
algorithms

Article

Sphere Fitting with Applications to Machine Tracking

Dror Epstein * and Dan Feldman

Computer Science Department, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, P.C. 3498838,
Israel; dannyf@gmail.com
* Correspondence: dror.epstein@gmail.com

Received: 5 June 2020; Accepted: 15 July 2020; Published: 22 July 2020
����������
�������

Abstract: We suggest a provable and practical approximation algorithm for fitting a set P of n points
in Rd to a sphere. Here, a sphere is represented by its center x ∈ Rd and radius r>0. The goal is to
minimize the sum ∑p∈P | ‖p− x‖ − r | of distances to the points up to a multiplicative factor of 1± ε,
for a given constant ε > 0, over every such r and x. Our main technical result is a data summarization
of the input set, called coreset, that approximates the above sum of distances on the original (big) set
P for every sphere. Then, an accurate sphere can be extracted quickly via an inefficient exhaustive
search from the small coreset. Most articles focus mainly on sphere identification (e.g., circles in 2D
image) rather than finding the exact match (in the sense of extent measures), and do not provide
approximation guarantees. We implement our algorithm and provide extensive experimental results
on both synthetic and real-world data. We then combine our algorithm in a mechanical pressure
control system whose main bottleneck is tracking a falling ball. Full open source is also provided.

Keywords: sphere fitting; coresets; sampling methodologies; geometric approximation algorithms

1. Introduction

Approximating or fitting a set of points in a d-dimensional space by a simple shape is
a fundamental problem in geometric optimization with many applications in robotics [1–3],
computational geometry [4–6], machine learning [7,8], computer vision [9,10], image processing [11],
computational metrology, etc. A tangible example is finding the exact location of the flaming ring as
shown in Figure 1.

A possible model, which we use in this paper, is to minimize the sum of distances (called the
`1-norm of the distance vectors). The sum of distances is known to be more robust to noise than the
sum of squared distances. For example, the number that minimizes the sum of distances to a set of
n numbers is its median, and increasing one of the input numbers to infinity would not change this
solution. However, this is not the case for the mean, which minimizes the sum of squared distances.
For every x ∈ Rd and r > 0 we define

ν(P, x, r) := ∑
p∈P
| ‖p− x‖ − r |

to be the measure function for median-sphere.
Most existing techniques are heuristics with no provable bounds on the approximation error,

or have some understanding of the input points.
In this paper, we consider the special case of approximating points by a sphere, and hope to

generalize the technique to other shapes in the future. Let

x∗, r∗ ∈ arg min
x∈Rd ,r>0

∑
p∈P
| ‖p− x‖ − r |

Algorithms 2020, 13, 177; doi:10.3390/a13080177 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-6408-3373
https://orcid.org/0000-0002-7700-9711
http://dx.doi.org/10.3390/a13080177
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/8/177?type=check_update&version=3

Algorithms 2020, 13, 177 2 of 18

represent an optimal median-sphere. Our goal is to compute x and r such that

ν(P, x, r) ≤ (1 + ε)ν(P, x∗, r∗). (1)

Figure 1. An RGB image that captured a flame of fire [12]. The goal is to approximate the center of the
flaming ring.

1.1. Related Work

1.1.1. Thinnest Sphere Annulus

For fitting a sphere to a set of points, the acceptable compromise is the approximation of the
thinnest sphere annulus (called the `∞-norm of the distance vectors), that minimizes maximum of
distances to the input set, maxp∈P | ‖p− x‖ − r | over every r ∈ R and x ∈ Rd.

The main drawback of this optimization function is sensitivity to a single point (outlier) in the
input data set that may completely change the optimal solution even compared to the sum of squared
distances that was discussed in the previous section.

1.1.2. Median-Sphere

A better fitting solution is the median-sphere (called the `1-norm of the distance vectors),
that minimizes maximum of distances to the input set, maxp∈P | ‖p− x‖ − r | over every r ∈ R and
x ∈ Rd. Although there is a lot of work for the corresponding `∞ problem, less is known for the
`1 case.

1.1.3. Least Mean Square

Another measure is the least mean square, that minimizes sum of square of distances to the input
set, ∑p∈P ‖p− x‖2 over every x ∈ Rd.

1.1.4. Heuristics for Circles Detection in 2D Images

Most significant work has been done for two Dimensional data in the context of image processing.
Extensive work tends to compute circles for the purpose of object detection in images. However,
most of these heuristics do no provide approximation guarantees and suitable only for d = 2.

A common heuristic to fit points to a circle is the well-known Circle Hough transform (CHT) [13].
The approach of this technique is to find imperfect instances of spheres by a voting procedure.
This voting rates candidates of possible spheres (i.e., center and radius). The main drawback of
this technique is its inefficient running time of complexity O(nd).

In [14], a circle detection was applied by Learning Automata (LA), which is a heuristic method to
solve complex multi-modal optimization problems. The detection process is considered a multi-modal

Algorithms 2020, 13, 177 3 of 18

optimization problem, allowing the detection of multiple circular shapes through only one optimization
procedure. The drawbacks of this algorithm is that it is designated to 2D images.

A variant of a Hough transform algorithm, called EDCircles [15], aims to approximate points by
arcs which are based on their Edge Drawing Parameter Free (EDPF). The general idea of the algorithm
is to extract line segments in an image, convert them into circular arcs and then combine these arcs to
detect circles, which is performed by an arc join heuristic algorithm with no approximation guarantees.
Moreover, its running time is still inefficient when dealing with big data and large dimensional space
(i.e., O(nd)) in the worst case.

In [16], a circle detector based on region-growing of gradient and histogram distribution of
Euclidean distances is presented. Region-growing of the gradient is applied to generate arc support
regions from a single point. The corresponding square fitting areas are defined to accelerate detection
and decrease storage. A histogram is then used to count frequency of the distances that participates in
the accumulator and the parameters of each circle are acquired.

