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Abstract: The design of efficient electroencephalogram (EEG) classification systems for the detection
of mental states is still an open problem. Such systems can be used to provide assistance to humans
in tasks where a certain level of alertness is required, like in surgery or in the operation of heavy
machines, among others. In this work, we extend a previous study where a classification system is
proposed using a Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) for the
classification of two mental states, namely a relaxed and a normal state. Here, we propose an enhanced
feature extraction algorithm (Augmented Feature Extraction with Genetic Programming, or +FEGP)
that improves upon previous results by employing a Genetic-Programming-based methodology
on top of the CSP. The proposed algorithm searches for non-linear transformations that build new
features and simplify the classification task. Although the proposed algorithm can be coupled with
any classifier, LDA achieves 78.8% accuracy, the best predictive accuracy among tested classifiers,
significantly improving upon previously published results on the same real-world dataset.

Keywords: EEG; classification; genetic programming; feature extraction; mental states

1. Introduction

There are human activities that are considered to have a high risk because they require a response
within a given time window with an associated cost. An incorrect reaction could pose risks in terms
of security, health, or financial costs. For example, in a surgery, a physician is expected to be fully
alert, as is the case for a heavy-machinery operator or a technician in a manufacturing process, where a
prolonged state of alertness is desired due to safety risks. Some of the causes of unintentionally low
states of vigilance are associated with sleep deprivation [1], monotonous tasks [2], or stress [3].

Human consciousness has two main components: wakefulness and awareness of the
environment [4]. Wakefulness is associated with the content of consciousness and awareness with the
level of consciousness. These two, in the majority of situations, are heavily correlated with normal
physiological states (with the exception of dream activity during Rapid Eye Movement (REM) sleep) [5].
Derived from this, a custom model can be built where a high awareness/wakefulness represents an
alert or normal state, and a lower awareness represents a relaxed but awake state, which are the two
conditions studied in this work.

An approach to implementing such a model would be the development of a computing system that
would interact with a human and be able to identify each physiological condition. A Brain–Computer
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Interaction (BCI) system fits quite well in this kind of scenario. A BCI allows a human to attempt
to communicate with an external device (usually a computer) by means of a brain-generated
signal [6]. BCI systems contain several components focused on different aspects of the communication
process, such as interfaces with the biological mechanisms, instrumentation, signal analysis, and data
processing. In particular, different brain signal acquisition methods have been developed during
the last decades, with the electroencephalogram (EEG) being the most used among the non-invasive
approaches. It is worth mentioning that research done on this topic has shown that BCI systems
themselves can be affected as well when the alertness of the user is low [7].

However, the task of distinguishing both states by means of EEG recordings is not trivial.
These types of signals exhibit several complex characteristics: They are highly irregular, non-periodic,
non-stationary, divergent between persons, and distinctive among trials [8].

In this work, we propose a new methodology for the automatic classification of two mental states,
involving a novel algorithm for feature extraction based on the Genetic Programming (GP) paradigm.
The study can be dissected into two parts: First, a reference system is built based on our previously
published work [9]; and second, an enhanced system is proposed with the objective of improving
the already competitive results exhibited by the reference system. Both systems include these
functional blocks: acquisition of signals, pre-processing, feature extraction, and classification. However,
this work makes the following contributions: First, the system includes a classifier-independent feature
extraction algorithm called Augmented Feature Extraction with Genetic Programming (+FEGP).
Second, the algorithm avoids over-fitting during training using a regularized fitness function, which is
unique among other GP-based works. Third, new components in the algorithm design are introduced
to evolve multidimensional transformation models applied to data, extending a previous approach [10],
with specialized search operators and dynamic parameter adjustments. Fourth, this is the first time
that a GP-based algorithm has been used in the classification of mental states.

Related Work

The use of Event-Related Potentials (ERP) is a common practice in the development of BCI
systems; however, their use depends on the mental task to be interpreted. ERPs are brain measurements
captured after a cognitive, motor, or sensory event has occurred. Some cognitive functions in humans
can be detected after some milliseconds in response to a particular stimulus, which is where ERP-based
methods can be useful [11]. However, ERPs are not suitable for the problem studied in this work.
Certainly, mental states are normally not triggered by any particular stimulus; rather, they are a
prolonged condition in brain activity, activated for psychological reasons like mood change, or by
physiological conditions like exhaustion. This explains the high complexity of the task studied in this
work: A person could simultaneously be doing multiple activities, producing very complex patterns
in the brain, making it difficult to distinguish between both mental states.

Literature states that the most promising EEG-based systems have to contain at least the following
components: signal pre-processing, feature extraction/selection, and classification [12]. Moreover,
hybrid systems are usually the ones with the best performance, making it difficult to classify them
into well-defined categories [13]. Because literature related to EEG classification can be overwhelming,
we are going to discuss here only the works that try to classify some kind of mental state rather than a
particular mental task (e.g., motor imagery).

The majority of the research in this area has focused on techniques from signal processing,
supervised/unsupervised learning, statistical learning, or a hybridization of these fields, either for
feature selection, feature extraction, or classification [14]. Particularly for EEG-based feature extraction
in terms of mental states, several approaches have been followed. In [15], a Kernel Partial Least
Squares (KPLS) algorithm was used as a feature extraction step for alert and fatigued states. Wavelet
Transform (WT) coefficients and some measures of approximate coefficients, like Shannon entropy,
were used in [16] for feature extraction, applied to a workload mental states classification problem.
Garcés-Correa et al. [17] also used the WT for feature extraction in drowsiness detection. In these
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methods, coefficients from the WT decomposition were used as a spectral granularity measure of the
signals, suitable as feature vectors. Hariharan et al. [18] propose the Stockwell transform as the analysis
method for feature extraction and use several classifiers to test the system’s performance. Based on a
valence/arousal framework, general mental states were identified by using the Power Spectral Density
(PSD) in the work by Mallikarjun et al. [19], focusing on feature extraction rather than classification.
Other common approaches to construct new features include the Common Spatial Pattern (CSP),
Source Power Co-Modulation (SPoC), and Spatio-Spectral Decomposition (SSD), which were presented
in the work by Schultze-Kraft et al. [20]. More advanced CSP approaches have been developed over
time to improve the generalization properties [21,22]. Deep Learning (DL)-based methodologies have
been recently used successfully in this type of problem. For example, the work by Hajinoroozi et al. [23]
presents different variants of Deep Neural Networks (DNNs), like Deep Belief Network (DBN),
Convolutional Neural Networks (CNNs), and some specific channel-wise CNNs (CCNN). By stripping
the label layer, the DNNs were effectively used as feature extractor elements.

In terms of feature selection, the number of works is scarce. For example, in [24], the authors
used Principal Component Analysis (PCA) to extract a feature vector subset. This is opposed to
what happens in mental task research, where there is a high occurrence of feature selection methods,
with those being filter- or wrapper-based [14].

