two different cost objects.
The forecasted data for each population obtained with 15 different generations were then evaluated
using the second level. The second level evaluation helped in deciding the best generation of the
forecasted data. In this section, we present only the best forecasted curves with the historical data
because of the huge number of possibilities considered in this study.

Figure 4 shows the forecasted labour data curve for 20 months from 2013 to 2015, for the second
population and, specifically, for generation 13. In addition, it shows the historical data with the
polynomial trend to illustrate the relationship between the independent variables over a timeline
with monthly intervals. The selected labour data show a better forecasting than that obtained with
the ARIMA model in that the forecasted data are close to the actual data and the polynomial trend.
The ARIMA parameters for the selected labour cost data covering 47 months were p = 0.22, d = 1 and
q = 0.23.

Algorithms 2018, 11, x FOR PEER REVIEW    12 of 19 

sync with  the actual data and are  lower  than  the  trend of  the data. The  forecasting based on  the 

ARIMA model does not reflect the real data for the labour cost object. 

Figure 3 shows the forecasting for the material cost object with the polynomial trend to illustrate 

the relationship between the values over a timeline with monthly intervals. Before the vertical line, 

the historical material cost data for 97 months are presented, and after the vertical  line, the actual 

material cost data for 20 months are presented. The forecasted data for the 20‐month period do not 

seem to be in sync with the actual data and are lower than the trend of the data. The forecasting based 

on the ARIMA model does not reflect the real data for the material cost object. 

Overall, the forecasting based on the ARIMA model does not show sufficient accuracy over the 

20‐month period. 

3.2. Results of the Two‐Level System of Multi‐Objective GAs 

3.2.1. Results for Level 1: Multi‐Objective GA Based on the ARIMA Model 

In this part of the study, we tested four populations individually using the multi‐objective GA 

based  on  the ARIMA model  to  generate  forecasting data  for  the  two different  cost  objects. The 

forecasted data for each population obtained with 15 different generations were then evaluated using 

the second level. The second level evaluation helped in deciding the best generation of the forecasted 

data. In this section, we present only the best forecasted curves with the historical data because of the 

huge number of possibilities considered in this study. 

Figure 4 shows the forecasted labour data curve for 20 months from 2013 to 2015, for the second 

population  and,  specifically,  for generation  13.  In  addition,  it  shows  the historical data with  the 

polynomial  trend  to  illustrate  the relationship between  the  independent variables over a  timeline 

with monthly intervals. The selected labour data show a better forecasting than that obtained with 

the ARIMA model in that the forecasted data are close to the actual data and the polynomial trend. 

The ARIMA parameters for the selected labour cost data covering 47 months were   ൌ  0.22,  ݀ ൌ  1 
and  ݍ ൌ  0.23. 

 

Figure 4. Labour cost data forecasting using the multi‐objective GA based on the ARIMA model. 

Figure 5 shows the curve for the forecasted material data for 20 months from 2013 to 2015, for 

the third population and, specifically, for generation 10. In addition, this figure shows the original 

data with the polynomial trend to illustrate the relationship between the independent variables over 

a  timeline with monthly  intervals.  The  selected material  data  show  better  forecasting  than  that 

obtained with  the ARIMA model  in  that  the  forecasted data are  close  to  the actual data and  the 

Figure 4. Labour cost data forecasting using the multi-objective GA based on the ARIMA model.



Algorithms 2018, 11, 123 13 of 19

Figure 5 shows the curve for the forecasted material data for 20 months from 2013 to 2015, for
the third population and, specifically, for generation 10. In addition, this figure shows the original
data with the polynomial trend to illustrate the relationship between the independent variables over a
timeline with monthly intervals. The selected material data show better forecasting than that obtained
with the ARIMA model in that the forecasted data are close to the actual data and the polynomial
trend. The ARIMA parameters for the selected material cost data covering 52 months were p = 0.39,
d = 1 and q = 0.43.
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The forecasted data for the labour and material cost objects were evaluated using the second
level, applying a multi-objective GA based on the statistical forecasting error rate. The model for the
forecasting accuracy evaluated the forecasted data for 20 months from 2013 to 2015 based on the actual
values of this period. Implementing level 2, the accurate forecasted data were found, i.e., the proper
selection of data for each object to be used for forecasting.

3.2.2. Results of Level 2: Multi-Objective GA for Measuring the Forecasting Accuracy

The outcome from the first level, specifically for each generation for each population, indicates
the forecasting accuracy for each cost object. For each generation, the multi-objective GA based on
multiple fitness functions was used to find the best fitness value through five different generations.
The fitness functions (forecasting error rate models) provide an accurate data forecasting through
comparing the behaviour of the different models and revealing which forecasting model is appropriate.