In [17], the proposed detection method is based on geometric property and polynomial fitting in
polar coordinates instead of Cartesian coordinates. It is tailored for two-dimensional LIDAR (laser
radar sensors) data. They use Support Vector Machines (SVM) to detect the target circular object
from natural lidar coordinates features representing segments from the image. For specific examples,
they measure up to 99.79% detections with execution time of 16.9 milliseconds per image.

A circle detection algorithm that is based on a random sampling of isosceles triangles (ITs) is
presented in [18]. This algorithm provides a distinctive probability distribution for circular shapes
using a small number of iterations. Although they introduced an accurate and robust detection at sharp
images, it does not handle corrupted and moving images and does not have provable guarantees.

Another variant of the Hough transform algorithm [19], called Vector Quantization (VQHT),
tries to detect circles by decomposing their edges in the image into many sub-images by using Vector
Quantization (VQ) algorithm. The edge points that reside in each sub-image are considered as one
circle candidate group. Then the

VQHT algorithm is applied for fast circle detection.
In [20,21], a randomized iterative work-flow is suggested, which exploits geometrical properties

of isophotes in the image to select the most meaningful edge pixels and to classify them in subsets of
equal isophote curvature.

In [22], the authors propose a method to recognize a circular form using a geometric symmetry
through a rotational scanning process.

The random sample consensus (RANSAC) algorithm introduced by Fishler and Bolles in [23] is a
widely used robust estimator that has become a standard in the field of computer vision. The RANSAC
algorithm proceeds as follows: Repeatedly, subsets of the input data are randomly selected, and model
parameters (i.e., optimal median-sphere) fitting these subsets are computed. In the second step,
the quality of the sphere is evaluated on the input data. The output of the algorithm is the sphere that
has the highest match of all the spheres.

In [24,25] the authors presents variants of probabilistic and randomized sampling to determine
sphere in 3D points over clouds.

1.1.5. Coreset

One of the classical techniques in developing approximation algorithms is the extraction of “small”
amount of “most relevant” information from the given data (called a coreset), and then applying
traditional optimal algorithms on this extracted data which ensure provable approximation results.
The exact definition of coreset changes from paper to paper.

Moreover, generic techniques enable coreset maintenance of streaming, distributed and dynamic
data. A survey on coresets is given in e.g., [26,27].

In [28] the author suggests a (1 + ε) approximation for the median-sphere that takes O(n +

log f (d)(n) + (1/ε) f (d)) time for constant integer d ≥ 1, where f (d) is a function of d.

Algorithms 2020, 13, 177 4 of 18

In [29] the authors suggest (1 + ε)-approximation for the thinnest-sphere annulus fitting in
O(nd + 1/ε3d) time using linearization technique and ε-kernel of a point set P, for every d ≥ 1.

1.2. Coreset Definition

In this paper, a coreset for an input set of points is a weighted subset, such that the sum of
distances to every given sphere from the coreset and the original input is the same, up to multiplicative
(1 + ε) factor. Here, ε ∈ (0, 1) is an error parameter, and the size of the coreset usually depends on ε,
but not always [30].

1.3. Our Main Contribution

We suggest an algorithm that computes an ε-coreset for the family of spheres in Rd for the `1-norm
of distances. The cardinality of the coreset is O(d2 log2 n/ε2). See Theorem 2 for details.

Using existing algorithms, we can then extract a (1 + ε)-approximation to the optimal sphere of
the original input in additional (d log n)O(1) time. That is, the algorithm outputs (1+ ε)-approximation
for (1), i.e., a pair x ∈ Rd and r ≥ 0 such that

∑
p∈P
| ‖p− x‖ − r |≤ (1 + ε) ∑

p∈P
| ‖p− x∗‖ − r∗ | .

We highlight the strengths of the technique by implementing and testing it for different values of
number n of points in the input set and for distorted and noisy input points. Our solution holds for any
dimension, and provides several examples for the case of points in two and three dimensional space.

In theory, the price for using our approach is that we get only an approximated solution to the
desired shape in the worst case by running the optimal solution on the coreset. In practice, we do
not compute the optimal solution also on the original data, but run heuristics that search for a local
minimum instead. In these cases, we see that the quality of the results on running the heuristics on
the coreset is better than running them on the full large set. Intuitively, the coreset “cleans” the data,
removes noise and reduces the number of bad local minima. Hence, in practice the resulting fitting
error using the coreset is smaller. For example, by running the common “RANSAC” heuristic on our
coreset, our experimental results show that the results are more accurate and faster; See Figure 4 in
Section 3.4.

Moreover, while most of the existing solutions aim to detect a circle in two-dimensional space,
our algorithm returns provable approximation for every d ≥ 2.

As an example of a robotics application, we demonstrate our algorithms on a mechanical pressure
control system which requires an efficient and extremely accurate tracking of the dynamics of a falling
ball using a laser profiler, see Section 4.

1.4. Overview

In Section 2.1 we formalize the sphere fitting problem. In Section 2.3 we present and describe
our shape fitting algorithms. In Section 2.4 we review the theory and the analysis of the algorithms.
In Section 3 we show experimental results using our algorithm, and measures its accuracy compared
to other algorithms. In Section 4 we present an operating mechanical pressure control system that uses
our algorithms. In Section 5 we conclude our work and suggest open problems.

2. Methods

2.1. Median-Sphere

The median-sphere problem is to compute a sphere that best fits a given set of input points
in the Euclidean d-dimensional space, i.e., a sphere that minimizes the sum of distances to these
points, over every unit sphere in Rd. For the case of two-dimensional space (i.e., points on the plane),
the sphere is a circle of points on the plane.

Algorithms 2020, 13, 177 5 of 18

2.1.1. Notation

For a center (point) x ∈ Rd and radius r ≥ 0, we define sphere of radius r around x by

S(x, r) = {p ∈ Rd | ‖p− x‖ = r}.

We denote by Sd−1 the union over every sphere in Rd.
Let P = {p1, p2 . . . pn} ⊆ Rd be a set of n points. For every S ∈ Sd−1, and p ∈ P, we define

distance between p and S by
dist(p, S) = min

q∈S
‖q− p‖ .