Regarding the classifier, the community tends to use a wide range of tools from the machine
learning field: Linear Discriminant Analysis (LDA) [9,20], k-Nearest Neighbors (k-NN) [25], Vector
Quantization [26], Support Vector Machine (SVM) [14,27,28], Artificial Neural Network (ANN) [16],
and bagging-based methods [23], among others.

According with the surveyed literature, the majority of works use classical algorithms to solve
the problem of mental state recognition; however, alternatives like meta-heuristic methods seem to
help when the complexity of the problem is high. From an optimization perspective, algorithms
from the Evolutionary Computing (EC) field have been employed as channel reduction or feature
selection approaches. Genetic Algorithms (GAs) have been found to be suitable, mostly in wrapper
approaches [29–32]. GAs have also been used to evolve classifiers, like the case of the rule-based
Pittsburg-style, where each individual is represented by a variable-length set of rules of the IF–THEN
clause type [33].

Other algorithms like Ant Colony Optimization (ACO) [34] or Particle Swarm Optimization
(PSO) [35] have also been used. Adaptive approaches have been employed as well, like the
auto-reinforced system introduced in [36], by incorporating a fed-back PSO and a rule-based classifier.

GP is a particular variant of EC algorithms, with the unique characteristic that solutions are
serialized computing elements. An inherent strength of the GP paradigm is its symbolic representation
that can be adapted to a wide range of problems. For example, GP can be used either for feature
selection, feature extraction, or classification. In [37], a GP multi-tree classifier was used in combination
with Empirical Mode Decomposition (EMD) in an EEG dataset for epilepsy detection. A follow-up
of this work with modified search operators was presented in [38]. A decision-tree-based model was
introduced in [39], where arithmetic and logical rules were inferred in a multi-level GP representation.
Although electrocorticogram (ECoG) was used instead of EEG by the authors in [40], GP was employed
as a classifier to solve an epileptic seizure recognition problem. In [41], the authors proposed a
multi-layered population GP where each layer evolves a discriminant function upon a training
set; consequent layers evolve on top of the previous, improving the overall classification accuracy.
A learning assembly was evolved by GP to build discriminant functions in the work by Chien et al. [42].

More closely related to this work, Guo et al. [25] built a feature extraction model using GP
for an epilepsy EEG dataset. In [43], GP was used similarly, as this was a feature extraction task.
These cited works are further discussed in Section 3.1, since there are some differences worth reviewing
compared with our proposal. Apart from feature extraction methods, GP can be used as a simple
feature selection tool like in [44]. In [45], although it is not applied to EEG, GP was used to build feature
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transformation models where the individual is represented with a single root node, thus producing a
single new feature.

The remainder of this paper is organized as follows. In Section 2, the reference system based
on CSP and LDA is described and analyzed. In Section 3, we discuss the proposed system in detail,
particularly the GP-based feature extraction method called +FEGP. The experimentation and results
are presented in Section 4. In Section 5, the experimental results are discussed. Finally, in Section 6,
we present our conclusions and future work.

2. Reference System

The reference system is essentially the first part of our previous work [9]. Particularly, a complete
classification system is built based on several stages. First, a data acquisition protocol was followed.
Second, a preprocessing step involving spectral filtering is applied. Third, a feature extractor based on
the CSP is used. Finally, fourth, the classification task is solved with LDA. This reference system is
summarized in Figure 1. In the following subsections, each of these elements is explained in detail.

Figure 1. Methodology of the reference system.

2.1. Data Acquisition

2.1.1. Acquisition Protocol

A group of individuals (critical personal information was protected) participated in the experiments
during a 2011 campaign at the Université de Bordeaux, France. Each person was subjected to the same
procedure, which is summarized in the following paragraph, with more details given in [9].

The participants were put inside a soundproof room where the experiments were performed.
A recording cap with 58 electrodes was placed over the scalp of each person. Then, a special session
was executed, commonly referred to as Contingent Negative Variation (CNV) protocol [46], where the
goal is to determine if the subject is truly in the appropriate physiological state. Two CNV tests were
used, each one corresponding to a specific mental state. After each CNV test, the data used in this
study were recorded for each subject. This procedure is further explained in [9].

2.1.2. Subjects

The experiment involved 44 subjects (mixed gender), non-smoking, aged from 18 to 35 years
old. All are right-handed to avoid variations in the characteristics of the EEG due to handedness
linked to functional inter-hemispheric asymmetry. After the CNV test, several subjects were rejected,
since the CNV test determined that they did not reach the expected mental state. Therefore, only
13 valid individuals were used to build the dataset used in this work.
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2.1.3. Raw Data

The recorded data, considered as the raw data in this study, contain 26 records of approximately
three minutes each (13 corresponding to the normal state and 13 more for the relaxed state) of
58 channels for each subject. A sampling frequency of 256 Hz was employed during the acquisition
with the Deltamed system. Since the length of the recordings slightly varies from subject to subject,
approximately 46,000 samples were obtained for each recording.

2.2. Pre-Processing

For this type of system, the automatic detection should be accomplished by just analyzing a
small portion of a signal and classifying it as quickly as possible, particularly in an online scenario.
By splitting the signal into small packets of data (commonly referred to as trials), training, and testing,
a supervised learning system is possible.

However, the length of a trial cannot be defined a prioril thus, a quick analysis to determine an
appropriate size for the trials is required. In [9], different trial lengths were evaluated and the optimal
one was found based on the classification accuracy. Lengths of 1024, 2048, and 4096 samples were
analyzed, and a value of 2048 samples (eight seconds) was found to be the best, resulting in 22 trials
per subject/class. Consequently, this value was also used in this work. Therefore, our dataset is stored
in a matrix R58×(26×22)×2048.

Recorded EEG signals usually contain noise and mixed frequencies. These mixed frequencies are
partly due the oscillatory rhythms present in normal brain activity [47]. The most studied rhythms are
alpha (8–12 Hz), beta (19–26 Hz), gamma (1–3.5 Hz), and theta (4–8 Hz), which are associated with
different psycho-physiological states. The alpha waves are characteristic of a diffuse awake state for
healthy persons, and can be used to discern between the normal and relaxed states. Actually, in some
recordings, alpha waves begin to appear when the subject is starting to relax.

In this work, band-pass filtering is applied to discriminate frequencies outside the alpha and
beta bands. Again, an analysis is required to find out which cutoff frequencies are useful to build
the filter by sweeping a range of candidate values. In [9], we presented such an analysis, with the
resulting values of 7 and 30 Hz corresponding to the low and high cutoff frequencies using a fifth-order
Butterworth filter, matching what other researchers have found as well [48,49]. The filter response is
illustrated in Figure 2.
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Figure 2. Frequency response for the Butterworth filter used in this work.

