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Abstract: Multi-User (MU) Multiple-Input-Multiple-Output (MIMO) systems have been extensively
investigated over the last few years from both theoretical and practical perspectives. The low
complexity Linear Precoding (LP) schemes for MU-MIMO are already deployed in Long-Term
Evolution (LTE) networks; however, they do not work well for users with strongly-correlated channels.
Alternatives to those schemes, like Non-Linear Precoding (NLP), and hybrid precoding schemes
were proposed in the standardization phase for the Third-Generation Partnership Project (3GPP)
5G New Radio (NR). NLP schemes have better performance, but their complexity is prohibitively
high. Hybrid schemes, which combine LP schemes to serve users with separable channels and NLP
schemes for users with strongly-correlated channels, can help reduce the computational burden, while
limiting the performance degradation. Finding the optimum set of users that can be co-scheduled
through LP schemes could require an exhaustive search and, thus, may not be affordable for practical
systems. The purpose of this paper is to present a new semi-orthogonal user selection algorithm
based on the statistical K-means clustering and to assess its performance in MU-MIMO systems
employing hybrid precoding schemes.

Keywords: 5G NR (New Radio); Non-linear Precoding (NLP); hybrid precoding;
Tomlinson–Harashima Precoding (THP); Regularized Zero Forcing (RZF); Block Diagonalization (BD);
gaussian angular correlation; spatial compatibility; MU-MIMO; K-means clustering; user selection

1. Introduction

Multi-User (MU) Multiple-Input-Multiple-Output (MIMO) increases network capacity by
multiplexing spatially-separated users in the same frequency and time resources. It requires
transmission precoding, as a random geographic location of the receivers does not enable joint
decoding. Thus, it is challenging to send independent data streams simultaneously to a set of
properly-selected users to attain the spatial multiplexing gains offered by MU-MIMO. A recent
evolution of MU-MIMO is known as massive MIMO or large-scale MIMO [1] and is characterized by
Base Stations (BSs) with hundreds of antennas sending different data streams to tens of users. Massive
MIMO has been identified as the air interface technology capable of addressing the massive capacity
requirement of 5G networks.

Linear Precoding (LP) schemes for MU-MIMO eliminate the inter-user interference by projecting
the intended user’s signal into the null space of the other users [2]. When their channels are strongly
correlated, i.e., for closely-separated users, the projection operation makes it almost impossible to
separate the received signals and results in high capacity loss [3]. Existing MU-MIMO schedulers
estimate the spatial separation between users and try to serve the ones with near-orthogonal channels.
The optimum set of users can be found through an exhaustive search. The combinatorial nature of

Algorithms 2019, 12, 146; doi:10.3390/a12070146 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-0379-2360
http://www.mdpi.com/1999-4893/12/7/146?type=check_update&version=1
http://dx.doi.org/10.3390/a12070146
http://www.mdpi.com/journal/algorithms


Algorithms 2019, 12, 146 2 of 18

these problems makes them computationally infeasible due to an expected large number of users and
antennas in massive MIMO systems. Various sub-optimal user grouping strategies, like null space
projection or spatial clustering classification, have already been evaluated in the literature, including [2]
and the references therein.

To reduce the channel estimation overhead in massive MIMO Frequency Division Duplex
(FDD) systems, a user grouping algorithm based on K-means clustering was proposed in [4,5].
The performance of a two-stage precoding algorithm with various distance metrics for user grouping
was tested; however, all require complex matrix computations. The Block Diagonalization (BD) linear
precoder [6,7] is used to cancel the inter-group interference. The results are not accurate enough, as the
number of clusters is assumed to be known prior, and there are no insights of the spatial separation
between the co-scheduled groups. In addition, the subspaces of groups (created using the average
covariance matrix of the users in a group) are slightly different from the channel eigenspace of users.
As such, the inter-group interference is not entirely canceled. Lastly, the employed intra-group precoder
is based on linear regularized zero forcing [8]. While linear precoding mechanisms have a relatively low
implementation complexity, they may not exhibit a good performance for highly-correlated channels,
which is the case of users inside the same group [3,9]. Non-Linear Precoding (NLP) schemes, such as
Tomlinson–Harashima Precoding (THP) [10], proposed in the standardization phase for 5G NR (New
Radio) [11,12], or hybrid precoding [13], could behave better in such scenarios.

A user grouping algorithm based on an optimized K-means clustering is presented in the paper.
This further reduces the complexity of the method proposed in [4,5] and ensures that, at a given time,
at least one user in one group is scheduled. In contrast to the related work, the number of co-scheduled
clusters is dynamically chosen, such that users of different clusters are separated enough in space to
be served through an LP scheme. As users inside the same group have highly correlated channels,
they will be scheduled in the same time-frequency resource through a second-stage non-linear precoder.

