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Abstract: Home Healthcare (HHC) is an emerging and fast-expanding service sector that gives rise to
challenging vehicle routing and scheduling problems. Each day, HHC structures must schedule the
visits of caregivers to patients requiring specific medical and paramedical services at home. These
operations have the potential to be unsuitable if the visits are not planned correctly, leading hence to
high logistics costs and/or deteriorated service level. In this article, this issue is modeled as a vehicle
routing problem where a set of routes has to be built to visit patients asking for one or more specific
service within a given time window and during a fixed service time. Each patient has a preference
value associated with each available caregiver. The problem addressed in this paper considers
two objectives to optimize simultaneously: minimize the caregivers’ travel costs and maximize the
patients’ preferences. In this paper, different methods based on the bi-objective non-dominated
sorting algorithm are proposed to solve the vehicle routing problem with time windows, preferences,
and timing constraints. Numerical results are presented for instances with up to 73 clients. Metrics
such as the distance measure, hyper-volume, and the number of non-dominated solutions in the
Pareto front are used to assess the quality of the proposed approaches.

Keywords: multi-objective optimization; vehicle routing problem; home healthcare; synchronization
constraints; precedence constraints; preferences

1. Introduction

Home Healthcare (HHC) aims at supporting people with different degrees of dependencies to
remain at home instead of receiving long-term care at a traditional medical institution. It encompasses
a large variety of care provided at hospitals and gives rise to challenging planning and coordination
problems. HHC is set to become an increasingly important issue in the years ahead with the longer
human life expectancy. Research on these emerging problems has the intent to establish a fine
coordination of human and material resources to provide an optimized planning that maximizes the
quality of home healthcare while controlling logistics costs. Therefore, effective organization of HHC
structures requires the use of optimization methods and decision support tools.

The aim in our study is to determine the routes to be performed by a fleet of vehicles
(associated with a group of caregivers) available to serve a set of geographically-dispersed customers
(corresponding to the patients), who have preferences associated with caregivers, and so that the
activity is planned in the most effective way. The specificities rely on the fact that a home healthcare
service must often be performed in a given time window and may require the intervention of several
caregivers simultaneously. In addition, sometimes a patient needs several types of care linked by
precedence constraints. These timing constraints impose the coordination of several caregivers. This
problem is hence modeled as a variant of the vehicle routing problem called VRPTW-SP for the Vehicle
Routing Problem with Time Windows, Synchronization, and Precedence constraints. In a previous
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work (Ait Haddadene et al. [1]), the minimization of the traveling cost and the sum of non-preferences
related to customers were considered as a single-objective function. The obtained results showed
the conflicting nature of these criteria, which is why, we are particularly interested in solving the
bi-objective version of VRPTW-SP.

The problem at hand is an extension of the Vehicle Routing Problem (VRP), which is one of
the most-studied combinatorial optimization problems. First introduced by Dantzig and Ramser [2],
the aim of this NP-hard problem is to determine a set of minimal cost routes in which a set of customers
is to be served by a fleet of vehicles based at a depot node. A detailed survey can be found in Toth and
Vigo [3]. Currently, one of the most effective metaheuristics for the VRP is the hybrid genetic algorithm
introduced by Vidal [4], which was latter generalized to solve more than 26 VRP variants.

Among the different classes of VRP, the VRP with Time Windows (VRPTW) stands as the basis
variant of our studied problem. Heuristic and metaheuristic approaches have been widely used to solve
the VRPTW such as those proposed by Kindervater and Savelsbergh [5], Bräysy and Gendreau [6],
Nagata [7], and Bräysy et al. [8]. In the field of healthcare, most problems are modeled as a
VRPTW. In fact, the origin of vehicle routing problems in HHC systems may be linked to the door-to
door-transportation of elderly or disabled persons (Dial A Ride Problems (DARP)) proposed by Bodin
and Sexton [9]. A few years later, this variant was extended to the Home Healthcare (HHC) problem by
Cheng and Rich [10], where caregivers are assigned to patient homes to provide specific care. A mixed
integer mathematical model was proposed, and a heuristic approach was developed. At this stage,
the numerical results were given for only four caregivers and 10 patients.

Since then, many other studies were carried out, and they are classified in this paper according to:
(1) optimization criterion, (2) constraints, and (3) solution approaches. For a more exhaustive review,
see for instance [11,12].

Table 1 provides a classification of the main types of tackled objectives. Note that each category
involves a broad class of possible objective functions. Table 2 summaries the criteria considered in
the reviewed papers, these last being listed in Column 1. Columns 2–9 correspond to each of the
objectives enumerated in Table 1. When a paper tackles one of the objectives, a symbol (×) is shown in
the corresponding cell.

Table 1. Common types of optimization criteria.

Abbr. Description

T Time (travel, waiting, overtime, etc.)
C Costs (travel, waiting, assignment, etc.)
D Traveled distances
B Balance of the workload
PP Patient preference
CP Caregiver preference
US Unsatisfied services
NC Number of used caregivers

Table 2. Optimization criteria found in the literature.

T C D B PP CP US NC

[13] × ×
[10] ×
[14] × × ×
[15] ×
[16] ×
[17] × ×
[18] × × ×
[19] × ×
[20] ×
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Table 2. Cont.

T C D B PP CP US NC

[21] × × ×
[22] × × ×
[23] × × ×
[24] × × × ×
[25] × × ×
[26] ×
[27] ×
[28] ×
[29] ×
[30] ×
[31] ×
[32] ×
[33] × ×
[34] × ×
[35] × ×
[36] × ×
[37] × × ×
[38] × ×
[39] × × ×
[1] × ×
[40] × ×
[41] × ×
[42] ×
[43] ×
[44] ×
[45] ×
[46] ×
[47] × × ×
[48] ×
[49] ×
[50] × × ×
[51] × × ×
[52] ×
[53] ×
[54] × × ×
[55] × ×
[56] ×
[57] ×

As shown in the last table, the objective of minimizing traveling costs, waiting costs, or patient
preferences is undoubtedly the most widespread in the literature. However, when multiple objective
functions are handled, they are often considered within a single criterion as a weighted sum.