2.3. Common Spatial Patterns

Like other techniques that derive a projection or transformation matrix based on some specific
requirements (e.g., Independent Component Analysis (ICA) or PCA), the CSP is a technique where a
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matrix W is built that simultaneously maximizes the variance of a multivariate subset with an arbitrary
label and minimizes the variance for another subset with a different label. Projected data are given
by F = XW, where X is the data transformed from the original dataset R58×(26×22)×2048 ∈ R3 into
X58×1171456 ∈ R2 with dimensions p× (n× 26× T), where p is the number of channels, n is the number
of trials, and T the trials’ length for all subjects and two classes. W is a filter matrix, as described below.
This technique is useful in a binary classification problem because data are projected onto a space
where both classes are optimally separated in terms of their variance.

The CSP can be briefly defined as the following optimization problem:

w = argmax
w

||wXC1||2
||wXC2||2

(1)

and

v = argmax
v

||vXC2||2
||vXC1||2

, (2)

where XC1 is the matrix that contains the trials for class one and XC2 the matrix for class two, or,
respectively, the normal and relaxed conditions in our case. Coefficients found in w and v define a set
of filters that project the covariances of each class orthogonally.

This problem can be solved by a single eigen-decomposition of M = Σ−1
C2 ΣC1, where

ΣC1 =
1

nC1
X′C1XC1 (3)

is the estimation of the covariance corresponding to the average of nC1 trials of class one. Similarly,

ΣC2 =
1

nC2
X′C2XC2 (4)

is homologous for class two. In a single eigen-decomposition, the first k eigenvectors (corresponding
to the k largest eigenvalues) of M are also the last k eigenvectors of Σ−1

C1 ΣC2. Sorting the eigenvalues in
descending order, we can build our filter matrix with

W = [w1, . . . , wk, v1, . . . , vk], (5)

in which filters are considered pairwise (wj, vj) for j = 1, . . . , k. The number of filter pairs can greatly
affect the classification accuracy; thus, a tuning step is needed to find the optimal number of filters.
This step was performed in [9], resulting in a value of k = 3, which is employed in this work as well.

2.4. Classification

To approximate a normal distribution of the data, the logarithm of the variance obtained from the
input data transformation by XW is calculated. This is stored in a matrix Z, and is given by

Z = log(var(F)) =log(var(X1W1)) · · · log(var(X1Wj))
...

. . .
...

log(var(XiW1)) · · · log(var(XiWj))

 , (6)

where Xi is a vector from the X matrix spanning the 58 electrodes, i = 1, . . . , n× 26× T, Wj is a vector
from the W matrix with length 58, and j = 1, . . . , 2k. The evaluation of the classification process is
performed using the Leave-One-Out Cross-Validation (LOOCV) method. In this methodology, data are
split into q folds (Z = [Z1, . . . , Zq]), where the training subset has a size of q− 1 and the testing has a
size of one. In our case, q = 13, the number of subjects. The process is repeated q times by changing
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the index m for testing and keeping the remaining folds for training. The reason for using this type
of partitioning is because the recognition is performed at the individual level (grouping trials from
the same individual) rather than at the trial level. We want to avoid training and testing the classifier
using trials from the same subject, which could lead to misleading results.

The classifier used is LDA. This technique is commonly used in BCI systems due to its ease of
implementation and competitive performance compared with more sophisticated algorithms [50].
Briefly, in LDA, a hyperplane is calculated based on the covariances of the data distribution, and it
optimally separates two classes. If we assume that both classes belong to a normal distribution and
have the same covariance, then we can calculate

w = Σ−1(µC1 − µC2) (7)

and
b = wT µC1 + µC2

2
, (8)

where Σ is the shared covariance matrix for both classes, while µC1 and µC2 are the corresponding
means for each class. Classification is performed by assigning a label (either C1 or C2) to a label vector
γ̂ depending on a score vector s, given by

s = b + wZ, (9)

and

γ̂ =

{
C1 if s ≥ 0

C2 otherwise
. (10)

Until this point, we employed the training data to obtain the CSP filter set W and the vector
γ̂. During the testing phase, a prediction vector γ̂ is computed using the hyperplane found during
training but using a projected testing data based on the pre-calculated W.

Since this is calculated for a given fold in the LOOCV procedure, after q repetitions, an average of
the accuracy results of all folds is computed and is considered as the prediction accuracy. Results from
the classification performance can be seen in Figure 3, where the average and fold-wise accuracy are
presented corresponding to the training and testing partitions. For training, an average accuracy of
76.6% was obtained, and 75.7% for testing. Please note that over-fitting exists (or a failure to generalize)
for some folds, namely 3, 6, 8, and 12.
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Figure 3. Classification performance for the reference system.
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3. Proposed Enhanced System

In this section, we present a novel algorithm based on GP that extends the reference system to
improve the classification results, particularly for the prediction over unseen data. From a general point
of view, the enhanced system is described in Figure 4, where it can be seen that the proposed Feature
Extraction with GP (+FEGP) follows the CSP block. In other words, we perform a post-transformation
of the CSP output, with the goal of improving the classification results.

Figure 4. Methodology for the proposed enhanced system.

3.1. Genetic Programming

As a segment of the broader Evolutionary Algorithms (EA) research area, GP [51] is sometimes
considered to be a generalization of the popular GAs [52]. In GP, a pool of candidate solutions
(population) are syntactically evolved towards a specific objective by applying selection pressure based
on a quality assessment or fitness, which are normally driven by an objective function. GP differs
from other population-based algorithms on the following fronts. First, the solutions or individuals
are expressed with a symbolic structure. This is mainly where its strength comes from, since it can
represent many things depending on the problem’s domain. The only restriction is that the expression
must be computable, which is to say, for a given input, it produces a valid output. Second, the size
of the solution is variable, meaning that during the search, the length or size of solution candidates
changes. This provides GP its second strength—solution structures are not predefined; rather, they are
evolved simultaneously with their performance. A general diagram for GP is presented in Figure 5.

GP has been used successfully in many applications with different representations [53], but the
tree representation is the most common among them—the same representation used in this work.

Although the canonical GP has achieved competitive performance compared with other
algorithms [40,53], including hand-made designs, it is not suitable for all types of problems, especially
when the underlying data have complex properties. GP performance depends on the underlying data
complexity, which, for some problems, could lead to a search stagnation or premature convergence [54].
Another shortcoming for GP, also present in other machine learning algorithms, is model over-fitting
in under-sampled data [55]. There are several ways to improve the over-fitting issue, like using a
validation partition with an early stopping of the training process, or using a regularized objective
function [56]. To use a validation partition means that data size has to be sufficiently large, which
is not the case in the currently studied problem, so the most reasonable approach was to use a
regularization approach. For these reasons, a new algorithm is proposed based on an extension of
previous works [10,57].
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Figure 5. Genetic Programming (GP) flowchart in a nutshell.

3.2. Augmented Feature Extraction with Genetic Programming: +FEGP

Recognized as one of the most important tasks in a classification system, our main proposal is
focused on the improvement of the feature extraction stage. One of the discovered complexities found
during the implementation of the reference system is that the data of the study are highly varied and
uncorrelated within the same class, and overlapped between both classes. This yields a non-trivial
problem for any supervised learning system. A suitable strategy would be to build a non-linear
model that produces new features, which further increase the inter-class distance and reduce the
intra-class dispersion.

