
algorithms

Article

Efficient Rule Generation for Associative Classification

Chartwut Thanajiranthorn * and Panida Songram

Department of Computer Science, Faculty of Informatics, Mahasarakham University,
Mahasarakham 44150, Thailand; panida.s@msu.ac.th
* Correspondence: chartwut@bru.ac.th; Tel.: +66-619-395-455

Received: 2 September 2020; Accepted: 14 November 2020; Published: 17 November 2020 ����������
�������

Abstract: Associative classification (AC) is a mining technique that integrates classification and
association rule mining to perform classification on unseen data instances. AC is one of the effective
classification techniques that applies the generated rules to perform classification. In particular,
the number of frequent ruleitems generated by AC is inherently designated by the degree of certain
minimum supports. A low minimum support can potentially generate a large set of ruleitems.
This can be one of the major drawbacks of AC when some of the ruleitems are not used in the
classification stage, and thus (to reduce the rule-mapping time), they are required to be removed
from the set. This pruning process can be a computational burden and massively consumes memory
resources. In this paper, a new AC algorithm is proposed to directly discover a compact number of
efficient rules for classification without the pruning process. A vertical data representation technique
is implemented to avoid redundant rule generation and to reduce time used in the mining process.
The experimental results show that the proposed algorithm archives in terms of accuracy a number of
generated ruleitems, classifier building time, and memory consumption, especially when compared to
the well-known algorithms, Classification-based Association (CBA), Classification based on Multiple
Association Rules (CMAR), and Fast Associative Classification Algorithm (FACA).

Keywords: associative classification; class association rule; vertical data representation; classification

1. Introduction

Nowadays, there a number of classification techniques that have been applied to various
real-world applications, i.e., graph convolutional networks for text classification [1], automated
classification of epileptic electroencephalogram (EEG) signals [2], iris cognition [3], and anomaly
detection [4]. Associative classification (AC) is a well-known classification technique that was first
introduced by Lui et al. [5]. It is a combination of two data-mining techniques, association rule mining,
and classification. Association rule mining discovers the relationship between items in a dataset.
Meanwhile, classification aims to predict the class label of any given instance from learning-labeled
dataset. AC focuses on finding Class Association Rules (CARs) that satisfy certain minimum support
and confidence thresholds in the form x → c, where x is a set of attribute values and c is a class label.
AC has been reported in the literature to outperform other traditional classifiers [6–13], In addition,
a CAR is an if–then rule that can be easily understood by general users. Therefore, AC is applied
in many fields, i.e., phishing website detection [6,7,11], heart disease prediction [8,9], groundwater
detection [12], and detection of low-quality information in social networks [10].

In traditional AC algorithms, minimum support threshold is a significant key parameter that
is used to select frequent ruleitems and to then eliminate frequent ruleitems in which confidence
values do not satisfy minimum confidence. This manner leads to a large number of frequent ruleitems.
Nguyen and Nguyen [14] demonstrated that the number of 4 million frequent ruleitems can be
generated when the minimum support threshold is set to 1%. Moreover, a number of AC-based

Algorithms 2020, 13, 299; doi:10.3390/a13110299 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-1992-3126
http://www.mdpi.com/1999-4893/13/11/299?type=check_update&version=1
http://dx.doi.org/10.3390/a13110299
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 299 2 of 15

techniques, i.e., Classification-based Association (CBA) [5], Fast Associative Classification Algorithm
(FACA) [11], CAR-Miner-diff [14], Predictability-Based Class Collative Class Association Rules
(PCAR) [15], Weighted Classification Based on Association Rules (WCBA) [16], and Fast Classification
Based on Association Rules (FCBA) [17], create all possible CARs in order to determine a set of
valid CARs that can be used in the classification process. Recently, Active Pruning Rules (APR) [13]
has been proposed as a novel evaluation method. APR can be used to avoid generating all CARs.
However, the exhaustive search for finding rules in classifiers may cause an issue in large datasets
or low minimum support. Creating candidate CARs consumes intensive computational times and
memory. The minimal process of candidate generation is still challenging because it is quite affected in
terms of training time, input/output (I/O) overheads, and memory usage [18].

In this paper, a new algorithm is proposed to directly generate a small number of efficient CARs
for classification. A vertical data format [19] is used to represent ruleitems associated with their
transaction IDs. The intersection technique is used to easily calculate support and confidence values
from the format. The ruleitems with 100% of confidence will be added to the classifier as a CAR.
Whenever a CAR with 100% confidence is found, the transaction associated with the CAR will be
removed by using a set difference to avoid generating redundant CARs. Finally, a compact classifier is
built for classification. In conclusion, the contribution of this paper is as follows.

1. To avoid pruning and sorting processes, the proposed algorithm directly generates CARs with
100% confidence to build compact classifiers. The CARs with 100% confidence are anticipated to
result in high prediction rates.

2. The proposed algorithm eliminates unnecessary transactions to avoid generating redundant
CARs in each stage.

3. Simple set theories, intersection, and set difference are exploited to reduce computational time
used in mining process and to reduce memory consumption.

This paper is structured as follows. In Section 2, related works of AC are described. The basic
definitions are delineated in Section 3. The proposed algorithm is introduced in Section 4.
The discussion on the experimental results is in Section 5. Lastly, the conclusion of the study is
stated in Section 6.

2. Related Work

In the past, AC-based algorithms have been proposed and studied. The study’s objective is to
understand some drawbacks and to increase the effectiveness of the algorithms. Lui et al. [5] introduced
the CBA algorithm which integrated association rule mining and classification. The process of the CBA
algorithm is divided into two steps. First, CARs are generated based on the famous search method the
Apriori algorithm [20]. Second, CARs are sorted and then pruned to select efficient CARs in a classifier.
The CBA algorithm was proven to produce a lower error rate than C4.5 [21]. Unfortunately, the CBA
algorithm encounters a large number of candidate generation problems due to Apriori inheritance
which finds all possible frequent rules at each level.