Instead of being part of the objective function, some characteristics of a problem may sometimes
be considered as constraints. In our study for instance, time is handled through time windows
associated with patient care, as well as through interdependencies between the routes performed by
caregivers. This interdependence is defined as operation synchronization in the classification suggested
by Drexl [58]. More specifically, in the context of home healthcare, Labadie et al. [32] identified two
kinds of synchronization:

• Simultaneous synchronization: A patient may request several caregivers at the same time.
This is for example the case when a bath is requested by the patients, but more than one caregiver
is needed to provide this service (because of a heavy load for example). This is called simultaneous
synchronization, and it means that staff should start simultaneously (within a tight time lag)
performing a given number of tasks or a specific type of care.
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• Precedence synchronization: A patient can also request more ordered cares. This is the case
when preparing a patient is necessary before care or another service (such as to be transported to
a hospital).

Even if synchronization is common in real-life problems, it has not received a large amount
of attention in comparison with other constraints. In fact, researches have been mainly focused on
ensuring high service quality through constraints such as time windows and service types.

Table 3 presents the most common families of constraints taken into account in the HHC context,
while Table 4 summarizes the constraints handled in the reviewed papers.

Table 3. Common families of constraints.

Abbr. Description

TW Time windows
Simu Simultaneous synchronization constraints
Pre f Caregiver/patient preferences regarding time visits or assignment
Q Qualification
Prec Precedence synchronization constraints
Reg Periodicity/repeated visits on specific days

Table 4. Constraints found in the literature.

TW Simu Pre f Q Prec Reg

[13] × × ×
[10] × ×
[14] × ×
[15] × × × ×
[16] ×
[17] × ×
[18] × ×
[19] ×
[20] ×
[21] × × ×
[22] × × ×
[23] × × ×
[24] × × ×
[25] × ×
[26] × × ×
[27] × × ×
[28] × × ×
[29] × ×
[30] × × ×
[31] × × ×
[32] × × ×
[33] × × × ×
[34] × × × ×
[35] × × ×
[36] × × ×
[37] × × × ×
[38] × × ×
[39] × ×
[1] × × × ×
[40] × ×
[41] × ×
[42] × ×
[43] × × ×
[44] ×
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Table 4. Cont.

TW Simu Pre f Q Prec Reg

[45] × ×
[46] × × ×
[47] × × ×
[48] × ×
[49] × × ×
[50] × ×
[47] × × ×
[48] × ×
[49] × × ×
[50] × ×
[51] × × ×
[52] ×
[53] × × ×
[54] × × ×
[55] × ×
[56] × ×
[57] ×

Table 4 shows that time windows and qualification are considered in the majority of the
reviewed papers. However, some characteristics such as simultaneous synchronization, precedence
synchronization, and periodicity have attracted less interest in the literature. To the best of our
knowledge, only our previous works and that of [25] combine both types of synchronization constraints
(simultaneous and precedence) in the same model.

Table 5 presents solution approaches that were used to solve the problems studied in the reviewed
papers. These methods are classified into two general categories: exact approaches (Column 2) and
heuristics/metaheuristics (Column 3).

Table 5. Common solution approaches.

Exact Linear Solver Metaheuristic

[13] ×
[10] ×
[14] ×
[15] ×
[16] ×
[17] ×
[18] ×
[19] × ×
[20] ×
[21] ×
[22] × ×
[23] ×
[24] ×
[25] ×
[26] ×
[27] ×
[28] ×
[29] ×
[30] × ×
[31] ×
[32] ×
[33] ×
[34] ×
[35] ×
[36] ×



Algorithms 2019, 12, 152 6 of 25

Table 5. Cont.

Exact Linear Solver Metaheuristic

[38] ×
[37] ×
[39] × ×
[1] ×
[40] ×
[41] ×
[42] ×
[43] × ×
[44] ×
[45] ×
[46] × ×
[47] × ×
[48] × ×
[49] ×
[50] ×
[51] × ×
[52] × ×
[53] ×
[54] × ×
[55] × ×
[56] × ×
[57] ×

From this literature review on vehicle routing problems related to the HHC context, It can be seen
that most of proposed methods are metaheuristics and that most of papers present a mathematical
method (mixed integer linear program) by mean of solvers. Furthermore, the majority of studies
involving different objectives considered an aggregated function defined as a weighted sum of the
considered criteria. Indeed, in all these works, the multi-criteria issue was managed through a
linear combination of the different objectives. The use of this kind of approach has well-known
drawbacks: (a) finding the appropriate weights is not trivial; (b) multiple runs are needed to provide
the decision maker with enough solutions; (c) non-supported solutions cannot be found whatever the
selected weights.

Regarding vehicle routing problems, several authors have been interested in algorithms
based on Pareto optimality to solve different combinatorial optimization problems. For example,
Jozefowiez et al. [59] proposed a Non-dominated Sorting Genetic algorithm (NSGAII) for solving
the vehicle routing problem with route balancing. In the same context, Lacomme et al. [60] tested
several local search procedures within the NSGAII framework for the capacitated arc routing problem,
and more recently, Velasco et al. [61] adapted this previous local search for solving the pick-up and
delivery problem.

To the best of our knowledge, [38] and the more recent papers [51,52] are the only ones
that consider the routing and planning problem in HHC as a multi-objective variant. In the first
one, the compromise relations were between minimizing travel costs and maximizing the level of
satisfaction of patients in home care structures. A metaheuristic based on multi-directional local search
was proposed to build an approximated front. The latter was compared to the optimal Pareto front
obtained by using an ε-constraint method. The study of [51] considered also a multicriteria problem
with three objectives: (1) minimizing the total working time of the caregivers, (2) optimizing the quality
of service by minimizing the patients time window and the synchronized visits non-satisfaction, (3)
and minimizing the maximal working time difference among nurses and auxiliary nurses. To solve
the problem, these authors designed a Memetic Algorithm for Multi-objective Optimization (MAMO),
which uses an NSGAII structure combined with multi-directional local searches. In [52], a bi-objective
optimization model aimed to make a tradeoff between transportation cost and environmental pollution.
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The authors proposed various versions of heuristics, metaheuristic, and modified/hybrid methods.
Metaheuristics are simulated annealing and swarm algorithms. Their evaluation is made through four
assessment metrics and the Pareto-optimal solutions of the employed metaheuristics by the epsilon
constraint method.