To assess the particularities of the proposed algorithm, the paper is organized into the following
sections. Section 2 describes the basic principles of precoding, by identifying three types of precoding
schemes. Section 3 defines a model for the spatial correlation in MU-MIMO channels and a metric
for evaluating the separation between channels. The proposed user grouping solution is analyzed
in detail in Section 4. Section 5 presents the simulation’s parameters used to test the performance
of the proposed algorithm. The clustering of users and throughput performance of the MU-MIMO
system are then evaluated in Section 6 for various user distributions and required angle separations.
Finally, Section 7 presents the conclusion and research directions for future works.

2. Precoding Schemes

In this section, the precoding schemes are grouped into three categories, i.e., linear, non-linear,
and hybrid.

2.1. Linear Precoding

Linear precoding schemes, as used in Long-Term Evolution (LTE), suppress the inter-user
interference through channel inversion. Techniques like Zero Forcing (ZF) and Regularized
Zero Forcing (RZF) for single-antenna User Equipment (UEs) or Block Diagonalization (BD) for
multiple-antenna UE have reduced complexity [7].

The channel matrix with complex coefficients corresponding to NT transmit antennas and K
single-antenna users is described by H ∈ CK×NT .

The precoder identified by the matrix W ∈ CNT×Kand represented in Figure 1 can be defined by
the following equations:

WZF = βH−1, (1)
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where x ∈ CK×1 is the set of complex symbols intended for every K user, y ∈ CK×1 is the received
array of symbols by the K users, and n ∼ NC

(
0, σ2

nIK
)

is the vector of Additive White Gaussian Noise
(AWGN) of variance σ2

n . It follows a circularly-symmetric complex Gaussian distribution with zero
mean and correlation matrix σ2

nIK.

WRZF = β× arg minW E
{
||β−1(HWx + n)− x||2

}
= βHH

(
HHH + NTσ2

n
Ptx

I
)−1

,
(2)

where Ptx = E
{

xHx
}

is the total transmit power, E {x} is the expectation of a random variable x,
||x|| is the L2-norm of a vector x, superscript H denotes the transpose complex conjugate, and β is a
normalization factor, such that the total transmit power does not change after precoding:

β =

√
NT

tr (WWH)
, (3)

where tr (X) is the trace of a square matrix X.

W H

x
n

xp

y

1/b

Figure 1. Linear precoding scheme [3].

The previously-mentioned schemes are used for users with a single antenna. The signal
transmitted for other users is treated as interference, and the precoder attempts to cancel it.

When users are equipped with multiple antennas, similar methods can be used. In this case,
the signal intended for the same user, but for different antennas, is also treated as interference. As there
is much more interference to cancel, noise is amplified at the receiver side.

In these scenarios, the BD precoder performs better. It works by decomposing the MU-MIMO
downlink channel into multiple parallel independent single-user MIMO downlink channels.
The precoding matrix is determined such that the intended signal is projected in the null space
of all other users’ channel matrices. The remaining interference after the inter-user precoding can be
canceled with any decoding or precoding techniques.

The received signal by K users equipped with NR antennas is:
y1

y2

· · ·
yK

 =


H1 H1 · · · H1

H2 H2 · · · H2

· · · · · · · · · · · ·
HK HK · · · HK




W1x1

W2x2

· · ·
WKxK

+


n1

n2

· · ·
nK



=


H1W1 H1W2 · · · H1WK
H2W1 H2W2 · · · H2WK
· · · · · · · · · · · ·

HKW1 HKW2 · · · HKWK

+


n1

n2

· · ·
nK

 ,

(4)

where HuWk,u 6=k is the effective channel corresponding to the signal sent to user k and received by
user u. This interferes with user k when HuWk 6= 0NR×NR . The effective channel matrix needs to be
diagonalized in order to cancel the inter-user interference.

HuWk = 0NR×NR , ∀u 6= k. (5)
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To prevent any power increase after precoding, the BD precoder matrix has to be unitary.
Assuming a matrix containing the channel gains of all users except u,

H̃u =
[
H1, · · · , Hu−1, Hu+1, · · · , HK

]T
, (6)

when NT = K× NR, the Singular-Value Decomposition (SVD) of H̃u is:

H̃u = ŨuΛ̃u

[
Ṽnon-zero

u Ṽzero
u

]H
, (7)

where Ṽnon-zero
u ∈ C(K×NR−NR)×NT and Ṽzero

u ∈ CNR×NT contain singular vectors corresponding to the
non-zero and zero singular values, respectively.

H̃uṼzero
u = Ũu

[
Λ̃non-zero

u 0
] 
(

Ṽnon-zero
u

)H(
Ṽzero

u

)H

 Ṽzero
u

= ŨuΛ̃zero
u

(
Ṽnon-zero

u

)H
Ṽzero

u

= ŨuΛ̃zero
u 0

= 0.