Li et al. [22] presented the Classification based on Multiple Association Rules (CMAR) algorithm.
Unlike CBA, CMAR adopts a Frequent pattern tree (FP-tree) and a Cosine R-tree (CR-tree) for rule
generation and classification phases. It divides the subset in FP-tree to search frequent ruleitems and
then adds the frequent ruleitems to CR-tree according to their frequencies. Hence, CMAR only needs to
scan the database once. The CMAR algorithm uses multiple rules to predict unseen instances based on
chi-square method. In the experiment, CMAR was compared with CBA and C4.5 in terms of accuracy.
The experimental result shows that CMAR performs better than the others.

Abdelhamid [6] proposed an Enhanced Multi-label Classifier-based Associative Classification
(eMCAC) for phishing website detection. It generates rules with multiple class labels from a single
dataset without recursive learning. The eMCAC algorithm applies a vertical data format to represent
datasets. The support and confidence values for a multi-label rule are calculated based on the average

Algorithms 2020, 13, 299 3 of 15

support and confidence values of all classes. The class is assigned to the test instance if attribute
values are fully matched to the rule’s antecedent. The experimental results show that the eMCAC
algorithm outperforms CBA, PART, C4.5, jRiP, and MCAR [23] on the real-world phishing data in
terms of accuracy.

Hadi et al. [11] proposed the FACA algorithm for phishing website detection. It applies
a Diffset [24] in the rule-generation process to increase the speed of classifier building time.
First, the FACA algorithm discovers k-ruleitems by extending frequent (k − 1)-ruleitems.
Then, ruleitems are ranked according to the number of attribute values, confidence, support, and
occurrence. To predict unseen data, the FACA algorithm utilizes the All Exact Match Prediction
Method. The method matches unseen data with all CARs in the classifiers. Next, unseen data are
assigned to the class label with the highest count. From the experimental result, the FACA algorithm
outperforms CBA, CMAR, MCAR, and ECAR [25] in terms of accuracy.

Song and Lee [15] introduced Predictability-Based Collective Class Association Rule algorithm
(PCAR) to enhance rule evaluation. The PCAR algorithm uses inner cross-validation between the test
dataset and train dataset to calculate a predictability value of CARs. Then, CARs are ranked according
to rule predictive values, rule confidence, rule support, rule antecedent length, and rule occurrences.
Finally, the full-matching method is applied to assign a class label for unseen data. To evaluate the
performance of PCAR, PCAR was compared with C4.5, RIPPER, CBA, and MCAR on the accuracy,
and PCAR was shown to outperform the others.

Alwidian et al. [16] proposed the WCBA algorithm to enhance the accuracy of a classifier based on
the weighting technique. WCBA assumes that the importance of attributes is not equal. For example,
in medicine, some attributes are more important than other attributes for prediction. Consequently,
weights of all attributes are assigned by experts in the domain. Then, the weighted method is used to
select useful CARs and a statistical measure is used for the pruning process. In addition, CARs are
priors sorted by using the harmonic mean, which is an average value between support and confidence.
The WCBA algorithm is more significantly accurate than CBA, CMAR, MCAR, FACA, and ECBA.
However, the WCBA algorithm generates CARs based on the Apriori technique that scans the database
many times.

Rajab proposed [13] the Active Pruning Rule (APR) algorithm. The new pruning process was
introduced in APR. CARs are ranked by confidence, support, and rule length. Each training instance
is matched over a set of CARs. The first rule that matches an instance is added to the classifier.
Then, instances containing the first rule are removed. The support and confidence of remaining rules
are recalculated, and all CARs are re-ranked. The APR algorithm was proven to reduce the size of
the classifier and to maintain predictive accuracy performance. However, the APR algorithm still
has to face a massive number of candidates from a rule-generation process. From previous works,
the advantages and disadvantages are shown in Table 1.

The previous algorithms on AC generally result in high predictability of rules. However, most of
them produce k-ruleitems from (k − 1)-ruleitems. They have to calculate supports when a new
ruleitems is recovered. To calculate support and confidence values, they have to search all transactions
in databases multiple times. Moreover, a huge number of candidate CARs are generated and pruned
later to reduce unnecessary CARs. To reduce the problems, the proposed algorithm will directly
generate efficient CARs for classification so that the pruning and sorting processes are not necessary.
The efficient CARs in our works are rules with 100% confidence which are generated based on the idea
that some attribute values can immediately indicate the class label if all attribute values belong to a
class label. To easily check attribute values belonging to any class label, vertical data representation is
used in the proposed algorithm. Furthermore, simple set theories, intersection, and set difference are
adapted to easily calculate support and confidence values without scanning a database multiple times.

Algorithms 2020, 13, 299 4 of 15

Table 1. Advantages and disadvantages of Associative classification (AC) algorithms.

Algorithms Advantage Disadvantage

CBA It adopted the association rule technique to classify data that is proven to
be more accurate than the traditional classification technique.

It has to face a sensitivity of the minimum support threshold. A massive
number of rules are generated when a low minimum support threshold
is given.

CMAR It uses an efficient FP-tree, which consumes less memory and space
compared to CBA.

The FP-tree will not always fit in the main memory, especially when the
number of attributes is large.

eMCAC It adopts vertical data representation to reduce space usage to find a
multi-label class.

It is based on an Apriori-like technique that can result in a large number
of frequent itemsets.

FACA Set difference is adopted to consume low memory and to reduce the
mining time.

It is based on an Apriori-like technique; therefore, the algorithm is
required to search for all frequent itemsets from all possible candidate
itemsets at each level.