Based on this, a GP-based algorithm is proposed with the objective of improving the classification
accuracy for the reference system. Another goal for the proposal is to be highly flexible, not explicitly
depending on any specific pre-processing or classifier blocks. A diagram for this algorithm is depicted
in Figure 6, hereafter referred to as +FEGP, for augmented Feature Extraction with GP.

Similar research on feature extraction with GP has been conducted. Guo et al. [25] proposed first
an individual representation with a single root node, where a special node called ’F’ can be inserted
into any part of the tree, which produces a new feature. Other than this enhancement, no special
search operators were used for their system. On the other hand, Firpi et al. [58] used a canonical
GP individual representation, where a single tree produces a new feature, a rather simple proposal
that nevertheless produced competitive results for the classification of signals from epileptic seizures.
A similar approach was followed by Poli et al. in [59], where a single root node representation with a
custom fitness function was used to evolve mouse trajectories by employing EEG signals. The authors
used a strongly typed GP, a variant in which there is an explicit constraint on the data type allowed in
the terminals and functions. In a previous work [40], we used GP as a classifier for the detection of
epileptic stages, taking as input simple statistics from each trial.
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Figure 6. Block diagram for the proposed Augmented Feature Extraction with Genetic Programming (+FEGP).

The present proposal builds upon previous works in [10,57], where the Multidimensional
Multiclass Genetic Programming (M3GP) algorithm was presented. M3GP also uses some additional
search operators to add or remove complete features during the run, but mostly relies on a canonical
GP implementation with a single objective function that only takes into account the training accuracy
and a static parametrization of the GP settings. On the other hand, +FEGP includes a wider variety
of search operators, a specialized local fitness measure to account for the fact that each solution is
a collection of subtrees, dynamic parameters that control how the search is performed at different
moments during the evolution, a regularized fitness function to control over-fitting and achieve better
generalization, and a specialized initialization procedure to account for the extremely large feature
space in this problem domain. Each of these features will now be explained in greater detail.

1. Individual representation. The representation is also based on a tree structure, but it involves
a multi-tree with a single root node, such that each individual defines a mapping of the form
K : Rk → Rr, where k is the number of input features and r is the number of newly constructed
features. Each of these subtrees are constructed in the same way as in a canonical GP (see Figure 7).
No calculation is executed at the root node; it is rather used as a container for the output of the
evolving r subtrees. Each subtree works as a non-linear transformation of the input features into
a new space that is expected to simplify the classification. Moreover, the number of new features
r can vary among individuals.
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Figure 7. +FEGP individual representation.

2. New genetic operators. Because of the manner in which individuals are represented, it is
necessary to introduce new search operators. For any of these operators, the root node is avoided
during the operation to preserve the representation.

(a) Inter-crossover. This is a crossover performed between subtrees belonging to different
individuals, which produces two offspring. The selection for the crossover points is based
on a local fitness measure (discussed in detail later), which allows the best subtrees to
interchange genetic material. This is visualized in Figure 8.

Figure 8. +FEGP inter-crossover, swapping subtrees between different individuals. F1i is the local fitness;
the crossover points are chosen from the subtrees with max(F1).

(b) Intra-crossover. For a given individual, genetic material can be swapped within the
same individual using this operator, depicted in Figure 9. The rationale behind this
is that genetic material from one feature might help the evolution of another within
the same individual, improving the overall fitness. The subtree selection is performed
randomly, choosing the crossover points from different subtrees. This operator generates
two offspring.
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Figure 9. +FEGP intra-crossover, swapping subtrees within the same individual.

(c) Inter-individual feature crossover. It can be desirable to keep complete features with good
performance within the population. This operator interchanges complete subtrees between
two selected individuals. This is performed randomly rather than using a deterministic
approach. Preliminary experimentation suggested that avoiding a fitness-based selection
of the subtree allowed the algorithm to explore the solution space better. This operator
can be seen in Figure 10.

Figure 10. +FEGP inter-individual feature crossover.

(d) Subtree mutation. This is performed the same way as in canonical GP. A portion of a
selected subtree is substituted with a randomly generated tree.

(e) Feature insertion mutation. This operator allows the insertion of a new randomly
generated subtree, expanding the dimensionality of the transformed feature space;
Figure 11 depicts this operator.

Figure 11. +FEGP feature insertion mutation. A new randomly created subtree is added to a tree with
r subtrees.
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(f) Feature removal mutation. Similarly, a deletion operator is needed to reduce the new
feature space. The subtree to be removed is selected randomly. This operator can only be
used if r > 1.

3. Terminal selection during population initialization. In a canonical GP, the initial trees are built
by randomly choosing a function or terminal from the available sets in an iterative fashion.
This selection process is commonly referred to as sampling with replacement, which could lead
to some variables not being chosen as terminal elements in the initial population; the probability
of this happening will increase when the number of input features is large. If this is the case,
then the initial generations will lack proper exploration of the search space, particularly in the
terminal elements, which may lead the search toward local optima. A simple mechanism to
avoid this is to enforce that every variable is chosen at least one time as a terminal element in
a GP individual. This can be achieved by performing a sampling without replacement of the
input features in the terminal set of the GP search. When a terminal is randomly selected, then it
is excluded on the subsequent terminal selection steps until all available terminals have been
chosen; then, the procedure is repeated by making all terminals available to the tree generation
algorithm, such as full, grow, or Ramped Half and Half.

4. Genetic operator selection. In canonical GP, operators are chosen at each generation with a
user-defined probability. The probability of choosing each operator is usually static throughout
the search. In the work by Tuson and Ross [60], their operator probabilities are changed at each
generation by rewarding or penalizing operators according with their success at producing good
offspring (offspring with high fitness). After an initial preliminary experimentation, we propose
functions that modify the operator probabilities based on the work of Tuson and Ross.

Based on [60], three operator probabilities (intra-crossover: pIntraC, inter-individual feature
crossover: pInterF, and subtree mutation: pM) are given by a common dynamic behavior,
with the following characteristics: They are periodic, the variation range is rather small,
and they are stationary. For simplicity, this condition was replaced by a constant value; in early
experimentation, the system behaved almost identically to the algorithm by [60].