Overall, it can be seen that most implementations can be found in the category of metaheuristics,
and the majority of them use local search procedures. However, the papers [38,44,47,48,51] may be
the only ones that proposed a population-based metaheuristic for solving a vehicle routing problem
in the HHC field. In addition, only [38,51] tackled a multicriteria problem through this kind of
solution approach.

The last trends seem to focus either on uncertainties or dynamic data ([62] studied a pick-up and
delivery version of HHC with travel time uncertainty; [63] worked on the caregiver routing problem
solved in a dynamic context with uncertainties and random events by a multi-agent system; [53]
proposed a dynamic method to handle sudden incidents in practice; and [54] considered the dynamic
arrival and departure of patients and nursing staff to solve the daily scheduling and routing problem
in a long-term perspective). However, none of those dealt with multi-objective functions.

Summarizing the literature review, most works on vehicle routing problems raised in HHC, either
considering simultaneous/precedence synchronization or not, have tackled the multi-criteria issue by a
weighted sum of the considered criteria. The contribution of this paper is three-fold: (1) The most-used
benchmark from Bredström and Rönnqvist [17] is handled under a bi-objective optimization, allowing
another analysis of the trade-off between both the cost and the non-preference values, which tends to
bring numerical results close to zero when using a weighted sum. (2) Population-based methods are
designed to solve the bi-objective VRP with time windows, preferences, and timing constraints. (3)
Several local search strategies are tested within the non-dominated sorting methods proposed here.

The remainder of this article is structured as follows: The problem definition is exposed in
Section 2. The different component of the basic NSGAII are detailed in Section 3. Three algorithm
designs are deduced from combining these components and are exposed in Section 4. The results
of the proposed methods, tested on instances from the literature, are presented in Section 5. Finally,
conclusion and future research direction are provided in Section 6.

2. Problem Definition

To model the studied problem, patients were associated with customers and caregivers with
vehicles. The problem can be seen as a variant of the vehicle routing problem with a time window
and specific synchronization constraints encountered in the home healthcare system. In particular,
the problem at hand focuses on cases in which some patients may ask for some services requiring more
than one caregiver with different skills to be accomplished, either simultaneously or in a given order.

Before explaining how simultaneous synchronization/precedence constraints and objective
function are modeled, let us introduce the following notation:

• N is the set of customers.
• L = {d, f } is the set of initial and final depots denoted as d and f , respectively.
• V = N ∪ L is the set of nodes.
• S is the set of offered services, where Si is the subset of services requested by customer i ∈ N.
• [ai, bi] denotes the service time window at customer i, which are hard in this study. Indeed,

service at customer i must start only in this interval: if a caregiver arrives at i before ai, a waiting
time occurs, and the service after time bi is not allowed to be provided.

• K is the set of available vehicles, where Ks is the subset of vehicles performing service s ∈ S.
• Cij is the travel cost from customer i ∈ V to j ∈ V.
• Pre fik is the non-preference value of customer i ∈ N to the caregiver k ∈ K.
• tik is a scheduling variable corresponding to the starting time of the service by vehicle k at

customer i ∈ N.
• xijk is equal to one if and only if the vehicle k ∈ K goes from i to j, zero otherwise.
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VRPTW-SP consists of building a set of routes, such that the following conditions are satisfied:

1. each route starts at the initial depot d and ends at the final depot f ,
2. each vehicle route does not exceed the maximal imposed duration,
3. each customer time window must be respected,
4. each customer service request is satisfied,
5. each service must be accomplished by the qualified caregiver,
6. timing constraints linking the start time of services at customers asking for more than one service

must be considered.

In a preliminary work [1], the authors extended the constraints proposed by [32] to deal with
both types of synchronization (simultaneous and precedence) while retaining the idea of avoiding
node duplication for customers requiring synchronized visits. In addition, several heuristics and
local research procedures were proposed to solve the problem as a single-objective variant. Here, we
propose to use these methods to solve the bi-objective problem.

Synchronization constraints are expressed for some customers i ∈ N by defining gapisr as the
required time between the starting times of services s and r requested by customer i. For a simultaneous
pair of services, this gap is obviously set to zero. Then, synchronization/precedence constraints are
defined as:

∀i ∈ N, ∀s ∈ Si, ∀r ∈ Si : r 6= s, ∑
k∈Ks

|tik − ∑
k∈Kr

tik| = gapisr

The considered objective function is formulated as follows:

min Z = (Z1, Z2) (1)

with,

Z1 = ∑
i∈V\{ f }

∑
j∈V\{d}

∑
k∈K

Cij.xijk (2)

Z2 = ∑
i∈N

∑
j∈V\{d}

∑
k∈K

Pre fik.xijk (3)

Here, Z is regarded as a two-dimensional vector Z = (Z1, Z2), where both objectives must be
optimized simultaneously. For more details on the proposed mathematical model, readers are referred
to Ait Haddadene et al. [1] in which Z = Z1 + Z2 was minimized. Note that patient preference for
caregivers is quantified by a negative value. Thus, a large negative value means a highly-desired
assignment, while a positive value means an undesired visit.

3. Non-Dominated Sorting Genetic Algorithms

3.1. Motivation

The principle of the Non-Dominated Sorting Genetic Algorithm (NSGAII) proposed by [64]
is chosen to solve the bi-objective VRPTW-SP, since it has been successfully used for solving
multi-objective combinatorial optimization problems and especially vehicle routing problems, such as
in Lacomme et al. [60], Velasco et al. [61], and Labadie et al. [65]. As far as we know, there are no works
addressing the NSGAII to solve the multi-objective vehicle routing problems in the HHC context.