(8)

As Ṽzero
u lies in the null space of H̃u, the signal transmitted in the direction of Ṽzero

u is only received by
user u. Its corresponding precoder is Wu = Ṽzero

u .

2.2. Non-Linear Precoding Schemes

Linear precoding has relatively low complexity; however, it has been shown that the sum rate of
channel inversion is limited when increasing the number of users. Furthermore, linear precoding does
not perform well in scenarios with high UE density and correlated channels.

Non-linear precoding schemes are valid alternatives, which instead of spatially separating the
users, they eliminate the interference through non-linear operations. The non-linear concept was
introduced in Dirty Paper Coding (DPC) [14]. It can achieve the maximum sum rate of the system when
the full Channel State Information (CSI) is available at the transmitter side. The DPC’s pre-subtraction
of the non-causally known interference has a high complexity, and as a result, sub-optimum non-linear
precoding schemes such as Tomlinson–Harashima Precoding (THP) and Vector Perturbation (VP) were
proposed as alternatives with lower complexity [10].

2.2.1. THP Precoding

The concept of THP is derived from the Decision Feedback Equalizer (DFE) technique.
There, the interference resulting from the previously-estimated received symbols was reconstructed
and subtracted from the actual received symbol. THP is represented in Figure 2. The power growth
resulting from the successive cancellation step is limited by using the modulo function.

mod (x) = x− 2
√

M

⌊
s +
√

M + j
√

M
2
√

M

⌋
, (9)

where:

xp = [xpk] = mod

(
xk −

K−1

∑
l=1

bkl xpl

)
, ∀k ∈ 1, ..., K (10)

and the feedback matrix B = [bkl ]k,l=1,2···K is a unitary lower diagonal matrix, obtained through a QR
decomposition of H, such that:
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B =


1/l11 0 · · · 0

0 1/l22 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1/lKK




l11 0 · · · 0
l21 l22 · · · 0
· · · · · · · · · · · ·
lK1 lK2 · · · lKK

 (11)

and xTHP = QHx.

B-Ik

F HMod Mod

x

-

xp

n
xTHP

y

1/G

xest

Figure 2. THP block scheme [3].

At the receiver, the user’s k signal is firstly divided by gk = lkk, then passed through the modulo
operation to be then sent to the Quadrature Amplitude Modulation (QAM) demodulator.

2.2.2. Vector Perturbation Precoding

Vector perturbation works similarly to THP, as the transmitted symbols are “perturbed” and
moved from the original to a new constellation of points. On the receiver side, a diagonal matrix is
used to scale the received signal, which is then reconstructed through a modulo operation.

2.3. Hybrid Precoding

Hybrid precoding, a mix of linear and non-linear precoding schemes, was proposed in [11–13]
to enhance the robustness of non-linear precoding against channel imperfections and to reduce the
complexity required for large-scale antenna systems.

Considering K users divided into G groups, the precoding mechanism is implemented in two
stages. The first stage consists of a linear precoder used to eliminate the inter-group interference and
assumes that the users from different groups have sufficiently uncorrelated channels. This stage can be
realized through BD using long-term CSI measurements. Based on the degree of correlation between
the users of the same group, linear or non-linear precoding schemes can be employed inside every
group, in the second stage.

Figure 3 depicts a hybrid precoding scheme that uses BD and THP:

W H

THP1 Mod

x1 xTHP1
xBD-THP

1/G1

xest1

THPG

...
xTHPG

xG

Mod1/GG

xestG

n1

nG

... ...

Figure 3. Hybrid precoder block scheme [3].
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2.4. Complexity Evaluation

The complexity can be evaluated by counting the number of Floating Point Operations (FLOPs)
required for multiplications and additions of complex values. A multiplication and an addition
requires six and two FLOPs, respectively. The computational complexity of the SVD decompositions
required by the BD-THP precoder is neglected, being computed less when relying on statistical CSI.
The complexity of the QR decomposition of channel matrix H is 8NTK2 − 8K3/3. Generating the
matrix HHH for the RZF precoder uses K(K + 1)(4NT − 1) FLOPs due to the Hermitian property of
the Gram matrix. More details on how to evaluate the complexity calculations can be found in [13].

The complexity of various precoding schemes is represented in Table 1 [3,13], for Kg = K/G users
in each group.

Table 1. Precoder’s complexity [3,13].

