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Abstract: In hybrid mixed-flow workshop scheduling, there are problems such as mass production,
mass manufacturing, mass assembly and mass synthesis of products. In order to solve these problems,
combined with the Spark platform, a hybrid particle swarm algorithm that will be parallelized is
proposed. Compared with the existing intelligent algorithms, the parallel hybrid particle swarm
algorithm is more conducive to the realization of the global optimal solution. In the loader man-
ufacturing workshop, the optimization goal is to minimize the maximum completion time and a
parallelized hybrid particle swarm algorithm is used. The results show that in the case of relatively
large batches, the parallel hybrid particle swarm algorithm can effectively obtain the scheduling plan
and avoid falling into the local optimal solution. Compared with algorithm serialization, algorithm
parallelization improves algorithm efficiency by 2–4 times. The larger the batches, the more obvious
the algorithm parallelization improves computational efficiency.

Keywords: hybrid mixed-flow workshop; hybrid particle swarm algorithm; algorithm parallelization;
computational efficiency

1. Introduction

The traditional shop scheduling model takes single shop scheduling as the goal, but, in
actual discrete manufacturing [1], the job shop and the flow shop are closely connected. The
production process includes parts processing, component assembly and product assembly.
In this production environment, optimizing one of the workshops leads to a mismatch
between the progress of parts processing and subsequent component-assembly and final
assembly workshops, resulting in a large amount of inventory and prolonging the product
cycle, affecting the production process. Therefore, in the face of the problem of hybrid
mixed-flow workshop scheduling, it is necessary to establish integrated scheduling of
multiple workshops from the perspective of overall optimization.

The current solutions to the hybrid workshop scheduling problem include accurate
calculations for low-complexity and small-scale problems [2–4] and heuristic algorithms.
Due to accurate calculation, the calculation time increases exponentially with the complex-
ity of the workshop scheduling problem and the application value is limited. For heuristic
algorithms, it performs well on today’s workshop scheduling problems, so heuristic algo-
rithms are widely used today. Smutnicki [5] proposed an approximation algorithm based
on tabu search, with the goal of minimizing processing time and studying a mixed flow
shop with a limited intermediate buffer area. Wang et al. [6] proposed a multi-objective
genetic algorithm to study the integrated scheduling problem of flow shop with buffer.
Seidgar et al. [7] considered the coordination trade-off model of maximum process time
and average completion time and used intelligent algorithms to solve and study the opti-
mization of two-stage flow-shop scheduling with assembly tasks. Na et al. [8] proposed
an evolutionary algorithm using three-segment coding to study the production planning
and scheduling of mixed-flow products in flexible workshops with processing tasks and
assembly tasks. Zhang et al. [9] used an optimized genetic algorithm to solve the problems
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of minimum total completion time and long equipment idle time for single-piece and
small-batch hybrid workshop scheduling. Teymourian [10] faced the problem of assembly
job mixed-flow shop scheduling, to the artificial immune algorithm they added the ant
colony algorithm to change the antibody to avoid falling into the local minimum and obtain
a better scheduling plan. Lou et al. [11] proposed an immune cloning algorithm to solve
the problem when studying the optimization problem of hybrid workshop scheduling and
achieved an effective solution. Hu et al. [12] proposed a genetic algorithm for multi popu-
lation parallel and population screening and updating in a phased convergence manner
to study the hybrid mixed-flow workshop scheduling problem. Li et al. [13] investigated
hybrid mixed-flow workshop scheduling by proposing a hybrid genetic algorithm with the
goal of minimizing cache area inventory. Lu et al. [14] proposed the game particle swarm
optimization algorithm to study the hybrid mixed-flow workshop scheduling with the
goal of parts shop uniformity and minimum inventory. Wang [15] proposed an immune
genetic algorithm to study hybrid mixed-flow workshop scheduling with the objective of
minimizing the maximum completion time. Tang et al. [16] proposed an improved immune
genetic algorithm that introduced a multi-agent negotiation mechanism and simulated
annealing algorithm to study the mixed scheduling problem of job shop and flow shop.