The remainder of this section is organized as follows: First, Section 3.2 introduces the non-trivial
framework of NSGAII. Then, from Sections 3.3–3.6, the adaptation to the bi-objective VRPTW-SP
is described, while introducing new components. However, two new methods will be derived by
combining these various proposed components such as a restart NSGAII, which generalizes the main
idea of the NSGAII, and a so-called NSILS for The Non-Dominated Sorting Iterated Local Search, merging



Algorithms 2019, 12, 152 9 of 25

a non-dominated sorting concept with the iterated local search procedure. The general structures of
these three methods will be detailed in Section 4.

3.2. General Principle

The proposed approaches work on a population of solutions and can be seen as an adaptation
of the non-dominated sorting genetic algorithm (NSGAII). It is a Pareto-optimal method based on
the dominance concept. Dominance relations in the Pareto sense are defined as follows: for two
objectives Z1 and Z2 to be minimized, we say that a solution x dominates a solution y (x ≺ y) if
(Z1(x) ≤ Z1(y) and Z2(x) < Z2(y)), or (Z1(x) < Z1(y) and Z2(x) ≤ Z2(y)). This lets us say that
a solution is non-dominated, or is efficient if no solution can be found that improves strictly both
objectives. In other terms, it is impossible to improve one of the objectives without deteriorating the
other one.

The optimization in the Pareto sense computes the set of non-dominated solutions called the
Pareto front. A non-dominated sorting uses a ranking method for the fitness assignment and a
crowding distance for maintaining the diversity of the population.

In NSGAII, successive generations of solutions are classified into non-dominated fronts. Each
non-dominated front is identified and ranked according to the level of non-domination from Front 0
until the partition of the population is complete. Besides ranking, NSGAII uses a crowding distance as
a measure that indicates how near solutions on the same front are to each other. Indeed, the crowding
distance measures the density of solutions in a front. Considering our two objectives for the VRPTW-SP
and a front F, the crowding distance of a solution k is computed as follows:

Crowding distance(F(k)) =
Zpred(k)

1 − Zsuc(k)
1

Zmax
1 − Zmin

1
+

Zsuc(k)
2 − Zpred(k)

2

Zmax
2 − Zmin

2
(4)

suc(k) and pred(k) are respectively the successor and the predecessor solution of the kth one in
the sorted front (see Figure 1). Zmax

c (respectively Zmin
c ) corresponds to the worst (respectively best)

value of objective c, with c = 1, 2. For the extreme points in all fronts, the crowding distance is set to ∞.

Figure 1. Crowding distance.

The population update is illustrated in Figure 2 designed by Deb et al. [64]. Let t be the population
rank. First, a population Pt and the offspring population Qt are merged to obtain a population Rt of
size 2NP. Rt is then sorted out according to the non-domination criterion. Solutions in front F0 are
obviously of better quality and have to be conserved in the following population. However, if the size
of the front F0 is bigger than NP, only a part of the front is kept. In the case where the size of F0 is
strictly less than NP, the population Pt+1 has to be completed with solutions from the following fronts.
In both cases, the choice is based on the crowding distance measure taken in descending order.
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Figure 2. Population update.

Basically, at each generation of NSGAII, an initial population (P0) of NP individuals is generated
and sorted according to the non-domination criterion. At each iteration, a child-population (Q0)
containing NP individuals is produced. To get this population (Q0), pairs of parents P1, P2 are selected
using the binary tournament method. Then, a crossover operator is applied to the two selected parents
to obtain children, which are added to (Q0). Finally, P0 and Q0 are merged to obtain a mixed-population
of size 2NP (R0 = P0 ∪Q0). The latter is then sorted out (according to the non-domination criterion),
and just the NP first solutions are retained to the next iteration. This process is repeated until a
stopping condition is satisfied.

3.3. Encoding of A Solution

For VRPTW-SP, each solution is encoded as a vector of routes (VR) in which each route is a
sequence of customers that appear in the order they are visited by the associated vehicle, where
delimiters are used to identify the routes. For example, Table 6 encodes a solution with three routes
(vehicles) VR = (0, 1, 3, 0, 4, 7, 2, 0, 6, 5, 0). The first is composed of Customer 1 followed by Customer
3, and the second route is composed of Customer 4, followed by Customer 7, which is followed by
Customer 2, while the third route is composed of Customer 6 followed by Customer 5 (0 corresponds
to the delimiter). Since our problem handles a fixed fleet size K, any vector VR has a size equal to
|K + N|+ 1 (if all vehicles are used).

Table 6. Encoding chromosome.

0 1 3 0 4 7 2 0 6 5 0

3.4. Initial Population

The generation of the initial population was done thanks to an adaptation of the Parallel
Randomized constructive Heuristic (PRH), proposed to solve the VRPTW-SP in a previous work
(see Ait Haddadene et al. [1]). Globally, this method uses a parallel strategy to generate NP solutions.
A solution is created as follows: First, a route is opened for each available vehicle. Then, routes are
fulfilled in a parallel way with customers selected from a sorted list of candidates (CL).

3.4.1. Construction of the Candidate List

Let i be the last customer visited by a vehicle (tour) k that offers the service s (at the beginning, i is
the initial depot i = d). At each iteration, the following indicators are calculated for each unvisited
customer j: Edatij the earliest time at which the vehicle k leaving i may be at the client j and Ldatij
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the latest time when the vehicle leaving customer i can be at the customer j. LBTjs and UBTjs are
respectively a lower and upper bound that ensure the return to the final depot in its time window.
Then, the best client (elite) according to the minimum value of Edatij is selected among the list of
candidates built as follows: a customer j is a candidate for a tour k under construction, if he/she has
not yet been visited and if he/she satisfies the following conditions: Edatij ≤ bj, Ldatij ≥ Edatij, and
LBTjs ≤ UBTjs.

Here, a randomized version of the constructive heuristic is necessary to provide independent
initial solutions (chromosomes). Randomness is based on the constructed list of candidates that is
truncated to keep only the first Ncandclients. Then, the elite client is randomly chosen from this
restricted list. The heuristic stops when all customers are inserted or when no more customers can be
added to a vehicle (due to time window constraints and/or synchronization constraints).

It may result in a solution with unsatisfied customers. Thus, a second step considers all unvisited
customers and tries to insert them at the first possible position in any existing route. These customers
are taken in the increasing order of their starting availability time. However, if the solution is still not
feasible, a new trial occurs on another close solution. This close solution is obtained by sequentially
removing and inserting at another position (if possible) a fixed number Cmax of customers. This last
process is repeated until reaching a feasible solution.