Precoder Number of FLOPs

RZF 4K3 + 2KNT(4K− 1) + K(4NT − 1)(K + 1)+
2NT(4K− 1) + 8K2 + 7K

THP 16K3/3 + 2K(4KNT − K + 2)+
2T[2K + 2K2 + NT(4K− 1)− 4]

BD-THP 40GK3
g/3− 4GK2

g+

2GKg − 2GKg NT + 16GK2
g NT+

T(4GK2
g + 4GKg + 8Kg NT − 8G− 2NT)

In Figure 4, the equations above are plotted for NT = 16 transmit antennas and K = 16
single-antenna users grouped into G = 4 groups. Although the BD-THP scheme is a good tradeoff
between the THP and the RZF schemes in terms of the sum rate (as will be seen in the following
sections), its complexity is below both of the previous schemes. The computation complexity required
to generate T precoded data vectors can change the ranking of schemes (for low values of T);
however, the BD-THP precoder will always show the lowest complexity among them.

0 10 20 30 40 50 60 70

Number of Antennas and Users

0

2

4

6

8

10

N
u

m
b

e
r 

o
f 

F
L

O
P

s
 × 106

RZF

THP

BD-THP

Figure 4. Precoders complexity versus the number of antennas and users, for NT = K.

3. Spatial Compatibility and Channel Modeling

A set of users is spatially compatible if their channels, hk, can be separated in space through
precoding. The purpose of this section is to define a metric that can evaluate how spatially compatible
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two users are. Assuming a spatial correlation model at the transmission, it can be shown that the
separation between the channels of two users will depend only on their spatial correlation matrices
and, in turn, on the angle between them relative to the antenna system.

3.1. Channels Separation Metric

The spatial channel correlation is important for multiple-antenna users (Single User (SU)-MIMO
communications); however, in the context of single-antenna users, it is the set of spatial correlation
matrices of users that determine the network performances.

A metric used to quantify how separated the channels of two users are was described in [15,16].
Assuming that hi and hk are the channels of two users, the channel separation metric is defined as:

cos
(
∠
(
hi, hj

))
, V

{
hH

i hk√
E {||hi||2}E {||hk||2}

}
, (12)

where cos (∠ (hi, hk)) ∈ [0, 1] and V {x} is the variance of a random variable x.
The metric indicates how efficiently the transmitter can serve user i without affecting user k,

and vice versa. Strongly-correlated channels exhibit higher values, whereas for Rayleigh uncorrelated
fading, the variance is 1/NT and decreases when the number of antennas increases. In general,
the variance depends on the spatial channel correlation and equals zero when the users have orthogonal
correlation matrices, ∠ (hi, hk) =

π
2 .

In MU-MIMO systems, a set of users is called ε-orthogonal, if cos (∠ (hi, hk)) <ε for every i 6= k.
The users can be grouped into disjoint sets according to a desired threshold ε, such that semi-orthogonal
sets could be scheduled over independent resources.

3.2. Correlation Model

The authors in [17] mentioned that the channel separation metric should also be a function of the
spatial correlation between hk and hi and considered the inner correlation of each multi-antenna
user. However, the precoding performance was primarily affected by the correlation between
transmit antennas, whereas receive antenna correlation had an insignificant impact on the precoding
design [18]. In a MIMO context, a spatially-correlated random channel vector hk can be created using
Karhunen–Loeve expansion [15]:

hk = Rk êk = UkD
1
2
k UH

k êk ∼ UkD
1
2
k ek, (13)

where êk ∼ NC
(
0NT , INT

)
and ek ∼ NC (0r, Ir). The eigenvalue decomposition of Rk ∈ CNT×NT is

Rk = UkDkUH
k , where Dk ∈ Rr×r is a diagonal matrix containing r = rank(Rk) positive non-zero

eigenvalues of Rk and Uk ∈ CNT×r contains the associated eigenvectors. The last part means that the

distributions of hk of UkD
1
2
k ek are identical.

It can be shown that the spatially-correlated Rayleigh channel corresponding to user k is a
complex normal random vector, with zero mean and spatial correlation matrix E

{
hkhH

k
}

= Rk,
hk ∼ NC

(
0NT , Rk

)
[15,19].

The normalized trace γ = 1
NT

tr (Rk) captures the average channel gain from one of the antennas
at the base station to the UE and includes the macroscopic large-scale fading. The Rayleigh distribution
of hk is motivated by the presence of small-scale fading due to multipath propagation. When the
channel gains between different antennas are uncorrelated, the channel model can be referred to as
uncorrelated Rayleigh fading. γ can be modeled as:

γ = γ0 − 10α log10

(
D
D0

)
+ F, (14)
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where D is the distance between the transmitter and receiver, α is the path loss exponent,
which determines how fast the signal attenuates with distances, and γ0 determines the median channel
gain at a reference distance D0. In theoretical studies, those two parameters can be computed with
one of the many established propagation models. The only non-deterministic terms is F ∼ N (0, σ2

s f )

and represents the shadow fading that creates log-normal random variations around the mean value,
γ0 − 10α log10

(
D
D0

)
. The shadow fading can be viewed as a model of blockage from large obstacles.

The variance σ2
s f determines how large the variations are.