Intelligent algorithms are widely used in solving actual complex engineering prob-
lems. Nejah et al. [17] introduced the advantages and disadvantages of different intelligent
algorithms in 3D indoor deployment problems and evaluated the performance of different
intelligent algorithms on 3D indoor deployment problems. Mnasri et al. [18] introduced
the application and analysis of existing hybrid intelligent algorithms on the deployment
of sensor nodes in wireless sensor networks. The particle swarm optimization algorithm
(PSO) stands out among many intelligent algorithms for its advantages, such as high
solution accuracy and fast convergence speed. Zhao et al. [19] proposed an improved
particle swarm algorithm with decreasing disturbance index on the multi-objective job
shop scheduling problem. Mansour et al. [20] faced the problem of shop scheduling with
congestion constraints and proposed a combination of a local search algorithm based on
probabilistic perturbation and a particle swarm algorithm. Experiments show that the
improved algorithm can quickly obtain the best solution; Jamrus et al. [21] proposed a
hybrid genetic particle swarm optimization algorithm for flexible job shop scheduling.
Experiments show that the proposed algorithm has high solution quality and good practi-
cability. The particle swarm optimization algorithm has a wide range of applications in
solving practical problems. Therefore, this paper also uses an improved particle swarm
algorithm to solve the problem.

Spark [22,23] is a memory-based distributed computing framework. Comparing the
Spark and Hadoop platforms, Hadoop is suitable for offline batch processing of files,
but is not suitable for iterative operations. When Spark deals with iterative problems,
it does not need to store the results of the iterations to disk, which makes up for the
inefficiency of Hadoop Mapreduce that reads operations from the disk every time it
deals with iterative problems. When programming Spark in parallel, the input data are
decomposed into multiple batch processing fragments, the data are converted into RDD
(resilient distributed datasets) and the data are encapsulated in RDD. Through the parallel
operation of RDD, the parallel operation of data processing is realized [24]. The basic idea
of realizing the parallel particle swarm algorithm is to convert the particle swarm to RDD
and initialize it to multiple small populations of the same size. After parallel processing
of these small populations, a feasible solution is finally obtained [25,26]. According to the
idea of parallelization, a parallel hybrid particle swarm optimization algorithm is proposed
for the mixed-flow hybrid workshop scheduling problem.

The existing intelligent algorithm adopts three-stage coding [13,15] to solve the hybrid
mixed-flow workshop scheduling problem, which is only applicable to the case of a
small batch. Nowadays, the scale and complexity of workshop scheduling are constantly
increasing. In the case of relatively large batches, it is easy to fall into the problem of local
optimization using its existing three-stage coding intelligent algorithm. Therefore, in the
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case of a large batch, three-stage coding is not used in the problem of hybrid mixed-flow
workshop scheduling. Each workshop is coded independently for independent scheduling.
The independent scheduling optimization of the workshop leads to a too long running time
of the algorithm. Therefore, the algorithm is improved by combining Spark to realize the
parallelization of the algorithm and reduce the running time of the algorithm. In this paper,
a hybrid mixed-flow workshop scheduling model is established. In the case of a large batch,
a hybrid particle swarm optimization parallelization algorithm based on Spark is proposed
to avoid the algorithm falling into local optimization and the workshop scheduling scheme
can be obtained effectively and quickly. It has important theoretical significance and
application value to solve the problem of hybrid mixed-flow workshop scheduling.

2. Problem Description and Modeling

The hybrid mixed-flow workshop is composed of three parts: the first part is the
parts-processing workshop, which is produced in batches; the second part is the flow shop
of the component-assembly workshop, which is assembled in units; the third part is the
flow shop for the final assembly of the product, which is assembled in units, as shown in
Figure 1 below.

Figure 1. Hybrid mixed-flow workshop.

The parts-processing workshop consists of j machines, processing i parts; the component-
assembly workshop is composed of k assembly stations, producing x components; the
product-assembly workshop consists of s assembly stations to produce y products. For the
convenience of research, the following assumptions are given [13]:

(1) At the beginning, all equipment and assembly stations are ready to perform produc-
tion tasks at any time.
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(2) Different types of parts can be produced in the workshop and the sequence, processing
machine and time in the production process of the parts are known.

(3) The assembly time of different types of parts and products at the stations on the
assembly line is known.

(4) The process time of the same type of products, components and parts on the machine
and the workstation is the same.

(5) In the job shop, only the processes of the same part have process constraints and there
are no process constraints between different parts.

(6) The process time of the process includes the preparation time and transportation time
of the process.

(7) The parts-process workshop processes a batch of parts for the components-assembly
workshop and the product-assembly workshop; or the parts-assembly workshop
processes certain parts for the assembly station of the product-assembly workshop.
Moreover, if the assembly station does not need more, then these parts or components
are temporarily stored in the buffer zone. Ignore the delivery time.