For every S ∈ Sd−1 and a weight function u : P → [0, ∞), we denote the weighted sum of
distances to the sphere by

cost(P, u, S) = ∑
p∈P

u(p)dist(p, S).

Hence, smaller cost implies a better fit of the sphere to the points. For an unweighed set P, we use
a default function u : P→ {1} that maps a weight of 1 to every point in P.

2.1.2. Problem Statement

Given a set P of n points in Rd, the median-sphere is a sphere that minimizes the sum of distances
to these points over every sphere in Rd. We denote it by

opt1(P, u) ∈ arg min
S∈Sd−1

cost(P, u, S). (2)

We now define an α-approximation to the median-sphere problem.

Definition 1 (α-approx to the median-sphere). Let P ⊆ Rd be a set of points, α ≥ 1, and u : P→ [0, ∞) be
a weight function. The sphere S∗ ∈ Sd−1 is an
α-approximation to the median-sphere opt1(P) if

cost(P, u, S∗) ≤ α · cost(P, u, opt1(P)).

2.2. Thinnest-Sphere

The thinnest-sphere problem is to compute a sphere that minimizes the maximum of distances
to a given set of input points in the Euclidean d-dimensional space, over every unit sphere in Rd.
Formally, for a given set P of n points in Rd, we denote the thinnest-sphere by

opt∞(P) ∈ arg min
S∈Sd−1

max
p∈P

dist(p, S). (3)

2.3. Algorithms

In this section we present our main algorithms. In Section 2.3.1 we present a polynomial time
algorithm for computing the optimal median-sphere in time nO(d). In Section 2.3.2 we present our
main algorithms for constructing an ε-coreset of P for sphere median. Finally, we apply the exact
(inefficient) algorithm on the coreset.

2.3.1. Optimal Solution for the Median-Sphere

In order to solve the median-sphere problem we restate the problem as real polynomial system.
Let p ∈ Rd, and S ∈ Sd−1 be a sphere of radius r > 0 which is centered at x ∈ Rd. Hence,
dist(p, S) =| ‖p− x‖ − r | is the distance between p and S. That is, dist(p, S) = r − ‖p− x‖ if
the point p is inside the sphere, and dist(p, S) = ‖p− x‖ − r if the point p is outside the sphere.

Algorithms 2020, 13, 177 6 of 18

In what follows, sgn(p, S) denotes the sign of dist(p, S). More precisely, sgn(p, S) = 1 if ‖p− x‖ ≥ r,
and sgn(p, S) = −1 otherwise. Therefore,

dist(p, S) =| ‖p− x‖ − r |

⇒ r + dist(p, S) = ‖p− x‖ if ‖p− x‖ ≥ r and
r− dist(p, S) = ‖p− x‖ if ‖p− x‖ < r

.

⇒ (r + sgn(p, S)(‖p− x‖ − r))2 = ‖p− x‖2 .

Recall that the number that minimizes the sum of distances to a set of numbers is a median of this
set. Hence, opt1(P) is a sphere that minimizes the sum of distances to the input points, and so must
separate P such that the difference between the number of points inside the sphere and the number of
points outside the sphere must be less than the number of points that are placed on the sphere. That is,
the number of possible permutations for constructing a set of equations (i.e., to determine a possible
sign for each point) is limited by the number of spheres that can be defined using a tuple of d + 1
points, i.e., n(d+1) spheres. Hence, we define a solution for the median-sphere problem by finding the
sphere that minimizes the sum of distances to each of the n(d+1) polynomial systems, each consisting
of n equations. The optimum among these polynomial systems is the S∗ ∈ Sd−1 (that is defined by its
center x∗ and radius r∗) that minimizes the sum of distances ∑n

i=1 dist(pi, S∗).
In Algorithm 1, we present such algorithm for the median sphere.

Let P be a set of n points in Rd. We denote by Pd+1 a tuple of d + 1 different points from
P. We denote by SPHERE(Pd+1) the d-dimensional sphere that defined by Pd+1. We denote by
POLYNOMIAL(P, u, S) a system of n equations (polynomial system) that optimizes the median-sphere
problem. We denote by SOLVER(f) an optimization for polynomial system f , e.g., using Maple [31] or
Wolfram Alpha [32], etc...

Algorithm 1: MEDIANSPHERE(P, u)

Input: A set P = {p1, p2, . . . , pn} ⊆ Rd of points,
a weight function u : P→ [0, ∞).

Output: A median-sphere S∗.

1 Set S∗ =SPHERE({p1, p2, . . . , pd+1} ∈ P)
// Default median-sphere

2 for every Pd+1 ⊆ P do
3 Set S′ =SPHERE(Pd+1)
4 Set f :=POLYNOMIAL(Pd+1, u, S′)
5 Set S =SOLVER(f)
6 if Cost(P, S∗) < Cost(P, S) then
7 Set S∗ = S
8 Return S∗

Clearly, such a solution is not applicable to a large set of points. Instead, we offer the following
solution in Algorithm 2 (MEDIANSPHERECORESET), which reduces the amount of data and then runs
the existing solution on the resulting small set, called a coreset.

2.3.2. Coreset Construction

In order to reduce the number of input points, we suggest Algorithm 2 (called
MEDIANSPHERECORESET) to construct a coreset for the median sphere by removing layers of the
thinnest-sphere surface using Algorithm 3 (THINNESTSPHERECORESET). We first give a formal
definition for such a coresets.

Algorithms 2020, 13, 177 7 of 18

Definition 2 (Coreset for median-sphere). Let P ⊆ Rd be a finite set of points, and u : P → [0, ∞) be a
weight function. For ε ∈ [0, 1), C ⊆ P, and a weight function w : C → (0, ∞), the pair (C, w) is an ε-coreset
for the median-sphere of P if for every sphere S ∈ Sd−1

| cost(P, u, S)− cost(C, w, S) |≤ ε · cost(P, u, S).

Definition 3 (coreset for thinnest-sphere). Let P ⊆ Rd be a finite set of points. A subset C ⊆ P, is an
ε-coreset for the thinnest-sphere of P if for every sphere S ∈ Sd−1,

max
q∈C

dist(q, S) ≥ (1 + ε)max
p∈P

(p, S).