The other three operators (inter-crossover: pInterC, feature insertion mutation: pK+ , and feature
removal mutation: pK− ) exhibited unique dynamic behaviors using the algorithm by [60]. Here,
we proposed the following equations to mimic the behavior of the aforementioned algorithm:

pInterC(gen) = −∆InterC
log(gen)

log(genmax + 1)

+ p̂InterC, (11)

pK+(gen) =
−sin( 10gen

genmax
+ 2.5)

40(gen+ 5genmax
100 )

genmax

+ 0.25, (12)

pK−(gen) = 1− pInterC − pInterF − pIntraC

− pM − pK(+) , (13)

where gen is the current generation, genmax is the maximum generation number, −∆InterC is
a decay parameter, and p̂InterC is an initial probability. In preliminary tests, it was found out
that, only in the earlier generations, a high probability for the inter-crossover operator was
required, mainly to promote the exchange of genetic material and allow the algorithm to do
a more efficient search. In more advanced stages of the evolutionary process, this operator
produced a negative effect in the search by curtailing the ability of the algorithm to perform
exploration. As a countermeasure to this phenomenon, the selection probability for this operator
is reduced.
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Two of the most important operators are the feature insertion and removal mutations. Indeed,
these are the ones responsible for the flexibility of the new feature space size. There is a higher
probability that the hyperplane of the classifier has a good class separability when the number
of dimensions is high. A high probability for the generation of new features (pK+ ) at the start
of the run promotes the search for the most promising size of the new feature space. The ratio
between these operators and the static ones decreases after the initial generations, giving more
importance to the evolution of the solutions without changing the feature space too much.
Because evolved models stagnate at the end of the run, increasing the feature space size is
required once more. Moreover, pK− (features removal) is seen as the complementary part of pK+

and pInterC. The operator functions are plotted in Figure 12 for the case that genmax = 50.
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Figure 12. Operator probabilities through the search.

5. Fitness calculation. The fitness is computed by a local and a global measure, which are used
differently by the search. More specifically:

(a) Local fitness measure (Fisher’s Discriminant Ratio). This is computed at the subtree level,
which provides a separability value for each constructed feature. Certainly, the quality of
a solution depends on the quality of their individual features. The local measure f ′ is only
used as the criterion for the inter-crossover subtree selection, that is, crossover points are
selected within the subtrees with the best local fitness. Although the GP selection process
chooses two individuals with similar fitness rank, it does not guarantee that all individual
subtrees have a good performance. The goal is for the crossover to exchange features that
show good performance in terms of class separation. This is given by

F1i =
(µC1i − µC2i )

2

σ2
C1i

+ σ2
C2i

∣∣∣∣∣
i=1...r

, (14)

where µC1, µC2, σC1, and σC2 are the means and standard deviations corresponding to
class one and two for the ith feature [61]. For any given tree K, r local fitness measures are
calculated. It was found that the use of the local fitness in other operators did not help
the search.

(b) Global fitness measure. The calculation of global fitness is the result of a two-tier process.

In the first level, an initial regularization is performed over the tree output using the
training data; then, the classification accuracy (Acc) is calculated. In detail, this is done by
artificially changing the covariance of transformed training data (i.e., the training data in
the new feature space created by an evolved transformation), defined by
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βi(x) = [αC1i ({K(x)|C1} − µC1i ) + µC1i ,

αC2i ({K(x)|C2} − µC2i ) + µC2i ], (15)

and

αC1i = 1 +
2σC1i

max({K(x)|C1})−min({K(x)|C1})
, (16)

αC2i = 1 +
2σC2i

max({K(x)|C2})−min({K(x)|C2})
, (17)

where {K(x)|C1} denotes the tree output corresponding to all the data samples from class
C1 (normal), and {K(x)|C2} is the same but corresponding to class C2 (relaxed). The main
reason for this is that data variance is high in this problem, and the classifier training
has to be relaxed so that prediction accuracy on unseen data increases. Please note that
the actual penalty is given by a factor of twice the standard deviation of the transformed
training data. This is exemplified in Figure 13. The confusion matrix is calculated using
LDA over the β modified data. The classification accuracy is specifically computed with

Acc =
TP + TN

TP + TN + FN + FP
, (18)

where TP (True Positive), TN (True Negative), FN (False Negative), and FP (False Positive)
are values from the confusion matrix as a result of the labels γ̂train.

In the second level of the two-tier process, the global fitness is computed by

f ′ = (100− Acc) + ε, (19)

where ε is a proposed second regularization term, given by

ε =

∣∣∣∣0.5− FN
FN + FP

∣∣∣∣ , (20)

which becomes zero if FP and FN are equal. In preliminary experimentation, it was found
that the algorithm tended to avoid over-fitting when there was a balance in the FN and
FP scores.

Figure 13. Class variance penalization, where (a) corresponds to the tree output—in this example
f1, f2 ∈ i = 1 . . . r are new features—and (b) corresponds to the data modification with a larger
distribution variance used to compute the global fitness.
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Finally, it is important to mention that although the LDA classifier was used during training,
it was meant only for driving the search so the class separability would increase. Once +FEGP finds a
new transformation model, any classifier can be used during testing. This offers flexibility in terms of
the classifier choice, especially when dealing with a broader range of classification problems.

4. Experimentation and Results

In this section, we present experimental details regarding the proposed system. The reported
algorithms were implemented in MATLAB. Specifically for the +FEGP algorithm, the GPLAB
(http://gplab.sourceforge.net/) [62] toolbox was used as a starting point for the implementation.
The experiments were executed in a setup with an Intel Xeon at 2.4 GHz with 32 GB of RAM.

Given the stochastic nature of GP, a series of multiple runs were executed in order to statistically
determine the algorithm performance. Following the LOOCV scheme for data partitioning and
validation, the experiments involved 30 independent runs for each fold. The results presented in
this work contain 390 runs in total (13× 30). Details of the values used for filtering, CSP, and LDA
were mainly discussed in Section 2. Furthermore, the +FEGP parameters are summarized in Table 1.
Some comments in the third column are derived from experimental tuning of the algorithm.

The training classification performance of the proposed enhanced system is shown in Figure 14
with the overlapped performance of the reference system for comparison. In addition, the predictive
performance calculated over the testing partitions is presented in Figure 14. Basic statistical results
for the +FEGP-based system per LOOCV fold are given in Figure 15. Supporting these visual
representations, the average classification accuracies and Cohen’s kappa values are presented in
Table 2. To validate our results, non-parametric two-sample Kolmogorov–Smirnov and Wilcoxon rank
sum tests were used to calculate pairwise statistical differences at a LOOCV fold level. The results are
presented in Tables 3 and 4, corresponding to the training and testing phases.

+FEGP fitness performance and LDA classification accuracy during the training phase are shown
in Figure 16a. Although the +FEGP algorithm only uses the fitness measure (bottom plot), the top plot
shows the convergence of the actual classification accuracy achieved by LDA across the generations.
Please note that the bottom convergence plot condenses all 390 runs by first computing the median of
30 runs per fold and finally calculating the mean of all fold results. Similarly, in Figure 16b, prediction
performance in terms of classification accuracy is presented as well.
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Figure 14. Training and testing performance for both the reference system and the proposed enhanced
system for each Leave-One-Out Cross-Validation (LOOCV) fold. Mean values for all folds are shown.

http://gplab.sourceforge.net/
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Table 1. +FEGP parameters used in the experiments.