Realistic performance assessment of MIMO systems requires the use of a channel model that
reflects the main characteristics of large antenna arrays such as the array geometry, the correlation
between the channel responses of different antennas and the physical location and orientation of BSs
and UEs. In [15], a correlation-based model was proposed, where the channel responses were all
Gaussian distributed with zero mean and entirely defined through the correlation matrices. Having an
intuitive structure, the correlation model allowed the subspaces of the correlation matrices to be
parametrized by the azimuth angles of the UEs. This makes it easy to determine if two UEs are
spatially separable by comparing their respective angles.

Since all the multipath components are assumed to arrive with the same delay, the model
is a frequency flat-fading channel model. This limitation is less significant, as we focus only on
communication over a coherence block, where the channel is assumed to be constant. For these reasons,
in the context of user clustering for MU-MIMO, the model was employed in several publications
like [13,19].

To model the small-scale fading, each path from the antenna to the user is assumed to represent
a superposition of Np multipaths (Np is a large number). It is assumed that the macro base station
is elevated and that the scatterers only surround the user, and each multipath is a plane wave,
leaving from the uniform linear spaced array at an angle ϕ̄n. The equivalent channel of each
user becomes:

h =
Np

∑
n=1

an, (15)

where the channel vector of the nth path towards the NT antenna array is:

an = gn

[
1 e2π jd sin(ϕ̄n) · · · e2π jd(NT−1) sin(ϕ̄n)

]T
, (16)

where XT denotes the transpose of an array X, gn is a complex number that models the gain and phase
of multipath n, and d is the array antenna spacing (measured in wavelengths).

It is assumed that the angles ϕ̄n are random variables with the Probability Density Function
(PDF) f (ϕ̄) and gn are zero mean random variables with variance E

{
|gn|2

}
. The variance is the nth

multipath component average gain, and the total gain of the multipaths is γ = ∑
Np
n=1 E

{
|gn|2

}
.

Using the multidimensional central limit theorem, h → NC(0NT , R) when Np → ∞, where the
convergence is in its distribution and has a spatial correlation matrix R = E

{
∑n anaH

n
}

. This is the
reason why the channel model is a correlated Rayleigh fading model.

The element rl,m of matrix R is defined as:

rl,m = ∑
Np
n=1 E

{
|gn|2

}
E
{

e2π jd(l−1) sin(ϕ̄)e−2π jd(m−1) sin(ϕ̄)
}

= γ
∫

e2π jd(l−m) sin(ϕ̄) f (ϕ̄)dϕ̄
(17)

As rl,m depends on the l −m difference and not on each individual value, R is a Toeplitz matrix.
It is assumed that the multipath components are originating from a scattering cluster around the

user [due to the lack of scatterers around the Base Station (BS)], located at an angle ϕ̄ = ϕ + δ. ϕ is a
deterministic nominal angle, and δ is a random variable with a standard deviation from the nominal
angle given by σϕ.
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Depending on how δ is modeled, several correlation models can be found in the literature.
The standard deviation σϕ > 0 is measured in radians and is called the Angular Standard Deviation
(ASD). A usual value for urban environments is σϕ > 0 (10◦), but smaller values are expected in rural
areas or hills.

When δ follows a Gaussian distribution δ ∼ N (0, σ2
θ ), an approximate closed-form expression

that reduces the complexity of simulations can be used for rl,m, if σθ is small:

rl,m(θ) = γe2π jd(l−m) sin(θ)e−
σ2

θ
2 [2πd(l−m) cos(θ)]2 . (18)

Accounting for the spatial channel correlation model above, Equation (12) becomes:

V
{

hH
i hk√

E {||hi||2}E {||hk||2}

}
=

tr [R(θi)R(θk)]

N2
T

. (19)

Figure 5 plots the metric defined in Section 3.1 for a uniform linear antenna array of size NT ,
with the elements placed at half of wavelength and θk the angle of the reference user, set at 0◦. Over a
certain interval, e.g., ∆θ = θi − θk, ∆θ ∈ [−90◦, 90◦], the channel separation metric has a monotone
variation with the angle between two co-scheduled users.

Assuming a precoder requires a 0.1 channel separation (ε = 0.1), Figure 5 shows that this is
achieved for any inter-user angle, when the number of transmit antennas (NT) is greater than or equal
to 32. For 16 antennas, the angle required between two co-scheduled users is 20◦ and increases up to
70◦ for the two transmit antennas case.
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tr(
R

k
×

R
i)/N

T2
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NT = 8
NT = 16
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NT = 128

Figure 5. Channel separation as a function of the angle between user k and i, for δ following a
Gaussian distribution.