For every point p∈P, we define the sensitivity [33,34] of p with respect to every sphere S ∈ Sd−1

as its relative contribution to the overall cost(P, u, S),

s(p) = sup
dist(p, S)

∑
q∈P

dist(q, S)
.

Here we assume that the sup is over every S ∈ Sd−1 such that ∑q∈P dist(q, S) > 0.

Definition 4 (Query space [35]). Let P be a finite set, u : P→ [0, ∞) be a weight function, and P′ = (P, u)
denote a weighted set. Let Q be a (possibly infinite) set called query set, f : P × Q → [0, ∞) be called a
cost function, and loss be a function that assigns a non-negative real number for every real vector. The tuple
(P′, Q, f , loss) is called a query space. For every q ∈ Q we define the overall fitting error of P′ to q by

floss(P′, q) := loss((u(p) f (p, q))p∈P) =

loss(u(p1) f (p1, q), . . . , u(pn) f (pn, q)).

The dimension of a query space (P, u,Sd−1, cost) is the VC-dimension of the range space that it
induced, as defined below. The classic VC-dimension was defined for sets and subset and here we
generalize it to query spaces, following [34].

Definition 5 (Dimension for a query space [34–36]). For a set P and set ranges of subsets of P,
the VC-dimension of (P, ranges) is the size |C| of the largest subset C ⊆ P such that

| {C ∩ range | range ∈ ranges} |= 2|C|.

It was proven in [35] that an ε-coreset can be obtained for a given problem (e.g., median-sphere),
with high probability, by sampling points i.i.d. from the input points with respect to their sensitivity.
Then we assign each sample point with a weight that is inverse proportional to its sensitivity.
The number of sampled points should be proportional to the VC-dimension of the query space
and the sum of sensitivities ∑p∈P s(p). Formally,

Theorem 1. Let ((P, u), Q, f , ‖·‖1) be a query space of dimension d′, and let n be the size of P. Let s : P→
(0, 1) be a sensitivity function for every p ∈ P, and let t = ∑p∈P s(p) be the total sensitivity of the set P.
Let ε, δ ∈ (0, 1). Let c > 0 be a universal constant that can be determined from the proof [35]. Let

m ≥ c(t + 1)(d′(log t + log(1/δ))

ε2 .

There is an algorithm CORESET(P, u, s, m) in [35] that outputs weighted set (C, w) such that | C |= m,
and, with probability at least 1− δ, (C, w) is an ε-coreset for ((P, u), Q, f , ‖·‖1).

Algorithms 2020, 13, 177 8 of 18

In Algorithm 2, we present such a coreset construction for the median sphere.

2.3.3. Overview of Algorithm 2

The input for Algorithm 2 is a set P of n points in Rd, a weight function u : P → [0, ∞), and an
error parameter ε ∈ (0, 1]. The output of the algorithm is an ε-coreset for median-sphere. In Line 3,
we compute (iteratively) a coreset Q for thinnest-sphere of P, see Algorithm 3. In Line 5, we assign a
sensitivity s(p) for every point p in Q. The sensitivity of each point depends on the iteration number in
which it was selected. In Line 7, we update the set P by removing the coreset Q from P. In Lines 8–11,
we sample points to obtain coreset.

Algorithm 2: MEDIANSPHERECORESET(P, u, m)

Input: A set P = {p1, p2, . . . , pn} ⊆ Rd of points,
a weight function u : P→ [0, ∞), and
a constant m ≥ 0 that can be determined from
Theorem 1.

Output: A pair (C, w) which is an ε-coreset of P
for the median-sphere, see Definition 2.

1 Set i := 1; C := ∅
// Initialization.

2 while P 6= ∅ do
// Compute sensitivity for each point in P.

3 Set Q :=THINNESTSPHERECORESET(P)
// Compute thinnest-sphere for P, see Algorithm 3.

4 for every p ∈ Q do
// Compute sensitivity for each point in Q with respect to the

iteration number i.

5 Set s(p) := u(p)
i

6 Set i := i + 1
// Update iteration number i.

7 Set P := P \Q
// Remove the surface of the thinnest-sphere from P.

8 while |C |< m do

9 Randomly sample a point p from P into the coreset (for a total of m =
d2 log2

2(n) log(1/δ)

ε2

points), where the probability of sampling p ∈ P is Pr(p) := s(p)
∑q∈P s(q)

10 Set C := C ∪ {p}
11 Set w(p) := u(p)

Pr(p)
12 Return (C, w)

2.3.4. Overview of Algorithm 3

The input for Algorithm 3 is a set P of n points in Rd. The output of the algorithm is a coreset of
size d + 2 for thinnest-sphere, as in Definition 3. The thinnest-sphere problem depends on the external
sphere surface (convex hull) and the internal sphere surface (interior convex hull) that bound the
set P. Since the external sphere surface and the internal sphere surface are concentric spheres, it can
be proved that the thinnest-sphere defined by exactly d + 2 points where at least one of the points
placed on the internal sphere surface and one of the points placed on the external sphere surface.
The thinnest-sphere can be computed in O(dn + 1/ε3d) time using Theorem 6.8 in [29].

Algorithms 2020, 13, 177 9 of 18

Algorithm 3: THINNESTSPHERECORESET(P)

Input: A set P = {p1, p2, . . . , pn} ⊆ Rd of points.
Output: A subset C ⊆ P which is a coreset of P

for the thinnest-sphere, see Definition 3.

1 Compute S′ := opt∞(P)
// Compute thinnest-sphere opt∞(P) using [29]. See Equation (3).

2 Let x ∈ Rd and r ≥ 0, such that S′ = S(x, r)
// x and r are the center and radius of S′, respectively.

3 Set q ∈ arg min
p∈P
‖p− x‖

// Select a point that is closest to the center of S′, i.e., on its internal
surface.

4 Set C := {q}
5 Set q ∈ arg max

p∈P
‖p− x‖

// Select a point that is farthest from the center of S′, i.e., on its
external surface.