3.4.2. Improvement of the Initial Population

In order to improve the quality of these initial solutions, a Randomized Local Search (RLS) for
the single objective VRPTW-SP is applied to each solution from P0. Its general structure is sketched in
Algorithm 1. Here, the Pareto-dominance concept is not yet considered. At this point, the optimized
objective function is min(Z1 + Z2). The considered moves are detailed in Section 3.6. Those are
explored iteratively in a random sequence provided by a list of a certain size (γmax is the number
of considered neighborhoods). In Line 5 of Algorithm 1, a neighborhood δ denoted by Nδ(Sol) is
chosen to be entirely explored. For example, we assume that Line 2 in Algorithm 1 gives the following
sequence: {2, 3, 1}, then δ ← List[1] means that Neighborhood 2 is explored first until no more
improvement is found, then Neighborhood 3 is selected, etc. In this case, F(Sol) = Z1(Sol) + Z2(Sol).

Algorithm 1 Randomized local search.

1: Sol := individual solution from P0
2: List := list of γmax neighborhood indexes generated randomly
3: i := 1
4: no_Improve = f alse
5: while (no_Improve = f alse) or (i ≤ γmax) do

6: δ := List[i]
7: no_Improve := true
8: Sol∗ := Best solution in Nδ(Sol)
9: if (F(Sol∗) < F(Sol)) then

10: Sol := Sol∗
11: no_Improve := f alse
12: else

13: i := i + 1
14: end if
15: end while

3.5. Evolutionary Process

Two evolutionary processes are used to make a population evolve. The first one is a crossover
operator employed once within a Non Dominated Sorting Genetic Algorithm (NSGAII) and then
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generalized to a new version called Multi-Start (MS-NSGAII). The second process consists of replacing
the crossover and local search components by an iterated local search procedure.

3.5.1. Selection and Crossover Operators

The ordered crossover (OX) is applied. At each iteration, a new population is generated by the
process that selects two parent solutions P1 and P2 and generates children by applying the crossover
operator. The selection is done following the binary tournament. For that, two solutions chosen
randomly are compared. Then, the solution with the smallest rank is kept as P1. The same process is
repeated to select P2. If two solutions belong to the same front, the crowded comparison prefers the
one with the highest crowding distance.

Two child-solutions are then created by crossing the two selected parents using the ordered
crossover (OX) applied on each route. This is done as follows: a randomized crossover point is selected
for each tour, then the two solutions are combined tour by tour to obtain two children. Figure 3
illustrates an example of the crossover operator. Crossing parents tour by tour allows us to meet the
constraint related to vehicle skills (i.e., a client is visited by a vehicle offering its requested service).
Nevertheless, the resulting child may be unfeasible in terms of customers/depot time windows,
synchronization constraints, etc. Therefore, a repair procedure is called, and it is performed in three
steps:

• Removing duplicates: If some customer appears in different routes, one of the different copies is
randomly retained.

• Updating time visits: Time windows and synchronization constraint violation is prohibited. When
a customer is not visited during his/her time window, he/she is removed from the solution.
When a vehicle time window is violated, customers causing the violation are removed starting
by the last customer of the corresponding route and coming up sequentially backward even
for customers to be synchronized, provided that timing constraints are not respected or if the
customers to be synchronized are inserted in contradictory positions (Figure 4 shows an example
of a contradictory position of clients i and j to be eliminated). The corresponding customer is
then deleted, and the vehicle arrival time to the final depot is updated.

• Insertion of unsatisfied customers: All non-visited customers are considered and inserted in the
first feasible position (the repair procedure explained at the end of Section 3.4 is used here).

Note that, in our previous paper Ait Haddadene et al. [1], feasibility tests implemented in constant
time were proposed to check the feasibility of any insertion before its execution. These tests were
applied here. In addition to the repair procedure, they were also used in the construction heuristic and
in the local search.

Since the number of routes is related to the number of available vehicles (which is limited to |K|),
the number of crossover points is equal to the number of used vehicles. In the case of an empty route
(which means that the route is not opened for the corresponding vehicle), the child route will be a copy
of the parent route.

Figure 3. Ordered crossover operator.
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Figure 4. Contradictory positions of clients i and j.

3.5.2. Iterated Local Search Procedure

An iterated local search procedure is proposed to diversity and intensify the population. It consists
of perturbing a solution with the aims to jump into another solution adjacent to the current one
by introducing non-deterministic components (diversification). Then, a local search acts as the
intensification. The problem of finding feasible solutions is difficult, because of timing constraints; that
is why the perturbation mechanism performs a fixed number (Cmax2) of random exchange moves to
introduce diversity while remaining within the set of feasible solutions. The resulting individual may
be improved by applying a local search procedure (details are given in the next section). The process
consisting of perturbing + improving is repeated maxP times on the selected individual.

Technically, when a local search is applied on the perturbed solution, this leads to an iterated
local search procedure. Remember that this method (ILS) initiates its search from a good quality
solution. This means that a local search procedure is first applied on the current parent, with the aim of
obtaining a first local optimum. Then, at each iteration of the ILS, the current parent is perturbed with
the intent to escape the local optima, which are generally grouped into clusters in the solution space.
The resulting solution undergoes the local search to reach another local optimum. The incumbent
solution is updated only in the case of improvement. The cycle consisting of perturbation and local
search is repeated until the given number (maxP) of iterations is reached. The resulting solution is
considered as a “child-solution”. This method allows us to maintain the feasibility of the solutions.

3.6. Local Search

This procedure may consist of generating neighborhoods using the first or best improvement
strategy. In our study, preliminary tests have shown that looking for the best feasible move requires
much time with limited gain in comparison with a first improvement strategy. That is why the latter
has been selected. The whole local search stops when all neighborhoods are explored without finding
any improvement.

Our neighborhoods are defined by simple commonly-used moves in VRP, involving one or usually
more clients and/or one or more routes. They are the relocation and the two-exchange move, both
executed on a single or different routes.