Parameter Value Comments

Generations 50 If the max depth for the evolved trees is relatively small, then more generations are not
needed, since the solution size is restricted and the overall search stagnates.

Population size 100 A small population was found to be sufficient to evolve good solutions with larger
populations, reaching the same performance.

Population initialization Full Since the search space can be huge, very small individuals are not beneficial to quickly
explore the solution space.

Population init max depth 5 levels A good compromise between structure diversity and complexity.
Initial features 3 Variable r.
Search operators Inter-crossover, inter-feature crossover,

intra-crossover, mutation, feature insertion,
feature removal

Initial probabilities for search operators 0.2, 0.2, 0.2, 0.05, 0.15, 0.1 Each value corresponds to each operator in the same order as the above list.
Delta values for decay function 0.2 This only applies to the inter-crossover operator.
Function set +,-,×,/,log,cos,sin, tan,

√
,abs

Terminal set random [0,1], input features
Max depth level 20 Since individuals can have several features, big values for the allowed depth are not

desired. If a child tree is above this limit after the genetic operation, then it is discarded
and a reproduction operation is performed instead.

Selection Tournament, size 5 A small tournament size provides a richer diversity in the population.
Elitism Only best individual survives Assures that the best solution is not lost from generation to generation.

Table 2. +FEGP training and testing performance for each LOOCV fold in terms of its accuracy (%), kappa coefficient (κ), and p-values for kappa statistical tests.
Bold values indicate that observed agreement between true and predicted labels is not accidental.

1 2 3 4 5 6 7 8 9 10 11 12 13

Accuracy 83.5 81.6 86 81.5 83 82.5 79.3 84.9 81.5 80.7 81.9 83.5 75.8

κ 0.70 0.68 0.77 0.63 0.72 0.56 0.72 0.77 0.64 0.49 0.77 0.69 0.63

Tr
ai

ni
ng

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Accuracy 82.9 82.7 58 96.5 95 60.2 89.3 46 82.8 87.4 91.2 63 88.6

κ 0.70 0.65 0.16 0.90 0.88 0.30 0.79 0.01 0.72 0.81 0.78 0.24 0.75

Te
st

in
g

p-value 0.0000 0.0000 0.3346 0.0000 0.0000 0.0023 0.0000 0.9702 0.0000 0.0000 0.0000 0.1379 0.0000
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Table 3. Statistical pairwise tests corresponding to the training performance. The upper triangular matrix encloses the p-values for a two-sample Kolmogorov–Smirnov
test and the lower triangular matrix consists of the p-values for a Wilcoxon rank sum test. Bold values indicate that the null hypothesis is rejected at the α = 0.05
significance level for both tests.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 - 0.0011 0.0000 0.0108 0.3038 0.0706 0.0000 0.0108 0.0003 0.0108 0.0290 0.3038 0.0000
2 0.0168 - 0.0000 0.5309 0.0706 0.3038 0.0706 0.0108 0.9728 0.9728 0.1545 0.0290 0.0001
3 0.0001 0.0000 - 0.0000 0.0000 0.0036 0.0000 0.0108 0.0000 0.0001 0.0003 0.0036 0.0000
4 0.0206 0.6327 0.0000 - 0.1545 0.3038 0.0011 0.0036 0.7974 0.5309 0.7974 0.0290 0.0000
5 0.5799 0.0442 0.0000 0.0741 - 0.3038 0.0001 0.0290 0.1545 0.0290 0.5309 0.5309 0.0000
6 0.6326 0.1589 0.0103 0.2683 0.8602 - 0.0036 0.3038 0.3038 0.5309 0.7974 0.5309 0.0000
7 0.0001 0.1020 0.0000 0.0048 0.0000 0.0021 - 0.0003 0.0706 0.0706 0.0003 0.0003 0.0003
8 0.2370 0.0180 0.0030 0.0206 0.1445 0.6689 0.0005 - 0.0036 0.0290 0.0706 0.5309 0.0000
9 0.0071 0.9198 0.0000 0.4970 0.0221 0.1130 0.0741 0.0111 - 0.9728 0.1545 0.0108 0.0001
10 0.0871 0.6873 0.0000 0.8405 0.0782 0.2370 0.0441 0.0469 0.6326 - 0.0706 0.1545 0.0000
11 0.2176 0.1908 0.0004 0.5973 0.4657 0.6507 0.0005 0.2576 0.1743 0.2177 - 0.3038 0.0000
12 0.6689 0.0559 0.0046 0.0497 0.4063 0.8014 0.0008 0.7820 0.0268 0.1445 0.3023 - 0.0000
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 -

Table 4. Statistical pairwise tests corresponding to the testing performance. The upper triangular matrix encloses the p-values for a two-sample Kolmogorov–Smirnov
test, and the lower triangular matrix consists of the p-values for a Wilcoxon rank sum test. Bold values indicate that the null hypothesis is rejected at the α = 0.05
significance level for both tests.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 - 0.5309 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0290 0.0000 0.0000 0.0000 0.0000
2 0.4484 - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3038 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 - 0.0000 0.0000 0.0290 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 - 0.1545 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0521 - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000
6 0.0000 0.0000 0.0284 0.0000 0.0000 - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0706 0.0000
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - 0.0000 0.0000 0.0290 0.0036 0.0000 0.3038
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.3501 0.8996 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - 0.0000 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1258 0.0000 0.0000 - 0.0000 0.0000 0.0706
11 0.0000 0.0000 0.0000 0.0000 0.0101 0.0000 0.0012 0.0000 0.0000 0.0000 - 0.0000 0.0003
12 0.0000 0.0000 0.0001 0.0000 0.0000 0.0232 0.0000 0.0000 0.0000 0.0000 0.0000 - 0.0000
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5435 0.0000 0.0000 0.7784 0.0007 0.0000 -
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Figure 15. Box plots of the enhanced system performance for 30 runs per fold, where (a) corresponds
to the classification accuracy for the training partition and (b) is homologous for the testing partition.
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Figure 16. Linear Discriminant Analysis (LDA) classification accuracy for the evolution of fitness.
The accuracy plots show the history of LDA accuracy calculated over the best individual per fold;
this represents the median over 30 independent runs. The fitness plot shows the evolution of fitness
from the best individual representing the mean of the 13 (folds) medians over 30 runs by (a) using
training data and (b) using testing data.