6 Set C := C ∪ {q}
// Select farthest d points from opt∞(P).

7 for d iterations do
8 Set q ∈ arg max

p∈P\C
dist(p, S′)

9 Set C := C ∪ {q}
10 Return C

2.3.5. Median-Sphere Approximation

We propose an approximation algorithm to fit a sphere (i.e., median-sphere) to a set P of n points
in Rd that is performed in the following two steps: (1) Coreset construction using Algorithm 2 to
reduce the original data set to few points for each measure and (2) run the optimal Algorithm 1 on the
resolved small coreset, which ensures (1 + ε)-approximation of the optimal solution.

2.4. Analysis

In this section, we analyze the algorithms of the previous section in terms of time complexity,
coreset’s size and the quality of the approximation. The approximation that is states in Theorem 2 that
follows is with respect to the optimal solution opt1(P, u) such that the calculated cost of our (sphere)
solution is compared directly with the calculated cost of the optimal (sphere) solution.

Theorem 2. Let P be a set of n points in Rd. Let ε, δ ∈ (0, 1). Let (C, w) be the output of a call to
MEDIANSPHERECORESET(P, u, ε), see Algorithm 2. Then, with probability at least 1 − δ, (C, w) is an
ε-coreset of P for the median-sphere. Moreover, (C, w) consists of O(d2 log2(n) log(1/δ)/ε2) points, and can
be computed in O(dn2 + n/(dε3d) + (d2 log2(n) log(1/δ))/ε2) time.

Proof of Theorem 2.
Coreset’s size:
By Line 8 of Algorithm 2, the size of the coreset is |C |= O((d2 log2(n) log(1/δ))/ε2).

Running time of coreset’s construction:
Algorithm 2 has two steps. In the first step the algorithm calculates the sensitivity for every

point p ∈ P. That is, runs dn/(d + 2)e iterations for picking d + 2 points (Algorithm 3), each in
O(nd + 1/ε3d) time. Therefore, the total time of the first step is O(dn2 + n/(dε3d)) time. In the second
step the algorithm picks O(d2 log2(n) log(1/δ)/ε2) points. Hence, the running time of Algorithm 2 is

Algorithms 2020, 13, 177 10 of 18

O(dn2 + n/dε3d + (d2 log2(n) log(1/δ))/ε2).

Accuracy:
Our proof uses the technique of [37] to bounds the maximum distance of each point in P to

any sphere.
Let c = dn/(d + 2)e be the total number of iterations of the “while” loop in Lines 2–7. For every

integer i ∈ [1, c]. let Qi := Q (Line 3) be the output of THINNESTSPHERECORESET(P) at the i-th
iteration. That is, Qi defines concentric external and internal spheres that bounds the remaining set P.
Therefore, by the triangle inequality, we can bound the maximum distance from P \Qi to Qi by

max
p∈P\Qi

dist(p, S) ≤ (1 + ε)max
q∈Qi

dist(q, S).

Therefore, we can bound the sensitivity of every point q ∈ Qi by

s(q)=
dist(q, S)

∑
p∈P

dist(p, S)
≤ dist(q, S)

i

∑
j=1

max
p∈Qj

dist(p, S)

≤ 1
i(1− ε)

,

where the first inequality holds since the right denominator is a subset of the left denominator, and the
second inequality holds since the numerator is uphold 1− ε of the denominator by definition. Hence,
the total sensitivity is

∑
p∈P

s(p)=
c

∑
i=1

| Qi |
i(1− ε)

<
(d + 2) log2 n

(1− ε)
=O

(
d log n
1− ε

)
,

where the first equality holds by Line 5 of Algorithm 2. The middle inequality refers to the size of
Algorithm 3. The right equality holds by a trivial geometric sequence.

Substituting in Theorem 1 the input set P, the VC-dimension d′ = (d + 2), which raised from a
trivial classification (cardinality of the largest set of points that the algorithm can shatter), and the
query set Q = Sd−1, yield that with probability at least 1− δ, the pair (C, w) is an ε-coreset of P for
median sphere, and therefore, the size of our coreset is O(d2 log2(n) log(1/δ)/ε2).

3. Results

3.1. Hardware

We implemented Algorithms 2 and 3 from the previous section. The implementation was done
in Python language [38] using the packages Numpy [39], Scipy [40] and OpenCV [41]. We ran all the
tests on a standard Intel 4810MQ, 2.8 GHz CPU laptop. Open code with scripts for reproducing our
experiments is provided in [42].

3.2. Software and Algorithms

We implemented the following algorithms: (1) compute an optimal solution for the median-sphere
problem (1) via exhaustive search. (2) Compute such an optimal solution over a unified sampled subset
of the input data set. (3) “RANSAC” algorithm that iteratively compares adjusted spheres over a
small subset of points. (4) “RANSAC” algorithm applied on the coreset (called “Improved RANSAC”),
which selects points using our coreset. (5) The “heuristics Least Mean Square” from “OpenCV”
algorithm package [41]. (6) Compute thinnest-sphere (L∞) solution from [29]. (7) Run “OpenCV”
algorithm package for circle detection [41]. (8) Compute an optimal solution over the coreset.

Algorithms 2020, 13, 177 11 of 18

3.3. Data Sets

We generated synthetic data sets of dimensions d = 2, 3, 4. The data sets are of different sizes,
and with different types of noise characteristics. We also gather some RGB images that captured rings
with a flame of fire [12], that simulates noises and abnormalities.

3.4. Experiments

We run the above algorithms and compared their performance with and without our coresets for
both real and synthetic datasets.

The results show that our algorithm significantly improves both the running time and accuracy
of existing heuristics by applying them to the proposed coresets (“Improved RANSAC”). Of course,
for the case of computing the optimal solution (via exhaustive search), the result that is extracted from
the coreset cannot be better than the one from the original input. However, as expected by our analysis,
the approximation (1 + ε) error is small while the running time is shorter by orders of magnitude.

3.4.1. Coreset’S Size

The coreset size returned by Algorithm 2 is determined by the required approximation error ε,
and log2 dependency on the size of the origin set as required in Line 8. Examples are given in Figure 2.