3.6.1. Acceptance Criteria for a Move

In the multi-objective context, a solution Sol improves Sol′ if it dominates it. In what follows,
Z1(Sol) and Z2(Sol) respectively denote the total travel cost and the total non-preference value of a
solution Sol, and w is a real number belonging to [0, 1].

The criteria tested to decide if converting a solution Sol into Sol′ is an improved one define two
different strategies (LS1 and LS2).

LS1: the Pareto dominance: Sol′ improves Sol if ((Z1(Sol′) − Z1(Sol) ≤ 0) and (Z2(Sol′) −
Z2(Sol) < 0)) or ((Z1(Sol′)− Z1(Sol) < 0) and (Z2(Sol′)− Z2(Sol) ≤ 0)).
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However, it could be interesting to use an acceptance criteria based on the convex combination of
the objective functions, such as done in LS2. The main objective is to improve solutions in the first front
conducting the search by descending values with emphasis on the extreme solutions, while preserving
the space between solutions. These techniques were first introduced by [66]. For that, a pseudo-weight
w must be computed for a given solution Sol. In [66], the authors used Equation (5), in which Zmin

c
and Zmax

c are respectively the minimum and the maximum values of criterion c (c = 1, 2).

w =

Z1(Sol)−Zmin
1

Zmax
1 −Zmin

1

Z1(Sol)−Zmin
1

Zmax
1 −Zmin

1
+

Z2(Sol)−Zmin
2

Zmax
2 −Zmin

2

(5)

Then, an improving move is accepted if w.(Z1(Sol′)− Z1(Sol)) + (1−w).(Z2(Sol′)− Z2(Sol)) <
0 with w ∈ [0, 1].

3.6.2. Local Search Strategy

A classical way to add a local search in a genetic algorithm is to apply it on some of the child
solutions. This is what was proposed in Strategy 1 with a call to LS1 on solutions of the child-population
(Lines 6–8 of Algorithm 2). However, the Pareto-dominance is more strict than the acceptance criterion
based on the convex combination of the objective functions. Thus, LS2 may be called post-optimization
(Strategy 2) on solutions of the first front (F0) obtained at the last population (Line 14 of Algorithm 2).

Algorithm 2 Non-Dominated Sorting Genetic Algorithm (NSGAII).

1: P′′0 := Initial population of NP solutions
2: P′0 := RLS(P′′0 )
3: P0 := Sorting_Rank_Crowding(P′0)
4: i := 1
5: while (i ≤ NG) do

6: Qi := ∅
7: Ri := ∅
8: for (j = 1 to NP) do

9: Select(P1, P2)
10: (E1, E2) := Crossover(P1, P2)
11: Qi := Qi ∪ (E1, E2)
12: end for
13: if ((i mod nb) = 1) or (i = 1)) then

14: LS1(%Qi) // Periodic frequency
15: end if
16: Ri := Fusion(P0, Qi)
17: P0 := Sorting_Rank_Crowding(Ri)
18: i := i + 1
19: end while
20: LS2(%F0(P0)) // applied in the case of Version 3 in Table 7

3.6.3. Local Search Frequency

For genetic algorithms (including the crossover operator), the local search procedure is called
periodically. This means that the local search procedure is employed each nb generation. In this
case, Θ% solutions of the child-population undergo the local search, which are chosen according to
the non-dominated sorting. For the NSILS (including the ILS procedure), the local search is applied
systematically. This means that, at each generation, the local search is called, and in this case, Θ%
solutions of the child-population selected randomly undergo the local search. Table 7 summarizes all
tested versions.
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Table 7. Non-dominated sorting versions.

Method Version LS Strategy Post-Optimization LSFrequency Involved Solutions
for the LS: Θ

NSGAII and MS-NSGAII 1 - - - -

NSGAII and MS-NSGAII 2 LS1 - Periodically − nb = 10 50% Domination
NSGAII and MS-NSGAII 3 LS1 LS2 Periodically − nb = 10 50% Domination

NSILS LS1 - Systematically 10% Random

4. Pseudocodes

Now that all components have been defined, this section is devoted to the three pseudocodes
tested in this article. The first is summarized in Algorithm 2 and is the general framework of NSGAII
including the local search procedure.

To diversify the search, an idea is to restart NSGAII from another initial-population instead of
loosing time in unproductive generations, thus giving what we call a Multi-Start Non-Dominated
Sorting Genetic Algorithm (MS-NSGAII). Lines 1–15 of Algorithm 2 are repeated nbstart times. At the
end of each restart, the best population is updated by mixing the last best population BestPop with the
current-population of NSGAII. The latter is then sorted out (according to the non-domination criterion),
and just the NP first solutions are retained. To test the same number of iterations as in Algorithm 2,
an iteration of NSGAII inside MS-NSGAII consists of NG1 = NG

nbstart generations. The general structure
of this approach is given by Algorithm 3.

Algorithm 3 Multi-Start Non-Dominated Sorting Genetic Algorithm (MS-NSGAII).

1: j := 1
2: while (j ≤ nbstart) do

3: P′′0 := Initial population of NP solutions
4: P′0 := RLS(P′′0 )
5: Pj := Sorting_Rank_Crowding(P′0)
6: BestPop := ∅
7: Pj := NSGAII
8: if (j = 1) then

9: BestPop := Pj
10: else

11: BestPop := Fusion(Pj, BestPop)
12: end if
13: BestPop := Sorting_Rank_Crowding(BestPop)
14: j := j + 1
15: end while
16: LS2(F0(BestPop)) // applied in the case of Version 3 in Table 7

The third pseudocode is given in Algorithm 4. It is obtained by replacing the crossover operator
of Algorithm 2 by the iterated local search procedure detailed in Section 3.5.2.

Other configurations were designed, especially for the percentage of involved solutions for the
local search. However, only versions that appeared successful are shown in this paper. In total, seven
versions were tested and compared on 37 instances.
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Algorithm 4 Non-Dominated Sorting Iterated Local Search Algorithm (NSILS).