PCAR It uses predictability value to prune unnecessary rules. The execution time is slow since it includes the inner cross-validation
phase for calculation predictability value.

WCBA It uses a weighted method to select useful rules and to improve the
performance of the classifier.

Weighted factors are subject to change due to the decisions of experts
which can cause a different experimental result.

APR A new evaluation method with a small classifier and high accuracy rate. Generation of a large number of rules when a low minimum support
threshold is given.

Algorithms 2020, 13, 299 5 of 15

3. Basic Definitions

Let A = {a1, a2, . . . , am} be a finite set of all attributes in dataset. C = {c1, c2, . . . , cn} is a set of
classes, g(x) is a set of transactions containing itemset x, and |g(x)| is the number of transactions
containing x.

Definition 1. An item can be described as an attribute ai containing a value vj, denoted as (ai, vj).

Definition 2. An itemset is the set of items, denoted as (ai1, vi1), (ai2, vi2), ..., (aik, vik).

Definition 3. A ruleitem is of the form 〈itemset, cj〉, which represents an association between itemsets and
class in a dataset; basically, it is represented in the form itemset→ cj.

Definition 4. The length of a ruleitem is the number of items, denoted as k− ruleitem.

Definition 5. The absolute support of ruleitem r is the number of transactions containing r, denoted as sup(r).
The support of r can be found from (1).

sup(r) = |g(r)| (1)

Definition 6. The confidence of ruleitem 〈itemset, cj〉 is the ratio of the number of transactions that contains
the itemset in class in cj and the number of transactions containing the itemset, as in (2).

con f (〈itemset, cj〉) =
|g(〈itemset, cj〉)|
|g(itemset)| × 100 (2)

Definition 7. Frequent ruleitem is a ruleitem in which support is not less than the minimum support
threshold (minsup).

Definition 8. Class Association Rule (CAR) is a frequent ruleitem in which confidence is not less than the
minimum confidence threshold (mincon f).

4. The Proposed Algorithm

In this section, a new algorithm, called the Efficient Class Association Rule Generation (ECARG)
algorithm, is presented. The pseudo code of the proposed algorithm is shown in Algorithm 1.

Algorithm 1: Efficient Class Association Rule Generation (ECARG) algorithm main process
Input: dataset, minsup
Output: classi f ier

1 ruleItems = 1-ruleitem generation from dataset
2 while at least one rule’s support meet minsup do
3 R = maximum confidence rule from ruleItems // ruleitem’s support ≥ minsup
4 if R’s confidence < 100 and R is not null then
5 R = extend R with the other ruleitems
6 if R is not null then
7 insert R to classi f ier
8 redundant rule removal
9 update support and confidence for each ruleItems

10 else
11 exit while loop

12 finding the default class
13 return classi f ier

First, 1-frequent ruleitems are generated (line 1). To quickly find 1-frequent ruleitems,
the proposed algorithm takes the advantage of a vertical data format to calculate the support of

Algorithms 2020, 13, 299 6 of 15

the ruleitems. The support of the ruleitems can be obtained from |g(itemset) ∩ g(ck)|. If any 1-ruleitem
does not meet the minimum support threshold, it will not be extended with the other ruleitems.
Moreover, the confidence of the frequent ruleitems can be calculated from Equation (2) by using the
vertical data format. If the confidence of the ruleitem is 100%, the ruleitems will be added to the
classifier directly (line 7); otherwise, it will be considered extended with the others (line 5).

After discovering the most effective CAR with 100% confidence, the transaction IDs associated
with the CAR will be removed to avoid redundant CARs (line 8). To remove the transaction IDs,
a set difference plays an important role in our algorithm. Let ri be a CAR with 100% confidence
and T be a set of ruleitems in the same class of ri. For all rj ∈ T, the new transaction IDs of rj is
g(rj) = g(rj)− g(ri). Then, the new transaction IDs, support, and confidence values of all rules are
updated (line 9).

In each iteration, if there is no CAR with 100% confidence, the ruleitem r with the highest
confidence will be first to be considered extended in a breadth-first search manner. It will be combined
with other ruleitems in the same class until the new CAR has 100% confidence (line 5). If ri is extended
with rj to be rnew and g(rj) ⊆ g(ri), then con f (rnew) = 100%. After the extended CAR is added to the
classifier, the transaction IDs associated with the CAR will be removed. Finally, if no ruleitem satisfies
the minimum support threshold, the CAR generation will be stopped.

The proposed algorithm continues to find a default class in order to insert it to the classifier.
The class with the most remaining transaction IDs is selected as the default class (line 12).

To demonstrate the examples, the dataset in Table 2 is used as example data. The minimum
support and confidence thresholds are set to 2 and 50%, respectively.

Table 2. A sample dataset.

TID atr1 atr2 atr3 Class Label

1 a1 b1 c1 A
2 a1 b1 c2 A
3 a1 b2 c1 A
4 a1 b3 c1 A
5 a2 b1 c2 B
6 a2 b2 c2 B
7 a2 b3 c1 B
8 a3 b2 c2 A
9 a2 b3 c1 A

The vertical data format represents associated transaction IDs of 1-ruleitem, as shown in Table 3.
The last 2 columns of Table 3 show the support and confidence of ruleitems that are calculated.
From Table 2, the a2 value in atr1 occurs in transaction IDs 5, 6, 7, and 9, denoted as g(〈atr1, a2〉) =
{5, 6, 7, 9}. Class A is in transaction IDs 1, 2, 3, 4, 8, and 9, denoted as g(A) = {1, 2, 3, 4, 8, 9}, while class
B is in transaction IDs 5, 6, and 7, denoted as g(B) = {5, 6, 7}. The transaction IDs containing
〈atr1, a2〉 → A are g(〈atr1, a2〉) ∩ g(A) = {5, 6, 7, 9} ∩ {1, 2, 3, 4, 8, 9} = {9}, so the supports of
〈atr1, a2〉 → A are 1. The rule 〈atr1, a2〉 → A will not be extended because its support is less
than the minimum support threshold. Transaction IDs containing 〈atr1, a2〉 → B are g(〈atr1, a2〉) ∩
g(B) = {5, 6, 7, 9} ∩ {5, 6, 7} = {5, 6, 7}, so the supports of 〈atr1, a2〉 → B are 3. Hence, this rule is a
frequent ruleitem.