Figure 2. Coreset’s size vs. approximation error ε. Experiments on synthetic data points P of different
sizes (in colors). The error (y-axis) decreases with coreset’s size (x-axis).

3.4.2. Running Time

Figure 3 shows that the runtime of our algorithm is far better than other algorithms, such as
the “RANSAC” algorithm that considered fast. Furthermore, using our coreset algorithm to select
important points significantly improves these algorithms, i.e., “Improved RANSAC”.

Figure 3. Running time. Experiment on synthetic data sets for several expected value of error factor (ε).
The measured running time performed for the optimal solution on coreset vs. “RANSAC” algorithm
on the full data set and “RANSAC” algorithm on the coreset (“Improved RANSAC”).

Algorithms 2020, 13, 177 12 of 18

3.4.3. Accuracy

Coresets enable complex algorithms to run in a very short time while ensuring quality results.
In addition, it can be seen that coresets significantly improve existing algorithms such as “Improved
RANSAC”. Figures 4–6 show a comparison for fitting accuracy in 2, 3 and 4 dimensions.

Figure 4. The 2D experiments result. The following four graphs show comparison results between
coreset sampling by our algorithm with uniform sampling and the same amount of sample data,
compared to the RANSAC algorithm (on the full set and on the coreset) that runs at the same time.
Each graph displays results for a differently-sized data set.

Figure 5. The 3D experiments result. The following four graphs show comparison results between
coreset sampling by our algorithm with uniform sampling and the same amount of sample data,
compared to the RANSAC algorithm (on the full set and on the coreset) that runs at the same time.
Each graph displays results for a differently-sized data set.

3.4.4. Fitting a Sphere over Images

Other visible examples allow us to show how our algorithm is able to identify and validate the
“exact” circle within a set of points representing diverse images. Figure 7 shows samples of such fitting
over 2D images.

Algorithms 2020, 13, 177 13 of 18

Figure 6. The 4D experiments result. The following four graphs show comparison results between
coreset sampling by our algorithm with uniform sampling with the same amount of sample data,
compared to the RANSAC algorithm (on the full set and on the coreset) that runs at the same time.
Each graph displays results for a differently-sized data set.

Figure 7. (Left) An original 2D images. (green) A result for circle detection over real 2D images
using our coreset algorithm. (red) A result for circle detection using “Improved RANSAC” algorithm.
(yellow) A result for circle detection using “OpenCV”, a widespread open source library heuristic.

4. Example System–Mechanical Pressure Control

In this section, we present an experimental mechanical pressure control system that uses our
coreset construction to track a falling ball; See Figure 8. The goal of the system is to learn and compare
the kinetic effect on different types of materials, namely rubber membranes that consist of an aluminum

Algorithms 2020, 13, 177 14 of 18

layer with a thin layer of thick silicone oil. This is by using pressure sensors located below these
materials, and by tracking the movement of a ball (marble) that is falling from a filter to a ground
(board) that is made by one of these materials.

Comparing the path on different boards and from different heights implies the properties of each
of the materials which are useful for many applications in material engineering [43–45].

Figure 8. Image of the experimental mechanical pressure control system.

The tracking is done via λ = 200 laser beams that scan the depth in each direction till hitting
an object; see Figure 9. In our case, the object is either the ball (in a depth 1/2 that depends on its
diameter) or the white sticker behind the falling path of the ball.

The beam is directed toward this path, so in time t0, before the ball begins to fall, the depth vector
is roughly v0 = {1, · · · , 1} ∈ Rλ. Here, the i-th entry of v0 denotes the depth that is sensed by the i-th
laser beam. This result stays the same while the ball does not enter the scanned frame of the beams,
time t1, so v1 = v0. When the ball enters the frame of beams, say on t2, the first beams hit the ball so
v1∼{0.335, 0.34, 0.35, 0.37, 1, · · · , 1}∈Rλ. In the middle of the fall, time t3, all the ball enters the frame
of the scanner. Then, in time t4, the ball hits the board, and finally, after hitting the board, time t5,
the ball begins to jump and oscillate. These sets of depth vectors are based on the motion of the ball
which is strongly depends on the material of the board.

4.1. Fitting Method

We apply our circle fitting algorithm on the image that corresponds to its vector v, where the
x-axis represents the index i which is integer in λ, and the y-axis represents the value vi of the i-th index
of v ∈ {1, · · · , λ}. The results for some of the vectors over time are shown in Figure 10, where on the
right is an illustration of the system state and on the left a graph corresponding to the vector v.

Each of these thousands of measurements required very high precision of circle fitting. We then
run our Algorithm 2 to construct a coreset, thereby significantly reducing the number of points in
each data set (from hundreds of points to only twenty points), which allows efficient solution using a
polynomial system for those thousands of tests.

Algorithms 2020, 13, 177 15 of 18

Figure 9. System illustration. (1) Cone for dropping the marble ball (2) marble (3) tested board
(material) with pressure sensors below (4) laser device (5) leaser beams (6) white sticker.

Time t0. The drop time of the marble.
All beams hit white sticker.

Time t1. The marble falling, not yet passing
through the beams. All beams hit the white
sticker.

Time t2. The marble partially enters the beam-
projecting area. Some beams hit a part of the
entered marble and the rest of the beams hit the
white sticker.

Time t3. The marble covered by the
beam-projecting area. Some beams hit the
entered marble and the rest of the beams hit the
white sticker.

Time t4. The marble hits the board, so the
marble is partially covered by the beams.

Time t5. The marble oscillates on the board
upwards.

Figure 10. Cont.

Algorithms 2020, 13, 177 16 of 18

Time t5. The marble oscillate on the board
downwards.

Figure 10. Time step illustration (for t0, . . . , t5) of the system state (right) and the corresponding depth
vector v depending on the laser beam blocking (left).

4.2. Fitting Method Results

In Figure 11, we show some examples of our fitting results.

Figure 11. Circle fitting: The following images show examples for fitting circles (red) to a set of
points (blue) with high accuracy as required by the system. Although the samples contain noise and
distortions, using our system, we were able to fit an accurate circle to all the samples.