In order to provide a simple visualization of the data organization, a Principal Component
Analysis (PCA) was calculated at different stages of the methodology. Two examples of the data
distribution of each class are depicted in Figures 17 and 18, corresponding to the folds with the
best and worst performance on the testing data. The left scatter plots show the first two principal
components from PCA calculated over the raw signals. The middle plots correspond to the data after
the CSP (matrix Z) calculation. Note a slightly different distribution between both folds because the
CSP is performed with different training data. The plots on the right depict the data distribution after
a randomly chosen run of the +FEGP algorithm. The classification accuracy for Figure 17 is 82.8%
for training and 99.1% for testing. The homologous values for Figure 18 are 81.4% (training) and
44.1% (testing).
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Figure 17. The first two components from Principal Component Analysis (PCA) corresponding to
fold 4 in the LOOCV. Plot (a) is the class distribution for the raw data; (b) after the Common Spatial
Pattern (CSP); and (c) after the best transformation found by +FEGP. Classification accuracy is 82.8%
for training and 99.1% for testing.
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Figure 18. The first two components from PCA corresponding to fold 8 in the LOOCV. Plot (a) is the
class distribution for the raw data; (b) after the CSP; and (c) after the best transformation found by
+FEGP. Classification accuracy is 81.4% for training and 44.1% for testing.

5. Discussion

One of the main contributions of this work is the proposed feature extraction method, +FEGP.
Generally speaking, the classification accuracy in the training phase, as seen in Figure 14, surpasses
the reference system. Furthermore, the system’s classification accuracy on unseen data also improved
upon the reference system, as seen by the testing performance reported in Figure 14.

If we take a look at the system performance for each fold (Figure 15), we immediately see that
some data partitions lead to better classification accuracies than others. Figures 17 and 18 show the best
and worst cases in terms of quality in more detail. After dimensionality reduction with PCA, we can
recognize that the area of the overlap region for both classes is high in both cases for the raw data.
Intuitively, we can deduce that for the majority of state-of-the-art classifiers, the performance will be
poor in such circumstances. The effectiveness of CSP can be clearly seen afterwards, with a substantial
increase in the separability of the classes. At this point, we can see that the testing cluster is quite
different between almost all folds, with fold 4 and 8 being the extreme cases. For fold 4 (Figure 17),
the testing data match the distribution of the training data, making it easier for a classifier to obtain
good generalization results. On the other hand, in fold 8 (Figure 18), the case is the opposite; the data
cluster belongs to a multi-modal distribution, where the obtained model is evolved over a different
mode from that where the testing data reside, suggesting that the EEG recordings for that particular
subject are quite different from the rest. Let us recall that although the experiments were done in a
controlled environment, we could fully constrain the physiological activity of each subject. This is a
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more realistic scenario, but it makes the problem more difficult to solve. Furthermore, we can see the
benefits of the +FEGP algorithm in the third scatter plot of each figure. For fold 4, the new features make
the problem quite trivial for almost any classifier. The robustness here is that the testing data do not
shift or vary; rather, they integrate into the counterpart training samples. The more difficult case is fold
8; given an already problematic situation from the CSP output, the +FEGP improvement is relatively
small. Here, an important observation is that even for this worst case, the +FEGP performance is at
least the same or better, but not worse than the performance of the reference system.

We can further analyze the performance for the remaining folds in the LOOCV. The Wilcoxon test
infers that the majority of the folds have a similar statistical performance in terms of their medians
in the training phase, with the exception of folds 3 and 13. Although these are the extreme cases
for training, their performance is an improvement upon the CSP output. This can be extended to
all folds; indeed, +FEGP produced an almost consistent improvement over all folds compared with
the reference system. In the testing phase, almost all null hypothesis combinations were rejected,
something expected given the nature of CSP output. However, the improvement was not linear
among all folds. In folds 1, 3, 4, and 13, the improvement by +FEGP was significant, but in folds 5,
7, and 11, there was a reduction in performance, suggesting that the obtained models were slightly
over-fitted. Moreover, according to the Kolmogorov–Smirnov test, the hypothesis that samples from
the algorithm’s outcome belong to the same distribution was not rejected for almost all folds during
training, with the exception of folds 3 and 13 if we compare them with the rest. During testing,
the hypothesis was rejected for almost all combinations. The statistical tests for the kappa scores
support that the accuracy results are not influenced by a random phenomenon, with exceptions for
folds 3, 8, and 12 on the testing performance, hinting that there is a small disagreement between the
ground truth and the predicted labels.

The performance of the enhanced system can be seen from different angles. In the bottom plot of
Figure 16a, we can see a steady minimization of the global fitness. At the same time, we can analyze
the performance of the LDA classifier calculated directly over the transformed data. Although the
training fitness is decreasing during the evolution, especially at the end, the classification accuracy
does converge, and more importantly, the accuracy on unseen data does not decrease in the final
iterations of the search (Figure 16b).

From a different angle, the computational cost in terms of execution time is shown in Figure 19,
which indicates a mean of 36 mins for the system to compute a training model. Although the costs can
be seen as high compared with other statistical methods, the focus of this implementation is not to
achieve small numbers during the training phase, but rather during the testing phase, in which the
system accomplishes classification in milliseconds.

Moreover, if we consider solution sizes in +FEGP, shown in Figure 20a (plot lines represents the
mean of 13 medians over 30 runs), solutions grow almost linearly during the search. This is a common
behavior in GP with tree representations, where the increase of solution size is a product of fitness
improvement [51] through the search operators. A side effect of this phenomenon is that sometimes
fitness becomes stagnated with unnecessary growth of trees, referred to as bloat [63]. However, in our
experiments with a relatively small number of generations for the search, +FEGP does not exhibit any
bloat, that is, the increase in solution size is always accompanied by a steady improvement in fitness.
This was possible due to the regularized fitness measure employed by +FEGP.

The increase of solution sizes also means that there is an increase in the number of newly created
features, the depth in the tree structure, or both. Specifically, we can see the frequency histogram for
all runs and folds in Figure 20b, which show a nearly normal distribution. All individuals were started
with three features at the beginning of the runs. The evolved models produced a minimum of six and
a maximum of 33 new features, with an average of 17.35.

As mentioned earlier in Section 3, there is an inherent flexibility in terms of the classifier selection
after using the +FEGP. Therefore, additional classifiers were evaluated: Tree Bagger (TB), Random
Forests (https://github.com/ajaiantilal/randomforest-matlab) [64] (RF), k-NN, and SVM. All of them

https://github.com/ajaiantilal/randomforest-matlab
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produce non-linear decision functions, as opposed to the relatively simpler LDA. With the exception of
RF, all classifiers are based on their MATLAB implementations. The hyperparameters were optimized
using a bayesian approach, and are shown in Table 5.
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Figure 19. Execution time for +FEGP implementation during the training phase for each LOOCV fold
using the experimental setup.
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Figure 20. (a) Evolution of best individual and population average sizes, showing the mean of
13 medians over 30 runs. (b) Frequency histogram of the number of new features produced by the
+FEGP algorithm.

The classification accuracies are summarized in Table 6, including the specificity, recall, and
F-score metrics per class. A one-way Analysis of Variance (ANOVA) was performed among the
classifiers to estimate statistical significance on the null hypothesis that samples belong to the same
distribution. Correlating the results from Table 6, Figures 17 and 18 we can deduce that for this
particular problem, more complex classifiers do not produce better accuracies for unseen data; rather,
they all over-fit. One reason for this is that most of these algorithms perform accurately if there
are enough data to learn; however, for the case of under-sampled data, sometimes, simpler models
produce better results. The simpler assumptions of LDA (which, in this case, are actually infringed
upon: Class distributions are not normal, nor do they share the same covariance) help to relax the
model and behave better as a generalization method.
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Table 5. Summary of the parameters and hyperparameters used for the additional classifiers.