The confidence of 〈atr1, a2〉 → B can be obtained from |g(5,6,7)|
|g(5,6,7,9)| × 100 = 3

4 × 100 = 75%.
The confidence of 〈atr1, a2〉 → B is not 100% so it will be extended, whereas the confidence of
〈atr1, a1〉 → A is |g(1,2,3,4)|

|g(1,2,3,4)| × 100 = 4
4 × 100 = 100%, so it is the first CAR added to the classifier.

Algorithms 2020, 13, 299 7 of 15

Table 3. The rules that meet minimum support threshold (white background cell).

Ruleitem TIDs Sup Conf (%)

〈atr1, a1〉 → A 1, 2, 3, 4 4 100

〈atr1, a2〉 → A 9 1 -

〈atr1, a2〉 → B 5, 6, 7 3 75

〈atr1, a3〉 → A 8 1 -

〈atr2, b1〉 → A 1, 2 2 66.67

〈atr2, b1〉 → B 5 1 -

〈atr2, b2〉 → A 3 1 -

〈atr2, b2〉 → B 6 1 -

〈atr2, b3〉 → A 4, 8, 9 3 75

〈atr2, b3〉 → B 7 1 -

〈atr3, c1〉 → A 1, 3, 4, 9 3 80

〈atr3, c1〉 → B 7 1 -

〈atr3, c2〉 → A 2, 8 2 50

〈atr3, c2〉 → B 5, 6 2 50

After discovering the first CAR, the transaction IDs associated with the CAR will be removed.
From Table 3, if 〈atr1, a1〉 is found, the class will absolutely be A. Hence, 〈atr1, a1〉 → A does not
need to be extended with the other attribute values and transaction IDs 1, 2, 3, and 4 should be
removed. The ECARG algorithm adopts a set difference, which can help to remove transaction IDs
more conveniently.

For example, g(〈atr1, a1〉 → A) = {1, 2, 3, 4} and g(〈atr3, c1〉 → A) = {1, 3, 4, 9}. The new
transaction IDs of g(〈atr3, c1〉 → A) = g(〈atr3, c1〉 → A) − g(〈atr1, a1〉 → A) = {1, 3, 4, 9} −
{1, 2, 3, 4} = {9}. Then, the new transaction IDs, support, and confidence values of all rules are
updated as shown in Table 4.

From Table 4, there is no CAR with 100% confidence. 〈atr1, a2〉 → B has the maximum
confidence, and 〈atr3, c2〉 → B = {5, 6} is a subset of g(〈atr1, a2〉 → B) = {5, 6, 7}.
Hence, the new rule 〈(atr1, a2), (atr3, c2)〉 → B is found with 100% confidence. Then the extension of
〈(atr1, a2), (atr3, c2)〉 → B is stopped. For 2-ruleitem extended from 〈atr1, a2〉 → B, there is only one
rule with 100% confidence and it is added to the classifier as the second CAR.

Table 4. The remained transaction IDs after generating the first Class Association Rule (CAR).

Ruleitem TIDs Sup Conf (%)

〈atr1, a2〉 → A 9 1 -

〈atr1, a2〉 → B 5, 6, 7 3 75

〈atr1, a3〉 → A 8 1 -
〈atr2, b1〉 → B 5 1 -

〈atr2, b2〉 → B 6 1 -

〈atr2, b3〉 → A 8, 9 2 66.67

〈atr2, b3〉 → B 7 1 -

〈atr3, c1〉 → A 9 1 -

〈atr3, c1〉 → B 7 1 -

〈atr3, c2〉 → A 8 1 -

〈atr3, c2〉 → B 5, 6 2 66.67

Algorithms 2020, 13, 299 8 of 15

After the second CAR is added to classifiers, the transaction IDs associated with CAR are removed.
The remaining transaction IDs are shown in Table 5. There is only one ruleitem that satisfies the
minimum support threshold: the ruleitem 〈atr2, b3〉 → A which does not meet 100% of confidence.
No ruleitem passes the minimum support threshold to be extended with the ruleitem 〈atr2, b3〉 → A
so CAR generation is stopped.

Table 5. Transaction IDs after generating the second CAR.

Ruleitem TIDs Sup Conf (%)

〈atr1, a2〉 → A 9 1 -

〈atr1, a2〉 → B 7 1 -

〈atr1, a3〉 → A 8 1 -

〈atr2, b3〉 → A 8, 9 2 66.67

〈atr2, b3〉 → B 7 1 -

〈atr3, c1〉 → A 9 1 -

〈atr3, c1〉 → B 7 1 -

〈atr3, c2〉 → A 8 1 -

With the remaining transaction IDs in Table 5, the ECARG algorithm continues to find a default
class and to add it to the classifier. In this step, the class with the most relevant transaction IDs is
selected as the default class. In Table 5, class A remains in transaction IDs 8 and 9 while class B remains
in transaction ID 7. The remaining transaction IDs are relevant to class A the most, so the default
class is A. In case the number of associated remaining transaction IDs with each class is not changed,
the majority class in the classifier is the default class. Finally, all CARs in the classifier are shown
in Table 6.

Table 6. All CARs from ECARG.