4. User Grouping

One of the objectives of MU-MIMO technology is to send independent data streams to different
users. This implies that only a subset of the transmitted data symbols is useful for each co-scheduled
user. In the MU-MIMO context, the user grouping is the task of forming a subset of users, according to
a spatial compatibility metric. It can be shown that there is a correspondence between the precoding
performance and the user grouping technique [9]. The scheduling of spatially-compatible users
is crucial to suppress inter-user interference, whereas refining the power allocation and precoding
weights requires less computational effort.

Most of the scheduling algorithms in the literature focus on constructing sets of users with
orthogonal or semi-orthogonal MIMO channels [20]; however, the optimal solution for the user
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grouping involves an extensive search of all possible combinations. The complexity of the approach
grows exponentially with the number of users and is not feasible for a moderate number of users.

Scheduling algorithms based on spatial clustering can improve the overall MU-MIMO
performance by adjusting the parameter ε defined in Section 3.1, according to the number of users
and the Signal-to-Noise Ratio (SNR). However, the optimum value is a deployment parameter and
depends on the number of transmit antennas, the number of users, the precoder type, and is usually
calculated through simulations.

Based on the above observations, in this section we propose a user grouping algorithm, whose aim
is to cluster users that have similar directions in Euclidean space. Therefore, their channels exhibit a
spatial correlation higher than ε and, consequently, cannot be co-scheduled in MU-MIMO through
linear precoding schemes, as they may significantly interfere with each other.

To optimize the performance of the spatial clustering, K-means clustering algorithm [21] with a
distance metric based on angles between users, is proposed. The algorithm groups the users into N
clusters, such that each user belongs to the cluster whose center is the closest (forms the smallest angle
from the serving sector perspective), as described in Algorithm 1.

Algorithm 1 K-means clustering.

1: for N = 1 to K do

2: repeat

3: Create N random cluster centers, cn(i)
4: Compute K× N angles for each user to each cluster center
5: Assign each user k to the closest cluster n
6: n = arg min

n∈N
(∠ (k, cn(i)))

7: Recompute the centers of the clusters
8: cn(i + 1) = Meank∈n (∠ (k, cn(i)))
9: Stop when the centers do not vary by more than err percent

10: until max
n∈N

(cn(i)− cn(i− 1)) ≤ err

11: Find the maximum angle between any two users of the same cluster

12: anglemax = max
n∈N

(
max

ki∈n,kj∈n

(
∠
(
ki, k j

)))
13: Stop when the users are close enough
14: if anglemax ≤ ∆θ then

15: return N, cluster assignments
16: end if
17: end for

Although this approach guarantees that users of the same cluster cannot be co-scheduled through
linear precoders, it does not provide any information on the channel separation between users of
different clusters. To decide whether users from different clusters can be co-scheduled, one can use
the angles between the centers of clusters, instead of the angles for the entire set of users. The set of
co-scheduled clusters should not include any cluster that has an angle smaller than ∆θ, and its size
should be less than or equal to the number of transmit antennas. The method of finding the optimum
sets of co-scheduled clusters is another optimization problem and is not the purpose of this article.

To further reduce the computational burden, once the sets are created, the algorithm will
schedule in the same time-frequency resource a subset of users in each cluster of the set through
a non-linear precoding scheme. The user selection within each cluster is random; however, this
could result in co-scheduling users with bad channel conditions, which would degrade the overall
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system performance. Employing more complex selection methods like semi-orthogonal or greedy
user selection, as detailed in [4,20,22], would have severely increased the convergence time and the
complexity of the algorithm, but was not in the scope of this article. In the context of a hybrid
precoding scheme, in order to perform intra-cluster user selection, we would require knowing the
effective channel matrix (including the inter-cluster linear precoding). This is conditioned on the users
selected in other clusters. As such, the number of combinations is much higher and requires a search
over the entire set of users, not only over those of the same cluster.

Note that after spatial clustering, the number of users in each cluster is not the same. Users that
have fewer neighbors within their clusters could get higher throughput as they will be co-scheduled
more often. For that, this approach is an overlapping user scheduling algorithm [22].

To evaluate the complexity of the spatial clustering algorithm compared to the state-of-the-art
solutions, the number of FLOPs is represented for various distance metrics and clustering algorithms,
in Figure 6. It can be noted that the complexity of the algorithms depends on the number of users K,
the number of antennas NT , the number of clusters N, and the chosen distance metric. For a fixed
number of clusters, N = 4 and NT = 16 antennas, the proposed algorithm has better performance
than the two-stage precoder with chordal distance (two-stage chordal), which is O

(
KN+1 × N

)
[23],

compared to O
(
KN+1 × N ×

(
N2

T + 2N3
T
))

[5]. In addition, as the proposed metric remains in the
Euclidean space, the K-means implementation based on Lloyd’s algorithm is optimized and has
an O(KNI) complexity [24]. Fixing the number of iterations needed until convergence at I = 50,
the optimized K-means also outperforms the ZF precoding with User Selection (ZF-US), which has an
O
(
KN5

T
)

complexity [22]. The number of iterations will further decrease when the users already have
a cluster structure, which is the case of a typical user distribution, as shown in Section 6.
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Figure 6. User clustering complexity for various distance metrics and grouping algorithms. US, User
Selection.