5. Conclusions

We suggested a provable and practical algorithm that fits a sphere for a given set of points in the
Euclidean d-dimensional space. The algorithm is based on first computing a coreset that is tailored
for this problem, and then running the existing inefficient solution on the small coreset. The result is
provable for (1 + ε) approximation in a provably fast and practical running time O(n) for constant d
and ε > 0.

When running the optimal (inefficient) optimal solution on our coreset we indeed obtain running
time that is smaller by orders of magnitudes (minutes instead of days) in the price of ε ∼ 0.001
approximation error. Finally, we run experiments on a real-world physical system that was the main
motivation for writing this paper.

Future research directions include generalization to other shapes, proving lower bounds on the
size and computation time of the corresponding coreset, and applying the algorithms on more systems.

Author Contributions: Conceptualization, D.E. and D.F.; methodology, D.E. and D.F.; software, D.E.; validation,
D.E.; formal analysis, D.E.; investigation, D.E.; resources, D.E.; data curation, D.E.; writing—original draft
preparation, D.E.; writing—review and editing, D.F.; supervision, D.F.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark
suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

Algorithms 2020, 13, 177 17 of 18

2. Xu, W.; Snider, J.; Wei, J.; Dolan, J.M. Context-aware tracking of moving objects for distance keeping.
In Proceedings of the 2015 IEEE on Intelligent Vehicles Symposium (IV), Seoul, South Korea, 28 June–1 July
2015; pp. 1380–1385.

3. Bonin-Font, F.; Ortiz, A.; Oliver, G. Visual navigation for mobile robots: A survey. J. Intell. Robot. Syst. 2008,
53, 263. [CrossRef]

4. Oesau, S.; Lafarge, F.; Alliez, P. Planar shape detection and regularization in tandem. In Computer Graphics
Forum; Wiley Online Library: Hoboken, NJ, USA, 2016; Volume 35, pp. 203–215.

5. Xu, K.; Kim, V.G.; Huang, Q.; Kalogerakis, E. Data-driven shape analysis and processing. In Computer
Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2017; Volume 36, pp. 101–132.

6. Zhihong, N.; Zhengyu, L.; Xiang, W.; Jian, G. Evaluation of granular particle roundness using digital image
processing and computational geometry. Constr. Build. Mater. 2018, 172, 319–329. [CrossRef]

7. Titsias, M.K. Learning model reparametrizations: Implicit variational inference by fitting mcmc distributions.
arXiv 2017, arXiv:1708.01529.

8. Muggleton, S.; Dai, W.Z.; Sammut, C.; Tamaddoni-Nezhad, A.; Wen, J.; Zhou, Z.H. Meta-Interpretive
Learning from noisy images. Mach. Learn. 2018, 107, 1–22. [CrossRef]

9. Omran, M.; Lassner, C.; Pons-Moll, G.; Gehler, P.; Schiele, B. Neural body fitting: Unifying deep learning
and model based human pose and shape estimation. In Proceedings of the 2018 International Conference on
3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 484–494.

10. Estellers, V.; Schmidt, F.; Cremers, D. Robust Fitting of Subdivision Surfaces for Smooth Shape Analysis.
In Proceedings of the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018;
pp. 277–285.

11. Epstein, D.; Feldman, D. Quadcopter Tracks Quadcopter via Real Time Shape Fitting. IEEE Robot. Autom.
Lett. 2018, 3, 544–550. [CrossRef]

12. acegif.com. Pulsating Ring of Fire Available online: https://acegif.com/fire-on-gifs (accessed on
10 March 2019)

13. VC, H.P. Method and Means for Recognizing Complex Patterns. US Patent 3,069,654, 18 December 1962.
14. Cuevas, E.; Wario, F.; Osuna-Enciso, V.; Zaldivar, D.; Pérez-Cisneros, M. Fast algorithm for multiple-circle

detection on images using learning automata. IET Image Process. 2012, 6, 1124–1135. [CrossRef]
15. Akinlar, C.; Topal, C. EDCircles: A real-time circle detector with a false detection control. Pattern Recognit.

2013, 46, 725–740. [CrossRef]
16. Cai, J.; Huang, P.; Chen, L.; Zhang, B. An efficient circle detector not relying on edge detection. Adv. Space

Res. 2016, 57, 2359–2375. [CrossRef]
17. Zhou, X.; Wang, Y.; Zhu, Q.; Miao, Z. Circular object detection in polar coordinates for 2D LIDAR data.

In Chinese Conference on Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2016; pp. 65–78.
18. Zhang, H.; Wiklund, K.; Andersson, M. A fast and robust circle detection method using isosceles triangles

sampling. Pattern Recognit. 2016, 54, 218–228. [CrossRef]
19. Zhou, B.; He, Y. Fast circle detection using spatial decomposition of Hough transform. Int. J. Pattern Recognit.

Artif. Intell. 2017, 31, 1755006. [CrossRef]
20. Berkaya, S.K.; Gunduz, H.; Ozsen, O.; Akinlar, C.; Gunal, S. On circular traffic sign detection and recognition.

Expert Syst. Appl. 2016, 48, 67–75. [CrossRef]
21. Berkaya, S.K.; Gunal, S.; Akinlar, C. EDTriangles: A high-speed triangle detection algorithm with a false

detection control. Pattern Anal. Appl. 2018, 21, 221–231. [CrossRef]
22. Bae, J.; Cho, H.; Yoo, H. Geometric symmetry using rotational scanning method for circular form detection.

In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 552–555.

23. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

24. Camurri, M.; Vezzani, R.; Cucchiara, R. 3D Hough transform for sphere recognition on point clouds.
Mach. Vis. Appl. 2014, 25, 1877–1891. [CrossRef]

25. Tran, T.T.; Cao, V.T.; Laurendeau, D. eSphere: Extracting spheres from unorganized point clouds.
Vis. Comput. 2016, 32, 1205–1222. [CrossRef]

26. Feldman, D. Core-Sets: Updated Survey. In Sampling Techniques for Supervised or Unsupervised Tasks; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 23–44.

http://dx.doi.org/10.1007/s10846-008-9235-4
http://dx.doi.org/10.1016/j.conbuildmat.2018.03.246
http://dx.doi.org/10.1007/s10994-018-5710-8
http://dx.doi.org/10.1109/LRA.2017.2773668
https://acegif.com/fire-on-gifs
http://dx.doi.org/10.1049/iet-ipr.2010.0499
http://dx.doi.org/10.1016/j.patcog.2012.09.020
http://dx.doi.org/10.1016/j.asr.2016.03.026
http://dx.doi.org/10.1016/j.patcog.2015.12.004
http://dx.doi.org/10.1142/S0218001417550060
http://dx.doi.org/10.1016/j.eswa.2015.11.018
http://dx.doi.org/10.1007/s10044-017-0623-x
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1007/s00138-014-0640-3
http://dx.doi.org/10.1007/s00371-015-1157-0

Algorithms 2020, 13, 177 18 of 18

27. Jubran, I.; Maalouf, A.; Feldman, D. Introduction to Coresets: Accurate Coresets. arXiv 2019, arXiv:1910.08707.
28. Har-Peled, S. How to get close to the median shape. In Proceedings of the Twenty-Second Annual

Symposium on Computational Geometry, Sedona, AZ, USA, 5–7 June 2006; pp. 402–410.
29. Agarwal, P.K.; Har-Peled, S.; Varadarajan, K.R. Approximating extent measures of points. J. ACM (JACM)

2004, 51, 606–635. [CrossRef]
30. Maalouf, A.; Jubran, I.; Feldman, D. Fast and Accurate Least-Mean-Squares Solvers. arXiv 2019, arXiv:1906.04705.
31. Maple, M. A Division of Waterloo Maple Inc. Waterloo, Ontario, 2016. Available online: https://www.

maplesoft.com (accessed on 21 March 2018)
32. Inc., W.R. Mathematica, Version 12.0. Available online: https://www.wolfram.com (accessed on 16 April 2019)
33. Langberg, M.; Schulman, L.J. Universal ε-approximators for integrals. In Proceedings of the Twenty-First

Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, 17–19 January 2010;
pp. 598–607.

34. Feldman, D.; Langberg, M. A unified framework for approximating and clustering data. In Proceedings of the
Forty-Third Annual ACM Symposium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011; pp. 569–578.

35. Braverman, V.; Feldman, D.; Lang, H. New frameworks for offline and streaming coreset constructions.
arXiv 2016, arXiv:1612.00889.

36. Vapnik, V.N.; Chervonenkis, A.Y. On the uniform convergence of relative frequencies of events to their
probabilities. In Measures of Complexity; Springer: Berlin/Heidelberg, Germany, 2015; pp. 11–30.

37. Varadarajan, K.; Xiao, X. A near-linear algorithm for projective clustering integer points. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Kyoto, Japan, 17–19
January 2012; pp. 1329–1342.

38. Van Rossum, G.; Drake, F.L., Jr. Python Tutorial; Centrum voor Wiskunde en Informatica: Amsterdam,
The Netherlands, 1995.

39. Oliphant, T.E. A Guide to NumPy; Version 1.16.2; Trelgol Publishing, Austin, TX, USA. Available online:
https://www.numpy.org (accessed on 26 Fabuary 2019)

40. Millman, K.J.; Aivazis, M. Python for Scientists and Engineers; Version 1.4.1; Computing in Science and
Engineering, University of California, Berkeley, CA, USA. Available online: https://www.scipy.org (accessed
on 16 December 2019)

41. Team, O.D. OpenCV API Reference 2015. Version 3.4.8. Available online: https://docs.opencv.org/releases
(accessed on 12 November 2019)

42. Available online: https://github.com/depste01/SphereFitting (accessed on 18 July 2020)
43. Kawasaki, M.; Ahn, B.; Kumar, P.; Jang, J.I.; Langdon, T.G. Nano-and Micro-Mechanical Properties of

Ultrafine-Grained Materials Processed by Severe Plastic Deformation Techniques. Adv. Eng. Mater. 2017,
19, 1600578. [CrossRef]

44. Al-Ketan, O.; Rezgui, R.; Rowshan, R.; Du, H.; Fang, N.X.; Abu Al-Rub, R.K. Microarchitected
stretching-dominated mechanical metamaterials with minimal surface topologies. Adv. Eng. Mater. 2018,
20, 1800029. [CrossRef]

45. Gao, L.; Song, J.; Jiao, Z.; Liao, W.; Luan, J.; Surjadi, J.U.; Li, J.; Zhang, H.; Sun, D.; Liu, C.T.; et al.
High-Entropy Alloy (HEA)-Coated Nanolattice Structures and Their Mechanical Properties. Adv. Eng. Mater.
2018, 20, 1700625. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1008731.1008736
https://www.maplesoft.com
https://www.maplesoft.com
https://www.wolfram.com
https://www.numpy.org
https://www.scipy.org
https://docs.opencv.org/releases
https://github.com/depste01/SphereFitting
http://dx.doi.org/10.1002/adem.201600578
http://dx.doi.org/10.1002/adem.201800029
http://dx.doi.org/10.1002/adem.201700625
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Thinnest Sphere Annulus
	Median-Sphere
	Least Mean Square
	Heuristics for Circles Detection in 2D Images
	Coreset

	Coreset Definition
	Our Main Contribution
	Overview

	Methods
	Median-Sphere
	Notation
	Problem Statement

	Thinnest-Sphere
	Algorithms
	Optimal Solution for the Median-Sphere
	Coreset Construction
	Overview of Algorithm 2
	Overview of Algorithm 3
	Median-Sphere Approximation

	Analysis

	Results
	Hardware
	Software and Algorithms
	Data Sets
	Experiments
	Coreset'S Size
	Running Time
	Accuracy
	Fitting a Sphere over Images

	Example System–Mechanical Pressure Control
	Fitting Method
	Fitting Method Results

	Conclusions
	References