CAR ID CAR

R1 〈atr1, a1〉 → A
R2 〈(atr1, a2), (attr3, c2)〉 → B

Default Class A

To observe the effect of 100% confidence ruleitems, we tested another version of ECARG, ECARG2.
The difference in ECARG2 is ruleitem extension. If a ruleitem with 100% confidence cannot be found
from the extension, the ruleitem with the highest confidence will be selected as a CAR and added
to classifiers. For example, in Table 5, ruleitem 〈atr2, b3〉 → A is the only ruleitem that satisfies the
minimum support and minimum confidence. Hence, ECARG2 selects the ruleitem as the third CAR.
The associated transaction IDs are removed, and the remaining transaction ID is shown in Table 7.
There is only one transaction ID with class B. Consequently, the default class is B. Finally, all CARs
from ECARG2 are shown in Table 8.

Table 7. Transaction IDs after ECARG2 generated the third CAR.

Rule Item TIDs Sup Conf (%)

〈atr1, a2〉 → B 7 1 -

〈atr2, b3〉 → B 7 1 -

〈atr3, c1〉 → B 7 1 -

Algorithms 2020, 13, 299 9 of 15

Table 8. All CARs from ECARG2.

CAR ID CAR

R1 〈atr1, a1〉 → A
R2 〈(atr1, a2), (attr3, c2)〉 → B
R3 〈atr2, b3〉 → A

Default Class B

5. Experimental Setting and Result

The experiments were implemented and tested on a system with the following environment:
Intel Core i3-6100u 2.3 GHz processor with 8 GB DDR4 main memory, running Microsoft Windows 10
64-bit version. Our algorithm is compared with the well-known algorithms CBA, CMAR, and FACA.
All algorithms were implemented in java. The implementing java version of the CBA algorithm using
CR-tree is from WEKA [26]. The implementation of CMAR in JAVA is from [27]. Four algorithms are
tested on 14 datasets from the UCI Machine Learning Repository. The characteristics of the datasets are
shown in Table 9. Ten-fold cross-validation is used to divide testing instances and training instances
based on previous works [12,17,23,26,27]. Accuracy rates, the number of CARs, classifier building
times, and memory consumption are used to measure the performance of the four algorithms.

Table 9. Characteristics of the experiment datasets.

Data Sets # of Attributes # of Classes Instances

Anneal 38 6 798
Breast 11 2 699
Cars 6 4 1,728
Contact-lenses 4 3 24
Diabetes 7 2 768
Iris 4 3 150
Labor 17 2 57
Lymph 18 4 148
Mushroom 22 2 8214
Post-operative 9 4 90
Tic-tac-toe 9 2 958
Vote 16 2 435
Wined 13 3 178
Zoo 17 7 101

To study the sensitivity of thresholds on the ECARG algorithm, we set different minimum support
thresholds and different minimum confidence thresholds in the experiment. First, we set the minimum
support thresholds from 1% to 4% and analyze different minimum confidence thresholds between
60%, 70%, 80%, and 90%. Figure 1 shows the accuracy rates of all datasets. The results show that,
when the minimum support thresholds are increased, the accuracy rates are decreased. If the minimum
confidence thresholds are increased, the accuracy rates are slightly down.

The highest accuracy rates are given in most datasets, Diabetes, Iris, Labor, Lymph, Mushroom,
Post-operative, Tic-tac-toe, Vote, Wine, and Zoo, when minimum support and minimum confidence
are set to 2% and 60%, respectively. Therefore, the minimum support is set to 2%, and minimum
confidence is set to 60% in the next experiments.

Algorithms 2020, 13, 299 10 of 15

Figure 1. Accuracy rates in various minsup and minco f on all datasets.

Table 10 reports the accuracy rates of the CBA, CMAR, FACA, ECARG, and ECARG2 algorithms
on the UCI datasets. The results show that both of our algorithms outperform the others on average.
This gain resulting from the methodology found the most efficient rule in each iteration and eliminated
redundant rules simultaneously. To be more precise, we further analyzed the win-lost-tie records.
Based on Table 10, the win-lost-tie records of the ECARG2 algorithm against CBA, CMAR, FACA,
and ECARG in terms of accuracy are 11-3-0, 11-3-0, and 9-4-1, 8-6-0, respectively. We can observe that
ECARG gives an accuracy slightly less than ECARG2. However, the ECARG algorithm results in the
highest accuracy in 6 of 14 datasets.

Algorithms 2020, 13, 299 11 of 15

Table 10. Accuracies of CBA, CMAR, FACA, ECARG, and ECARG2.

Datasets CBA CMAR FACA ECARG ECARG2

Anneal 83.19 73.27 87.31 95.21 96.77
Breast 67.16 74.83 72.44 70.33 73.02
Cars 78.29 73.73 70.02 73.43 87.79
Contact 66.67 37.5 63.33 70.83 65.00
Diabetes 74.47 57.03 73.56 67.32 73.7
Iris 92.67 97.33 96.00 95.33 96.00
Labor 75.67 26.32 87.67 92.67 84.00
Lymph 77.76 43.24 82.43 88.51 81.81
Mushroom 93.40 86.25 96.52 98.15 98.9
Post-oper. 56.67 70.00 67.78 70.00 60.00
Tic-tac-toe 99.16 53.03 90.23 65.34 88.94
Vote 94.02 92.64 91.92 95.31 95.17
Wine 89.97 62.92 92.16 98.87 97.16
Zoo 60.27 79.21 86.00 95.00 96.00

Average 79.24 66.24 82.67 84.02 84.42

Table 11 shows the average number of CARs generated from CBA, CMAR, FACA, ECARG,
and ECARG2 algorithms. The result shows that the CMAR algorithm generates the highest number
of rules, while the ECARG algorithm generates the lowest. In particular, the ECARG algorithm
generates 8 CARs on average against 14 datasets whereas the CBA, CMAR, FACA, and ECARG2
algorithms derive 19, 240, 13, and 18 CARs on average, respectively. The accomplishment of the
proposed algorithm is the discovery of the most efficient CAR in each iteration and the elimination of
unnecessary transaction IDs that leads to redundant CARs.