5. System Model

We consider the downlink of a single-cell MU-MIMO system, where a base station with a uniform
linear array of NT antennas simultaneously transmits data to K single-antenna users. xp is the vector
of precoded symbols using various precoding schemes p. The received signal vector of the users,
y, becomes:

y = Hxp + n, (20)
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where H = [h1, · · · , hK]
T is the channel matrix, with hk being the channel vector for the kth user.

The channel vector of each user is generated from a Rayleigh distribution, and the gains from different
antennas are spatially correlated using the model introduced in Section 3.2, such that hk ∈ CK×NT ∼
NC

(
0NT , Rk

)
. Rk is the spatial correlation matrix and n = [n1, · · · , nK]

T ∼ NC
(
0, σ2

nIK
)

is the vector
of AWGN samples of the K users of variance σ2

n .
In Figure 7, the system model is illustrated in the context of hybrid precoding. The user grouping

algorithm proposed in Section 4 requires the AoA of each user to group the users into clusters. Once the
users are clustered, a set of selected users is precoded in each cluster by a THP block. The set of selected
clusters is then fed to the BD block to compute the inter-group precoding weights. Both BD and THP
precoders require full CSI for the calculation of precoding weights.

WBD H

n
THP2

THP1

THPG

K-means User Clustering

Cluster and
User

Selection

AoA of each
user

CSI

x
xp

y

K Users

BS with NT antennas

Figure 7. Hybrid precoding with user clustering.

With a correlation-based propagation model assumption, the proposed clustering algorithm does
not require full CSI. It only relies on the Angle of Arrival (AoA) to group users together based on their
channel correlation. This is already included in modern communication standards like 5G NR, as they
are required in beam management procedures, for instance. In our modeling, the angle of each user is
assumed to be known at the base station and is computed directly based on its 3D coordinates.

The channel is assumed to be constant during a coherence block and perfectly known at the base
station. It is assumed to change independently from one block to another, as a stationary ergodic
random process. This assumption does not constrain the applicability of the problem. In the modern
wireless communication systems, the Orthogonal Frequency Division Multiplex (OFDM) technology
(or similar) is applied, along with a dense grid of pilot reference signals. Temporal variations are also
handled through pilot signals and channel estimation. In addition, the channel model is spatially
consistent; that is, the channel statistics for a given location are always the same and do not depend on
the simulation runs.

The scenarios with users having very high mobility could limit the applicability of the clustering
algorithm; however, in the evaluated results, we assumed the users had limited mobility. This is also in
line with the distribution used for performance evaluation, where the traffic is focused mostly indoors.

Users with a full-buffer traffic model are distributed within each cell across a 2-km radius. The 3D
traffic spatial distribution used was created in the radio planning and optimization software Planet [25],
based on geolocated call traces and social media events, in the urban area of Ottawa.
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The sum data rate is evaluated with respect to the energy per information bit, Eb, divided by the

one-sided noise power spectral density, N0, Eb/N0
∆
= PTX/

[
Kσ2

n log2(M)
]
, where PTX = E

{
sH

x sx
}

is
the average total transmit power and M is the order of the QAM modulated data symbol.

6. Simulations

This section evaluates the performance in terms of the average sum rate and computational
complexity of the presented precoding schemes. Spatio-temporally-correlated channels and perfect
channel estimation were assumed. Monte Carlo simulations were performed in a single-cell MU-MIMO
system with NT = 16 and K = 16 single-antenna users. A 16 QAM modulation was used throughout
the simulations. We assumed the channel changed non-coherently from one block to another.

Figure 8 evaluates the sum rate performance of the RZF and THP precoding schemes as a
function of Eb/N0 and the inter-user angular separation, when the users were equally spaced with
an angle θ = θmin. The performance of both schemes decreased as the users became closer to each
other; however, THP always outperformed RZF since it employs a more sophisticated successive
interference cancellation technique. For example, to reach the 50 b/s/Hz, RZF requires 17 dB more
Eb/N0 when θmin = 1◦ than when θmin = 5◦. In the same scenario, THP requires just 8 dB more
Eb/N0. Although these results reflect the performance under equal angle separation, this is the lower
bound in a worst case scenario, and similar trends are expected when certain users are separated at
different angles.
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Figure 8. Sum rate vs. Eb/N0 and θmin.