1: P′′0 := Initial population of NP solutions
2: P′0 := RLS(P′′0 )
3: P0 := Sorting_Rank_Crowding(P′0)
4: i := 1
5: while (i ≤ NG) do

6: Qi := ∅
7: Ri := ∅
8: for (j = 1 to NP) do

9: Ej := LS1(%Pj)
10: for (k = 1 to maxP) do

11: E′j := Perturb(Ej, Cmax2)
12: E′j := LS1(%E′j)
13: if (E′j < Ej) then

14: Ej := E′j
15: end if
16: end for
17: Qi := Qi ∪ Ej
18: end for
19: Ri := Fusion(P0, Qi)
20: P0 := Sorting_Rank_Crowding(Ri)
21: i := i + 1
22: end while

5. Computational Experiments

5.1. Implementation and Instances

Our algorithms were implemented in C language and executed on a 3.20-GHz Intel(R) Core(TM)
i5-3470 CPU computer with 8 GB of RAM, running under Ubuntu. A set of HHC instances was
designed by Bredström and Rönnqvist [17]. These instances include most of the particular features of
the VRPTW-SP studied here: time windows, synchronization, and preferences. They were specifically
extended to fit the additional problem specifications related to the different types of services offered to
and requested by customers. The benchmark was grouped into three different categories according
to the number of customers and vehicles, which were equal to 18 clients with 4 vehicles in the first
group (G1), 45 clients with 10 vehicles in the second group (G2), and 73 clients with 16 vehicles in the
third one (G3). In each group, the number of synchronizations ranged from 2-5, and the time windows
could be small, medium, or large. In the extended version of instances, the customer demands and
caregiver qualifications were randomly generated, but the rest of the information remained the same
as in [17]. Without loss of generality, we only treated the case when at most two services were needed.
The extended benchmark can be obtained by a simple request to the authors.

The file names followed an n-m-t-nb format, with n ∈ {18, 45, 73} clients, m ∈ {4, 10, 16} vehicles,
t ∈ {s, l, m} referring to the width of the customer time windows (small, medium, or large,) and
the last index nb ∈ {2, 3, 4, 5} corresponding to the maximum number of clients to be synchronized.
These values were inspired from literature instances, where the number of synchronized customers
did not exceed 10% of the total number of customers. All randomized algorithms were executed five
times on each instance.

5.2. Evaluation Criteria

In this paper, the performance of the different versions of the algorithms was measured through
five metrics:
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1. |F0|: The number of solutions in the first front F0.
2. SP: The spacing measure proposed by Schott [67], which estimates the relative distance between

two consecutive solutions obtained in the non-dominated set, as follows:

SP =

√√√√ 1
|F0|

|F0|

∑
i=1

(di − d̄)2 (6)

where di = minj∈F0 :j 6=i |[Z1(i)− Z1(j)] + [Z2(i)− Z2(j)]| is the minimum value of the sum of the
absolute difference in the objective function values between the ith solution and any other solution

in the obtained non-dominated set. d̄ =
∑

F0
i=1 di
|F0|

is the mean value of the above distance measure.
When solutions are near uniformly spaced, the corresponding distance measure will be small.
Thus, the method with smaller spacing SP is better.

3. HV: The hyper-volume introduced by Zitzler et al. [68], which calculates the volume covered by
members of F0. Mathematically, for each solution i ∈ F0, a hyper-rectangle vi is constructed with
a reference point. The reference point is defined by the maximal value of Z1 and Z2 obtained by
all tested versions. Thereafter, a union of all hyper-rectangle is found, and the hyper-volume HV
is calculated (see Figure 5). In this case, one method with a large value of HV is desirable.

HV = volume
|F0|⋃
i=1

vi (7)

The spacing and the hyper-volume were not free from arbitrary scaling objectives, and then,
the above metrics were evaluated by using normalized objective functions in the interval [0, 1].
For the hyper-volume measure, the selected reference point corresponded to the worst solution
provided by all the tested versions.

4. DO: The deviation from the optimal solution found by Cplex, which was used to solve the
single-objective model in Ait Haddadene et al. [34], where Z1 + Z2 was minimized. First, the best
solution (called p) is identified by calculating the Euclidean distance of each solution in the first
front to the optimal solution (called q). p corresponds to the solution with the smallest sum of the
Euclidean distance. Then, the percentage of the deviation is calculated as follows:

DO1(p, q) = ((Zp
1 − Zq

1)/|Z
q
1 |) ∗ 100 (8)

DO2(p, q) = ((Zp
2 − Zq

2)/|Z
q
2 |) ∗ 100 (9)

5. CPU: The computational execution time reported in seconds.

Figure 5. Hyper-volume for Z1 and Z2 of the Vehicle Routing Problem with Time Windows,
Synchronization, and Precedence constraints (VRPTW-SP).
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5.3. Test Protocol and Parameters

For the set of instances, calibration with different configurations of parameters was used to see
which version produced the best results. The best values that allowed obtaining a good compromise
between solution quality and running time according to the performance measures mentioned above
are shown in Table 8.

Table 8. Fixed parameters. PRH, Parallel Randomized constructive Heuristic.

Parameter Name Value

Population size NP 100

Maximum generations in NSGAII NG 500

Maximum generations in MS-NSGAII NG1 100
No. of restarts in MS-NSGAII nbstart 5

Maximum generations in NSILS NG 50
No. of ILS iterations in NSILS maxP 20
Perturbation level of the ILS Cmax2 5

RCLsize in PRH NCand 4
Perturbation level of repair Cmax 2

5.4. Numerical Results

Average results for the 37 test instances are shown for the different versions in Table 9, respectively
for NSGAII, MS-NSGAII, and NSILS. In this table, the minimum (min), maximum (max), and the
average values (av.) for the number of solutions in the first front (|F0|), the hyper-volume metric (HV),
the spacing measure (SP), the percentage of the deviation from the optimal solution, and the CPU time
reported in seconds are given. As can been seen in Table 9, all versions with the local search procedure
were better than versions without it, at a cost of a computing time about three-times higher on average.
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Table 9. Average results for the 7 versions on 37 instances. av., average.

|F0| HV SP DO1 DO2 CPU

Version min max av. min max av. min max av. min max av. min max av. min max av.