Table 11. The average number of generated rules on the UCI datasets.

Data Sets CBA CMAR FACA ECARG ECARG2

Anneal 3 165 15 14 17
Breast 16 127 23 3 35
Cars 25 272 9 5 18
Contact 9 25 5 7 8
Diabetes 56 115 24 4 38
Iris 11 38 7 4 9
Labor 8 297 15 9 9
Lymph 26 465 15 19 20
Mushroom 8 28 16 12 13
Post-oper. 35 51 12 11 27
Tic-tac-toe 28 713 12 6 33
Vote 30 658 12 11 10
Wined 5 237 11 9 7
Zoo 10 97 11 10 10

Average 19 240 13 8 18

Table 12 shows the average classifier building time of the proposed algorithm against CBA,
CMAR, and FACA. The experimental result clearly shows that our algorithm is the fastest among all
algorithms in the 14 datasets. ECARG takes fewer seconds to construct the classifier than CBA, CMAR,
FACA, and ECARG2 by 2.134, 0.307, 2.883, and 0.0162, respectively. This can be explained by the
fact that CBA and FACA uses an Apriori-style approach to generate candidates. When the value for
minimum support is low on large datasets, it is costly to handle a large number of candidate ruleitems.
The CMAR algorithm based on FP-growth is better than CBA and FACA in some cases, but it takes
more classifier-generating time than ECARG and ECARG2.

Algorithms 2020, 13, 299 12 of 15

Table 12. The classifier building time in seconds.

Data Sets CBA CMAR FACA ECARG ECARG2

Anneal 1.050 0.098 0.877 0.123 0.164
Breast 0.670 0.169 0.185 0.007 0.027
Cars 0.220 0.249 0.640 0.057 0.062
Contact 0.010 0.075 0.004 0.001 0.002
Diabetes 1.160 0.107 0.558 0.032 0.085
Iris 0.030 0.008 0.010 0.004 0.004
Labor 1.170 0.924 0.027 0.005 0.005
Lymph 1.320 3.782 3.700 0.016 0.016
Mushroom 25.830 0.104 21.500 4.049 4.128
Post-oper. 0.090 0.041 0.063 0.008 0.012
Tic-tac-toe 0.230 0.235 0.800 0.101 0.135
Vote 1.540 2.601 5.300 0.034 0.034
Wined 0.120 0.273 0.190 0.007 0.007
Zoo 0.900 0.005 0.047 0.020 0.013

Average 2.453 0.623 2.422 0.319 0.335

Table 13 reveals the memory consumption in the classifier building process of all 5 algorithms.
The results show that ECARG consumes less memory than CBA, CMAR, FACA, and ECARG2 by
22.62 MB, 73.15 MB, 36.57 MB, and 0.98 MB, respectively. The memory consumption of ECARG
is the best since it eliminates unnecessary data in each iteration. From the result in Table 14,
our proposed algorithm gives a higher F-measure on average than the other algorithms. In particular,
the ECARG2 outperformed CBA, CMAR, FACA, and ECARG by 3.82%, 25.38%, 25.38%, 12.74%,
and 1.84%, respectively.

Table 13. The classifier building memory consumption in megabytes.

Data Sets CBA CMAR FACA ECARG ECARG2

Anneal 73.47 29.16 10.78 10.68 13.38
Breast 25.44 23.96 24.4 1.92 3.54
Cars 60.08 21.17 8.98 3.05 3.76
Contact 2.65 0.99 1.87 1.78 1.84
Diabetes 28.08 26.74 24.61 3.01 7.30
Iris 4.16 2.40 1.88 1.17 1.17
Labor 18.34 420.88 124.01 1.95 1.95
Lymph 27.31 250.93 231.75 2.86 2.86
Mushroom 28.89 29.12 24.52 24.27 24.31
Post-oper. 15.17 8.78 16.38 2.03 2.61
Tic-tac-toe 31.76 62.23 12.76 4.73 8.44
Vote 23.57 2.65 3.13 3.09 3.15
Wine 20.87 175.36 59.52 1.82 1.82
Zoo 21.41 34.33 31.93 2.20 2.13

Average 27.23 77.76 41.18 4.61 5.59

Table 14. F-measure of Classification-based Association (CBA), Classification based on Multiple
Association Rules (CMAR), Fast Associative Classification Algorithm (FACA), ECARG, and ECARG2.

Data Sets CBA CMAR FACA ECARG ECARG2

Anneal 75.93 43.73 43.64 61.24 89.28
Breast 66.15 66.32 66.39 58.42 68.43
Cars 73.85 33.31 31.04 45.81 71.57
Contact 53.31 43.08 49.94 71.67 61.67
Diabetes 74.4 49.01 74.3 56.56 71.21
Iris 92.70 97.98 93.56 90.41 96.16
Labor 70.85 28.29 75.46 88.89 85.87
Lymph 78.83 48.14 53.63 81.94 72.08
Mushroom 93.75 87.61 96.52 96.58 98.90
Post-oper. 52.51 20.59 56.00 54.45 39.57
Tic-tac-toe 98.90 43.88 64.40 95.44 87.64
Vote 94.95 72.82 91.82 93.82 94.44
Wine 87.03 69.14 92.47 98.65 94.37
Zoo 54.61 62.00 53.73 91.76 89.37

Average 76.27 54.71 67.35 78.25 80.09

Algorithms 2020, 13, 299 13 of 15

Table 15 shows standard deviations of accuracy rate, the number of generated rules, building
times, memory consumption, and F-measure of ECARG. The standard deviation values of building
time and memory consumption are low and show that the building time and memory consumption in
each fold is approximately marginal. The standard deviation values of the number of generated rules
are relevant.