Classifier Parameter Value

Tree Bagger (TB) Number of trees 200
Number of observations per leaf 5
Number of predictors to sample at each node 6

Random Forests (RF) Number of trees 300
Minimum node size 5
Number of predictors sampled for splitting at
each node 4

k-Nearest Neighbors (k-NN) Search method k-d tree
Maximum number of data points in the leaf
node 50

Number of nearest neighbors 8
Distance metric Manhattan
Distance weighting function None

Support Vector Machine (SVM) Kernel function Gaussian
Kernel scale 56.78
Kernel offset 0
Box constraint 994.49

Optimization routine Sequential minimal
optimization

Table 6. Classifier performance for the +FEGP algorithm. Values for specificity, recall, and F-score
represent means over 13 folds; the accuracies also highlight the standard deviation. C1 refers to the
normal state and C2 refers to the relaxed state. The last row shows the one-way Analysis of Variance
(ANOVA) test between classifiers in terms of the accuracy; bold values indicate that the null hypothesis
is rejected at an α = 0.05 significance level.

Name Training Testing

Specificity Recall F-Score Accuracy Specificity Recall F-Score Accuracy

LDA C1 0.8014 0.8201 0.8308 0.7993 0.7684 0.7713
C2 0.8201 0.8014 0.8002 0.7684 0.7993 0.8001

Average 0.8108 0.8108 0.8155 81.9± 2.5 0.7838 0.7838 0.7857 78.8± 16.2

TB C1 1.0000 1.0000 1.0000 0.7552 0.7134 0.6852
C2 1.0000 1.0000 1.0000 0.7134 0.7552 0.7203

Average 1.0000 1.0000 1.0000 100± 0 0.7343 0.7343 0.7027 70.6± 15.6

RF C1 1.0000 1.0000 1.0000 0.7751 0.7082 0.6795
C2 1.0000 1.0000 1.0000 0.7082 0.7751 0.7205

Average 1.0000 1.0000 1.0000 100± 0 0.7417 0.7417 0.7000 70.2± 16.3

k-NN C1 1.0000 1.0000 1.0000 0.6768 0.6131 0.6118
C2 1.0000 1.0000 1.0000 0.6131 0.6768 0.6483

Average 1.0000 1.0000 1.0000 100± 0 0.6449 0.6449 0.6300 63.2± 11.1

SVM C1 0.9627 0.9570 0.9587 0.6533 0.6759 0.6334
C2 0.9570 0.9627 0.9607 0.6759 0.6533 0.6232

Average 0.9598 0.9598 0.9597 95.9± 1.3 0.6646 0.6646 0.6283 64.2± 13.8

p-value 0.0000 0.0687

6. Conclusions and Future Work

This paper proposes a new system for the classification of two mental states based on EEG
recordings, with the introduction of a novel GP algorithm that performs as a feature extraction method.
The proposed system involves several functional blocks: acquisition of signals, pre-processing, feature
extraction, and classification. This work is the first to use a GP-based algorithm for feature extraction
for the identification of mental states (specifically, normal and relaxed states).

A reference system was implemented based on our previous work [9], which produced
competitive results among similar research works in this domain. Nevertheless, the proposed system
outperformed our previous results by further exploiting the separability of classes using evolved
transformation models. Certainly, apart from the appropriate choice of the classifier, one of the
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most important blocks in these types of systems is the feature extraction process, where the pattern
recognition of the underlying data is performed.

Evidence found during experimentation allowed us to provide some insights in the following
directions. First, the +FEGP algorithm in a wrapper scheme produced improved performance
compared to the system with just CSP, reaching a classification accuracy of 78.8% for unseen
data. Certainly, any system could efficiently benefit from the hybridization of different tools to
achieve competitive results. A sole technique usually cannot tackle such a complex problem.
Second, the proposed genetic operators allow us to evolve transformation models with good testing
performance. Third, the unique fitness function steered the search toward solutions that avoided
over-fitting in most of the cases. Fourth, the sizes of the evolved solutions are relatively small in terms
of the number of new features and the number of nodes per subtree, resulting in faster execution
times during the testing phase. Moreover, in our tests, +FEGP was not affected by bloat [63]. Fifth,
although from the system design point of view, the classifier can be interchanged, other classifiers did
not produce better results compared with LDA. Nevertheless, when examining the whole scenario,
we can state that most of the shortcomings were derived from the underlying data properties.
In this case, we could opt for three options—increasing the system’s complexity by incorporating an
additional processing step and helping reduce further issues like over-fitting, using adaptive classifiers,
or increasing the number of EEG recordings. In all of the circumstances, we can foresee applications of
the +FEGP outside of this domain, that is, by merely adjusting the fitness function, it can be used in
any data transformation scenario.

There are several aspects to consider in future work. One is the introduction of feature selection
into the system; ultimately, channel reduction is very important for any real-world scenario, mainly
for practical reasons. It is also of our interest to increase the number of mental states in future research.
Although we emphasize the benefits of the proposed +FEGP algorithm in this work, the exploration of
different tools in pre-processing and post-processing is also important. Moreover, we do not express
by any means that the +FEGP algorithm in conjunction with CSP is the best option, but it is rather a
choice that proved to be very competitive in this domain.

It is well researched that simple algorithms like CSP are not capable of performing well with
complex brain tasks, and there is a limit where the balance between simplicity and practicality ends.
As the computer power increases, the need for simpler methods is not necessarily a wanted goal if the
results do not improve. The incorporation of GP into the development of efficient BCI systems can be
seen as a viable direction in terms of capacity to find new patterns hidden in EEG data. Although GP,
like many other machine learning algorithms, has a costly training phase, the testing phase is rather
simpler and more efficient, making it quite useful for BCI systems.

Another aspect is the improvement of the +FEGP algorithm itself. Further investigation is
required to study the evolution behavior; there are still open questions: What is the relationship
between the number of features and the efficiency of individual subtrees? Is there a way to fully avoid
bloat in longer searches? Are there better genetic operators that allow one to search more efficiently?
In our previous works, by implementing a type of local search into GP, we achieved better results
in regression [65] and classification problems [66], suggesting that GP generally benefits from the
hybridization of search operators. This encourages us to extend these approaches into this domain.

Despite mentioning computational costs just in terms of execution time along the presentation
of this work, which, at the moment, is considered as an off-line methodology, it is important to
reduce the algorithm’s complexity and, at the same time, increase accuracy. In future work, a full
study will be done in balancing the system’s consumed resources and efficiency by using intrinsic
parallel implementations, such as Graphics Processing Units (GPU) or Field-Programmable Gate
Arrays (FPGA).
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