Figures 6 and 7 show the forecasting accuracy for the labour and material cost objects obtained
with five different fitness functions for the four populations. The fitness function values of each
population are the minimum values obtained through testing five different generations from the first
level. Figure 6 shows the fitness values for the labour cost object. The figure shows five different curves
for five different fitness functions.
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Concerning the first population, f itness(MAPE) has the highest error rate, 3.5, while
f itness(MdAPE) and f itness(RMSPE) have the same value, 2.01. f itness(RMdSPE) has a value
of 2.15 and f itness(MASE) has the lowest value, 0.89. Concerning the second population,
f itness(MdAPE) and f itness(RMSPE) show the same value, 0.02, which is the lowest fitness value
for this population. The value for f itness(MASE) is 0.12, while the values for f itness(RMdSPE) and
f itness(MAPE) are 0.58 and 0.59, respectively.

Concerning the third population, f itness(MdAPE) and f itness(RMSPE) show the same value,
0.13, which is the lowest fitness value for this population. The value for f itness(RMdSPE) is
0.14, which is higher than that for f itness(MdAPE) and f itness(RMSPE), while the values for
f itness(MASE) and f itness(MAPE) are 0.47 and 1.7, respectively. Finally, concerning the fourth
population, f itness(MdAPE) and f itness(RMSPE) show the same value, 0.08, which is the lowest
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fitness value for this population. f itness(MASE) has a value of 0.19, while f itness(MAPE) and
f itness(RMdSPE) have higher values, 0.43 and 0.52, respectively.

Overall, the fitness functions are variants. f itness(MAPE) has the highest of all the curves of
the four populations because it involves small data counts. f itness(MdAPE) and f itness(RMSPE)
have almost equal values over the four populations, while their values can be regarded as almost close
when one takes all the 15 generations for the four populations into account. The f itness(RMdSPE)
and f itness(MASE) curves show a sensitivity to the data caused by the population randomization.

Selecting a proper population for the labour cost data is quite difficult due to the variety of fitness
values. In this study, we considered the population that was selected by more than two of the fitness
functions to have a low forecasting error rate. The thirteenth generation for the second population
was selected as having the lowest forecasting error rate with a suitable selection of input data.
The labour cost data were selected using three fitness functions, f itness(MdAPE), f itness(RMdSPE)
and f itness(MASE), with values of 0.02, 0.02 and 0.12, respectively.

Figure 7 shows the fitness values for the material cost object. The figure shows that,
concerning the first population, f itness(MAPE) has the highest error rate, 3.54, while f itness(MdAPE)
and f itness(RMdSPE) have the same value, 1.97. f itness(RMSPE) has a value of 2.54 and
f itness(MASE) has the lowest value, 0.79. With regard to the second population, f itness(MdAPE)
and f itness(RMdSPE) show the same value, 1.35, which is the lowest fitness value for this population.
The value for f itness(MASE) is 1.99, while the values for f itness(RMSPE) and f itness(MAPE) are
3.7 and 6.84, respectively.

With regard to the third population, f itness(MdAPE) and f itness(RMSPE) show the same value,
0.13, which is the lowest fitness value for this population. The values for f itness(RMdSPE) and
f itness(MASE) are 0.82 and 0.55, respectively. The value for f itness(MAPE) is 7.42, which is the
highest value for the third population. Concerning the fourth population, f itness(MdAPE) and
f itness(RMdSPE) have the same value, 0.52, which is the lowest fitness value of this population.
The value for f itness(RMSPE) is 0.8, while the values for f itness(MASE) and f itness(MAPE) are
0.61 and 3.87, respectively; 3.87 is the highest value for this population.

The fitness functions are variants. The curve of f itness(MAPE) is the highest of all the curves of
the four populations. f itness(MdAPE) and f itness(RMdSPE) have almost equal values over the four
populations. The f itness(RMSPE) and f itness(MASE) curves show sensitivity to the data according
to the populations. Selecting a proper population for the material cost data is also quite difficult due to
the variety of fitness values. In this study, we considered the population that was selected by more
than two of the fitness functions to have a low forecasting error rate. The tenth generation for the
third population was selected as having the lowest forecasting error rate with a suitable selection
of input data. The material cost data were selected using three fitness functions, f itness(MdAPE),
f itness(RMSPE) and f itness(MASE), with fitness values of 0.13, 0.13 and 0.55, respectively.

The multiple fitness functions used in the second level helped in evaluating the forecasted data
and in making a judgement on the forecasting method for each object. These models have different
sensitivity to the data depending on the calculation method. Therefore, considering all of them is
important to find a proper population for forecasting and then a proper generation of data.

3.3. Results of the Multi-Objective Genetic Algorithms (GAs) Based on the Dynamic Regression Model

The outcome from this model, specifically for each generation for each population, indicates the
accuracy of the forecasted values for each cost object. For each generation, the fitness functions of
the second level provide an assessment of the data forecasting, assure the accuracy of the forecasting
and reveal which forecasting model is appropriate. The forecasted data for the labour and material
cost objects were evaluated in the second level using the multi-objective GA based on the statistical
forecasting error rate. The model for the forecasting accuracy evaluated the forecasted data for
20 months from 2013 to 2015 based on the actual values of this period.
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Figure 8 shows the curve of the forecasted labour data for 20 months from 2013 to 2015, for
the fourth population and, specifically, for generation 2. The figure shows the historical data
with the polynomial trend to illustrate the relationship between the independent variables over
a timeline with monthly intervals. The selected labour data do not show a fit between the forecasted
data, the actual data and the polynomial trend. Three of the forecasting accuracy functions,
f itness(MAPE), f itness(MdAPE) and f itness(RMdSPE), have the same minimum forecasting error
rate, 0.9. In addition, the minimum error rate for f itness(MASE) is 0.19.
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Figure 8. Labour cost data forecasting based on the dynamic regression model.