The standard deviation values of accuracy rates and F-measure show that the values of accuracy
rates and F-measure in each fold are marginally different on almost all datasets. However, when
evaluating the small datasets, Contact-lenses, Labor, Lymph, and Post-operative, the standard deviation
values are high because 10-fold cross-validation splits a very small testing set that can potentially
affect the efficiency of the classifier. For example, the Contact-lenses dataset composes only 2 or 3
transactions in each testing set. Consequently, only one false classification occurs in the testing set and
then reduces the accuracy rate dramatically.

Table 15. Standard deviations of ECARG.

Data Sets Accuracy # of Rules Building Time Memory F-1
AVG S.D. AVG S.D. AVG S.D. AVG S.D. AVG S.D.

Anneal 95.21 2.10 14 0.94 0.123 0.05 10.68 0.03 61.24 6.98
Breast 70.33 5.10 3 1.40 0.007 0.01 1.92 0.02 58.42 1.78
Car 73.43 6.11 5 0.82 0.057 0.05 3.05 0.00 45.81 7.16
Contact 70.83 28.81 7 0.92 0.001 0.00 1.78 0.02 71.67 30.54
Diabetes 67.32 6.75 4 1.34 0.032 0.01 3.01 0.03 56.56 3.41
Iris 95.33 5.44 4 0.52 0.004 0.00 1.17 0.00 90.41 5.48
Labor 92.67 14.05 9 1.26 0.005 0.00 1.95 0.02 88.89 13.72
Lymph 88.51 10.00 19 3.37 0.016 0.00 2.86 0.00 81.94 15.5
Mushroom 98.15 0.32 12 0.00 4.049 0.64 24.27 0.03 96.58 0.31
Post-oper 70.00 17.41 11 3.34 0.008 0.00 2.03 0.02 54.45 14.21
Tic-tac-toe 65.34 6.16 6 2.13 0.101 0.06 4.73 0.06 95.44 3.85
Vote 95.31 2.72 11 2.26 0.034 0.01 3.09 0.03 93.82 2.84
Wined 98.87 2.34 9 0.53 0.007 0.00 1.82 0.03 98.65 2.31
Zoo 95.00 6.99 10 0.70 0.020 0.01 2.20 0.03 91.76 13.65

Average 84.02 8.16 8 1.395 0.320 0.06 4.61 0.02 78.25 8.70

From the experimental results, the ECARG algorithm outperforms CBA, CMAR, and FACA
in terms of accuracy rate and the number of generated rules. A key achievement of the ECARG
algorithm is that the technique generates valid rules with 100% confidence to build classifiers. The high
confidence demonstrates the high possibility of class occurrences occurring in an itemset. Therefore,
the ECARG algorithm produces a small classifier but gives high accuracy. While the CBA, CMAR,
and FACA algorithms build classifiers from CARs that meet the minimum confidence threshold,
some of the CARs have low confidences so they may predict incorrect classese and then the accuracies
of CBA, CMAR, and FACA are lower than the proposed algorithm in the most dataset.

Moreover, ECARG outperforms the others in terms of building time and memory consumption.
This key achievement applies simple set theories, i.e., intersection and set difference, processing on
vertical data, which can potentially reduce time and memory consumption. Furthermore, the search
space can be reduced as unnecessary transactions are eliminated in each stage and, therefore,
the classifier building time is minimized.

6. Conclusions

This paper proposes algorithms to enhanced associative classification. Unlike the traditional
algorithms, the proposed algorithms do not need a sorting and pruning process. Candidate generation
is carried out by attempting to select a first general rule with the highest accuracy. Moreover, a search
space is reduced early by cutting down items with low statistical significance. Furthermore, a vertical

Algorithms 2020, 13, 299 14 of 15

data format, intersection, and set difference methods are applied to calculate support and confidence
and to remove unnecessary transaction IDs, decreasing computation time and memory consumption.

The experiments were conducted on 14 UCI datasets. The experimental results show that the
ECARG algorithm outperforms the CBA, CMAR, and FACA algorithms in terms of accuracy by
4.78%, 17.79%, and 1.35%, respectively. Furthermore, ECARG generates smaller rules than the other
algorithms in almost all datasets. In addition, ECARG results in the most optimal classifier-generating
time and memory usage on average. We can conclude that the proposed algorithm gives a compact
classifier with a high accuracy rate, improves computation time, and reduces memory usage.

However, the ECARG algorithm does not well perform on imbalanced datasets, such as Breast,
Car, Diabetes, and Post-operative. This is because the ECARG algorithm tends to find 100% confidence
CARs and to eliminate unnecessary transactions. Therefore, ruleitems belonging to minority classes
will not meet the minimum support threshold or 100% confidence and they are eliminated accordingly.
Consequently, the classifier cannot classify the minority class correctly.

Author Contributions: Methodology, C.T.; supervision, P.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was financially supported by Mahasarakham University (Grant year 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yao, L.; Mao, C.; Luo, Y. Graph convolutional networks for text classification. In Proceedings of the
AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 7370–7377.

2. Jukic, S.; Saracevic, M.; Subasi, A.; Kevric, J. Comparison of Ensemble Machine Learning Methods for
Automated Classification of Focal and Non-Focal Epileptic EEG Signals. Mathematics 2020, 8, 1481. [CrossRef]

3. Adamović, S.; Miškovic, V.; Maček, N.; Milosavljević, M.; Šarac, M.; Saračević, M.; Gnjatović, M. An efficient
novel approach for iris recognition based on stylometric features and machine learning techniques.
Future Gener. Comput. Syst. 2020, 107, 144–157. [CrossRef]

4. Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Müller, E.; Kloft, M.
Deep one-class classification. In Proceedings of the International Conference on Machine Learning,
Stockholm, Sweden, 10–15 July 2018; pp. 4393–4402.