NSGAII
1 20.54 34.10 27.23 0.90 0.94 0.93 0.03 0.09 0.06 1.90 5.99 3.93 4.88 10.87 7.90 55.75 57.47 56.66
2 18.96 28.97 24.06 0.93 0.95 0.94 0.05 0.10 0.07 −0.08 2.20 0.86 1.88 4.81 3.25 139.31 160.45 149.50
3 21.43 31.89 26.91 0.93 0.95 0.94 0.04 0.09 0.06 0.01 3.14 1.40 1.65 5.42 3.35 139.67 160.86 149.86

MS− NSGAII
1 12.72 23.54 18.16 0.88 0.95 0.92 0.05 0.12 0.08 2.30 8.03 5.39 7.11 15.03 10.91 69.01 70.12 69.53
2 11.48 18.08 14.44 0.93 0.95 0.94 0.06 0.15 0.11 0.18 4.17 2.08 1.47 6.09 3.76 166.23 176.34 172.14
3 11.71 20.17 15.30 0.93 0.95 0.94 0.07 0.16 0.11 −0.27 3.32 1.50 2.78 7.38 4.89 166.47 176.58 172.39

NSILS 10 8.67 13.98 11.15 0.93 0.96 0.94 0.07 0.16 0.11 −1.05 3.72 0.90 5.94 10.19 8.02 110.89 121.60 117.53
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In terms of the |F0| indicator, globally, NSGAII-1 found more solutions in the non-dominated
Pareto front, offering the decision maker a set of solutions with a good compromise between the total
travel cost and the customer preferences. Regarding the SP metric, all versions of the NSGAII and
NSILS-2 methods were almost equivalent with a good coverage in the objective space by members
from the non-dominated fronts.

According to the HV metric, from NSILS, applying LS1 was better. However, MS-NSGAII was
practically equivalent to NSGAII for both local search-based methods. Furthermore, NSGAII-1 was
the worst one according to this performance indicator. It is important to mention that the position of
the solutions in the search space did not have a direct impact on the HV metric. Even when the SP
metrics and |F0| were better, this did not guarantee better values for the HV metric.

According to the optimal deviation from optimal solutions Z1 and Z2 indicator, all versions
found the optimal solution for Z1 and/or better with a good solution quality of Z2. This shows
that the methods were more accurate for Z1 than for Z2. However, in general, NSILS can find better
solutions than genetic methods according to DO1, which is related to the minimization of the total
travel cost. Therefore, it can be deduced that, even when the genetic aspect was not considered, but the
non-dominated sorting was retained, the method obtained solutions of good quality, in a reasonable
execution time. Once again, this metric allowed us to deduce the impact of the local search procedure
in terms of convergence.

As can be expected, the running time (CPU) depended on the methods used. Those can
be classified as follows: NSILS was more rapid than NSGAII, which was faster than MS-NSGAII.
In accordance with the different variations of the proposed methods, NSGAII-1 and MS-NSGAII-1
required less computational time due to the way the local search was integrated. Note also that the
mutation procedure was not used here, since preliminary tests showed that the crossover followed by
local search led to better performance of the solution; thus, the mutation procedure was replaced by
the latter.

5.5. Graphical Examples

Graphical representations are well suited to visualize the behavior of bi-objective optimization methods.
The two figures illustrate the impact of the local search procedure on the same instance. This is

by comparing the efficient set computed by the basic version NSGAII-1 and MS-NSGAII-1 (no local
search) with the other versions obtained local search strategies for each algorithm.

Figure 6 shows that hybridization with local search was necessary to obtain efficient solutions.
Here for example, NSGAII-2 decreased the best travel cost of NSGAII-1 by approximately 73% (from
∼320 to ∼265) and the best non-preference by 5% (from ∼−200 to ∼−210). Thus, NSILS decreased
the best travel cost of NSGAII−2 by approximately 5% (from ∼ 265 to ∼ 250). Moreover, several
efficient solutions were obtained, and they were better spread, thus providing the decision maker with
a wider choice.

For the same instance, Figure 7 shows that all local search-based algorithms had a good
convergence. However, NSGILS confirmed the numerical results, obtaining smaller fronts.

Thus, from Figure 7, it is clear that MS-NSGAII-1 had not entirely converged and that
MS-NSGAII-2 and MS-NSGAII-3 were more efficient, hence the interest in including local search
procedures.
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Figure 6. Impact of local search for Instance 25 on NSGAII.

Figure 7. Impact of local search for Instance 25 on MS-NSGAII.

6. Conclusions

In this paper, population methods based on the NSGAII template with different local search
strategies were presented in order to solve a bi-objective variant of the vehicle routing problem with
time windows, in which both synchronization and precedence constraints were considered. The goal
in this problem was to minimize the travel cost (Z1) while minimizing the customer non-preference
(Z2). This study was motivated by applications raised in home healthcare structures. A quick overview
of vehicle routing problems with time windows and synchronization constraints was given. Special
attention was accorded to existing works related to the home healthcare field, particularly those
considering several optimization criteria.

Different local search-based versions of NSGAII were compared as well to the basic version of
NSGAII. The effect of replacing the crossover operator and the local search procedure by an ILS method
was also evaluated. A new variant of NSGAII called MS-NSGAII was tested, where independent
parent-populations were produced.
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Computational experiments were carried out on 37 instances, which were extended from the
benchmark initially proposed by Bredström and Rönnqvist [17]. To evaluate the performance of the
developed algorithms, different measures that compared the obtained fronts were used. Additionally,
the best Z1 and Z2 values were compared with the optimal solutions found by Cplex, which was used
to solve the single-objective MILP in Ait Haddadene et al. [1]. After analyzing the different measures,
the good performance of the proposed NSGAII version for solving the VRPTW-SP was established.
The benefit of the local search procedure was clearly demonstrated, and results showed that including
the local search procedure improved the solutions for both objectives, while the computational times
were still reasonable. Finally, the proposed methods efficiently solved the VRPTW-SP and provided
a large set of solution choices to the decision maker. As future work, other objective functions and
local search moves may be considered. Moreover, the optimal Pareto front could be designed for more
specific comparison.
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