Figure 9 shows the curve of the forecasted material data for 20 months from 2013 to 2015,
for the third population and, specifically, for generation 12. The figure shows the historical data
with the polynomial trend to illustrate the relationship between the independent variables over
a timeline with monthly intervals. The selected material data do not show a fit between the
forecasted data, the actual data and the polynomial trend. Three of the forecasting accuracy functions,
f itness(MAPE), f itness(MdAPE) and f itness(RMdSPE), have the same minimum forecasting error
rate, 0.9. In addition, the minimum error rate for f itness(MASE) is 0.54.
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3.4. Results of a Comparison of the Methods

Tables 1 and 2 below show the deviation averages for the labour and material cost data for the
three methods presented in this paper. The results presented in these tables confirm our judgement on
the best method for forecasting cost data objects. Table 1 shows that, for the labour cost data, the lowest
values for the deviation averages DV1 and DV2 were obtained with the multi-objective GA based on
the ARIMA model. Table 2 shows that, for the material cost data, the lowest values for the deviation
averages DV1 and DV2 were also obtained with the multi-objective GA based on the ARIMA model.

Table 1. The deviation averages for the labour cost object for every method.

DV1 DV2

ARIMA model 0.2374 1.2169
Multi-objective GA based on the ARIMA model 0.1192 0.3869
Multi-objective GA based on the dynamic regression model 1.2630 6.2324

Table 2. The deviation averages for the material cost object for every method.

DV1 DV2

ARIMA model 0.4171 1.0438
Multi-objective GA based on the ARIMA model 0.3555 0.8477
Multi-objective GA based on the dynamic regression model 0.5615 3.9543

The literature cited present different methodologies for forecasting compared with our methods.
Vantuch & Zelinka [11], Ervural et al. [13] and Hatzakis & Wallace [6] used GAs with the ARIMA model
to improve results compared with use of the ARIMA model alone. These authors used GAs to obtain a
randomization of the ARIMA parameters, which is not always sufficient because ARIMA parameter
estimation should be based on the data and research problem to achieve better forecasting. In addition,
these authors used only one evaluation for the forecasting accuracy. Our method uses a GA to estimate
the ARIMA parameters from the data and finds the best-fit model in forecasting. In addition, our
method evaluates the forecasting accuracy using five different statistical fitness functions to achieve
the optimal forecasting. The previously published studies have assumed that the data are accurate,
while our study is based on clustered and improved data through imputing the missing data from
other previous research [26].

Lin et al. [14] and Yu-Rong et al. [15] proposed a combination approach involving the BPNN
and improved this approach by adopting a hybrid intelligent approach named the ADE-BPNN for
time series forecasting. These authors used GA operators to improve the forecasting accuracy. These
approaches have shown a relatively high accuracy, but have not been used for long-term forecasts
and to process samples consisting of big data. Our model has a different integration of the ARIMA
model with the GA and different GA operators to make it more suitable for the problem addressed in
our research study. In addition, our model shows better performance when processing variant data
samples and is able to make long-term forecasts.

Our model has been developed using Python as an open source programming language and the
developed model can be used in different work environments with different systems. In the present
study the model has been implemented on real cost data for a tunnel fan turbine system operated by
Trafikverket. In addition, the model results show the achievement of optimal forecasting through GA
variations and operations for short or long periods, in contrast to other methods. Trafikverket can
use this model in forecasting different parameters with different data samples, systems or structures.
The GA can adapt with the problem to achieve the purpose. To achieve the optimal solution, our
model needs to be implemented on a server with the minimum specifications mentioned in Section 2.5.



Algorithms 2018, 11, 123 18 of 19

4. Conclusions

In this study, it has been established that the ARIMA model and the multi-objective GA based
on the dynamic regression model have drawbacks when used to forecast data for two cost objects.
The data forecasted by the two models were not realistic and were not close to the actual data.
The normalization performed in the multi-objective GA based on the dynamic regression model aims
to decrease the computational complexity. However, this method does not achieve a better estimation
of the parameters of the dynamic regression model and cannot be used for our data forecasting.
The number of values produced in the model is huge, which somehow has a negative impact on the
estimation of the parameters.

The multi-objective GA based on the ARIMA model provides other possibilities for calculating the
parameters (p, d, q) and improves the data forecasting. The outcome of the multi-objective GA based
on the ARIMA model can be used to forecast data with a high level of accuracy, and the forecasted
data can be used for LCC analysis.
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