5. Liu, B.; Yiming, M.; Hsu, W. Integrating Classification and Association Rule Mining. In Proceedings of the
Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 27–31
August 1998.

6. Abdelhamid, N. Multi-label rules for phishing classification. Appl. Comput. Inform. 2015, 11, 29–46.
[CrossRef]

7. Abdelhamid, N.; Ayesh, A.; Thabtah, F. Phishing detection based associative classification data mining.
Expert Syst. Appl. 2014, 41, 5948–5959. [CrossRef]

8. Jabbar, M.; Deekshatulu, B.; Chandra, P. Heart Disease Prediction System using Associative Classification
and Genetic Algorithm. arXiv 2013, arXiv: 1303.5919.

9. Singh, J.; Kamra, A.; Singh, H. Prediction of heart diseases using associative classification. In Proceedings of
the 5th International Conference on Wireless Networks and Embedded Systems (WECON), Rajpura, India,
14–16 October 2016; pp. 1–7. [CrossRef]

10. Wang, D. Analysis and detection of low quality information in social networks. In Proceedings of the 2014
IEEE 30th International Conference on Data Engineering Workshops, Chicago, IL, USA, 31 March–4 April
2014; pp. 350–354. [CrossRef]

11. Hadi, W.; Aburub, F.; Alhawari, S. A new fast associative classification algorithm for detecting phishing
websites. Appl. Soft Comput. 2016, 48, 729–734. [CrossRef]

12. Hadi, W.; Issa, G.; Ishtaiwi, A. ACPRISM: Associative classification based on PRISM algorithm. Inf. Sci.
2017, 417, 287–300. [CrossRef]

http://dx.doi.org/10.3390/math8091481
http://dx.doi.org/10.1016/j.future.2020.01.056
http://dx.doi.org/10.1016/j.aci.2014.07.002
http://dx.doi.org/10.1016/j.eswa.2014.03.019
http://dx.doi.org/10.1109/WECON.2016.7993480
http://dx.doi.org/10.1109/ICDEW.2014.6818354
http://dx.doi.org/10.1016/j.asoc.2016.08.005
http://dx.doi.org/10.1016/j.ins.2017.07.025

Algorithms 2020, 13, 299 15 of 15

13. Rajab, K.D. New Associative Classification Method Based on Rule Pruning for Classification of Datasets.
IEEE Access 2019, 7, 157783–157795. [CrossRef]

14. Nguyen, L.; Nguyen, N.T. An improved algorithm for mining class association rules using the difference of
Obidsets. Expert Syst. Appl. 2015, 42, 4361–4369. [CrossRef]

15. Song, K.; Lee, K. Predictability-based collective class association rule mining. Expert Syst. Appl. 2017, 79, 1–7.
[CrossRef]

16. Alwidian, J.; Hammo, B.H.; Obeid, N. WCBA: Weighted classification based on association rules algorithm
for breast cancer disease. Appl. Soft Comput. 2018, 62, 536–549. [CrossRef]

17. Alwidian, J.; Hammo, B.; Obeid, N. FCBA: Fast Classification Based on Association Rules Algorithm. Int. J.
Comput. Sci. Netw. Secur. 2016, 16, 117.

18. Abdelhamid, N.; Jabbar, A.A.; Thabtah, F. Associative classification common research challenges.
In Proceedings of the 2016 45th International Conference on Parallel Processing Workshops (ICPPW),
Philadelphia, PA, USA, 16–19 August 2016; pp. 432–437.

19. Ogihara, Z.P.; Zaki, M.; Parthasarathy, S.; Ogihara, M.; Li, W. New algorithms for fast discovery of
association rules. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data
Mining, Newport Beach, CA, USA, 14–17 August 1997.

20. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International
Conference Very Large Data Bases, VLDB, Santiago, Chile, 12–15 September 1994; Volume 1215, pp. 487–499.

21. Quinlan, J. C4.5: Programs for Machine Learning; Morgan Kaufmann Publisher, Inc.: Los Altos, CA, USA, 1993.
22. Li, W.; Han, J.; Pei, J. CMAR: Accurate and efficient classification based on multiple class-association

rules. In Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, CA, USA,
29 November–2 December 2001; pp. 369–376.

23. Thabtah, F.; Cowling, P.; Peng, Y. MCAR: Multi-class classification based on association rule. In Proceedings
of the 3rd ACS/IEEE International Conference on Computer Systems and Applications, Cairo, Egypt,
6 January 2005. [CrossRef]

24. Zaki, M.; Gouda, K. Fast Vertical Mining Using Diffsets. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August
2003; ACM: New York, NY, USA, 2003; pp. 326–335. [CrossRef]

25. Hadi, W. ECAR: A new enhanced class association rule. Adv. Comput. Sci. Technol. 2015, 8, 43–52.
26. Mutter, S. Class JCBA. 2013. Available online: https://github.com/bnjmn/weka (accessed on 30

September 2018).
27. Padillo, F.; Luna, J.M.; Ventura, S. LAC: Library for associative classification. Knowl.-Based Syst. 2019,

193, 105432. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2950374
http://dx.doi.org/10.1016/j.eswa.2015.01.002
http://dx.doi.org/10.1016/j.eswa.2017.02.024
http://dx.doi.org/10.1016/j.asoc.2017.11.013
http://dx.doi.org/10.1109/AICCSA.2005.1387030
http://dx.doi.org/10.1145/956750.956788
https://github.com/bnjmn/weka
http://dx.doi.org/10.1016/j.knosys.2019.105432
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Basic Definitions
	The Proposed Algorithm
	Experimental Setting and Result
	Conclusions
	References