To plot the sum rate performance of a hybrid BD-THP precoding scheme in Figure 9, it was
assumed that the users could be grouped into four groups located at θg = [−45◦,−15◦, 15◦, 45◦].
The users within each group were uniformly spread around θg and were equally spaced with an angle
of 1◦. As the minimum angle between any two groups was 30◦ and between any two users of the
same group was 1◦, we could apply a linear precoding scheme between groups and non-precoding
within the groups. The performance of hybrid BD-THP precoding was better than the RZF precoding,
except for low values of Eb/N0, as BD did not account for the noise enhancement.
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Figure 9. Sum rate vs. Eb/N0 for θmin,g = 1◦ and θg = [−45◦,−15◦, 15◦, 45◦].

In the following, the user groping algorithm and the performance of precoders are evaluated,
accounting for a realistic user spatial distribution.

In Figures 10 and 11, Sector B2 serves users spread using two different traffic distributions, in a
120◦ azimuth. The first distribution captured the working day traffic from the morning and the
evening hours (busy hours) and the second, in between (working hours). Due the mobility of users,
the busy hour traffic was spread more than during the working hours, when it was concentrated in
hotspots (around office buildings). To limit the performance degradation of linear precoding schemes,
the required angular separation between clusters was set to 30◦. This resulted in users being grouped
into four clusters for the working hour user distribution and in three clusters during busy hours.

Figure 10. Working hour user distribution and clustering for Sector B2 and ∆θ = 30◦.



Algorithms 2019, 12, 146 15 of 18

Figure 11. Busy hour user distribution and clustering for Sector B2 and ∆θ = 30◦.

In practice, the AoA is not always perfectly estimated. For that, in Figures 12 and 13, we evaluated
the impact of the AoA estimation error on the clustering algorithm’s performance. The AoA estimation
error was modeled as a normal random variable, with zero mean and a variable standard deviation.
Because the angles between users were computed by the K-means clustering algorithm, the error was
added to the actual coordinates of the users.

In Figure 12, the probability of grouping users into the same clusters (as in the ideal case of perfect
AoA estimation) was investigated for different values of the standard deviation error and number
of clusters. As expected, as the AoA error increased, the probability of assigning users in the same
clusters decreased. The impact was even higher when the number of clusters increased.
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Figure 12. Probability of users keeping the same clusters, as a function of the AoA error.
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Figure 13 plots the average number of iterations until convergence as a function of the AoA
standard deviation of error and the number of clusters. It can be noted that the convergence was less
dependent on the error and slightly increased for higher AoA error values.
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Figure 13. Number of iterations until convergence, as a function of the AoA error.

To plot the sum rate performance of a hybrid BD-THP precoding scheme, in Figure 14, we used
the busy hour user distribution above and applied the BD linear precoding between the three clusters.
Inside each cluster, 6, 6, and 4 users were randomly selected and precoded through a non-linear THP
precoding scheme, as a total of 16 users could be co-scheduled through MU-MIMO. Compared to the
state-of-the-art precoding schemes like THP and RZF, the hybrid precoding followed the trend of the
THP precoding, although the performance was slightly reduced due to the inferior performance of the
linear precoding. It can be shown that even in Rayleigh uncorrelated channels, the linear precoding
performance is below the non-linear precoding performance.

In BD-RZF, K-means clustering with a chordal distance metric was used to group the users
into a two-stage precoding scheme. BD-RZF scheme had lower performance than BD-THP because,
for K = NT , there were not enough degrees of freedom to separate the users in the spatial domain
when applying linear precoding techniques. The performance was even worse than of the RZF
precoder, due to reducing the effective channel matrix and using statistical CSI to reduce the complexity.
This observation is also in line with the findings in [13].
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Figure 14. Sum rate vs. Eb/N0 for busy hour user distribution and random user selection.
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7. Conclusions

In this paper, a user grouping algorithm based on a modified K-means spatial clustering was
proposed. The technique tried to address the complexity of scheduling spatially-compatible users,
as required by different precoding schemes.

It was shown that the user’s channels inter-correlation depended on the transmit correlation
matrix, for a base station with a uniform linear array of antennas and single antenna users, and that
the user’s channels inter-correlation depended ultimately on the angles between the users.

The proposed grouping algorithm identified clusters of users where the average angle between
users was minimized. Given that in real life, the locations of users follow a distribution with a clustered
structure, the proposed approach could be a very efficient way of identifying users with separable
channels. In this case, we showed that it had a linear complexity with the number of users.

The performance of various precoding schemes like linear RZF, BD, non-linear THP, and the
hybrid, BD-THP, was evaluated, and it was shown that linear precoding schemes, like RZF, were more
affected by users with correlated channels than the non-linear ones. For that reason, hybrid precoding
is a good tradeoff between complexity and performance.

Finally, the performance of the hybrid BD-THP precoding scheme was evaluated on a realistic
user distribution using the proposed clustering algorithm.

Although we showed that the AoA errors had a limited impact on the clustering results, more work
is required to evaluate the overall precoding algorithm performance correctly under non-ideal channel
estimation and AoA errors.
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