The objective function is to minimize the maximum completion time and the model is
as follows:

G = min(Ei,j + Ex,k + Ey,s) (1)

In Equation (1), Ei,j represents the maximum completion time when all parts i are
processed on j machines in the parts-processing workshop; Ex,k represents the maximum
completion time of all components in the assembly shop x in k stations; Ey,s represents
the maximum completion time for all products y in the product-assembly workshop to
complete assembly at s workstations.

In the actual production process, the parts-processing workshop must meet the process
constraints and equipment constraints. Parts are processed in corresponding machines and
processes in accordance with process constraints and equipment constraints. In the assem-
bly process, the component-assembly workshop and the product-assembly workshop, in
accordance with the process and station constraints, operate at the corresponding assembly
position and complete the pre-process before proceeding to the next process operation. The
completion time of the workpiece at the station on the assembly line should meet the sum
of the completion time of the previous product at this station and the maximum completion
time of the workpiece at the previous station and the processing time at the current station.
The constraints are as follows.

Parts-processing workshop:

Equipment constraints : Ei,j − ti,j + r× ci,h,j ≥ Ei,h (2)

Process constraints : Eg,i − ti,g + r× di,g,j ≥ tg,i (3)

limr− > +∞

Component-assembly workshop and product-assembly workshop:

Station constraint : Ex,k − tx,k + r(1− c′x,h,k) ≥ Ex,h (4)

Process constraints : Eg,k − Ex,k + r(1− d′x,g,k) ≥ tg,k (5)

TIme constraint : Ex,k = tx,k + max(Ex−1,k, Ex,k−1) (6)

limr− > +∞

In Equations (2) and (3), the value of ci,h,j is 1 and 0; 0 means that the device Mh is
placed in front of Mj to process Ni and 1 means other. The value of di,g,j also has two values
of 0 and 1; 0 means that the workpiece Ni is placed in front of the Ng workpiece and is
processed by the Mj equipment and 1 means others. Ei,j is the time when the part Ni is
completed on the machine Mj; ti,j is the time required to process the part Ni on the machine
Mj. In Equations (4)–(6), the values of c′i,h,j are 0 and 1; 1 means that the workstation h is



Algorithms 2021, 14, 262 5 of 13

placed in front of k to assemble the workpiece x, 0 means other. The values of d′i,g,j are 0
and 1; 1 means that the workpiece x is placed before g and works on workstation k and 0
means others.

At present, the intelligent algorithm deals with the hybrid mixed-flow workshop
scheduling model. The algorithm uses three-level coding [15] for unified scheduling and
solving. However, as the batches of parts and assembly components and products become
larger and larger, this kind of coding can easily fall into a local optimal situation. Therefore,
in order to solve this problem, each workshop is independently coded. Independently
optimize scheduling for each workshop. This process increases the complexity of the
algorithm and increases the running time. Therefore, the proposed algorithm is parallelized
to reduce the running time of the algorithm and improve the efficiency of the algorithm.

3. Parallelized Hybrid Particle Swarm Algorithm Based on Spark
3.1. Parallel Hybrid Particle Swarm Algorithm

The particle swarm algorithm is a simulation of bird predation. In the process of
solving, the solution of each particle corresponds to the position of the particle. The particle
swarm algorithm has two attributes, speed and position. Speed represents the speed of
movement and position represents the direction of movement.

The shop scheduling problem is a discrete optimization problem, the solution space
is in different continuous domains. Because the traditional particle swarm algorithm
particles fall into update stagnation and fall into the local optimal situation, combine the
genetic algorithm and particle swarm algorithm to solve the shortcomings of traditional
particle swarm algorithm and construct a parallelized hybrid particle swarm algorithm.
The algorithm flow is as shown in Figure 2.

The pseudo code of the Algorithm 1 is as follows.

Algorithm 1. Hybrid Particle Swarm Algorithm

1 *Initialization*/

2

Generate N random workpiece sequences in each workshop according to the number of
input products; solve the objective function value k after the crossover operation,
according to Equations (2)–(6); max_iter is the maximum number of iterations; i
corresponds to each particle population; ii corresponds to the number of iterations.

3 Set initial values for: max_ iter, N; i, ii

4
Initialize and solve the particle swarm’s own optimal m and global optimal value n
according to the default order of the workpiece;

5 for ii in rang(max_iter):
/*The particles and the global optimal particles are cross-operated*/

6 for i in rang(N):
7 Cross operation between each particle and the global optimal particle;
8 Update N;
9 Solve the objective function after crossover: k = fitness(N);

10
Output the optimal new_n value of the most global particle swarm; its own optimal
value new_m

/*Update m, n*/
11 If new_n < n then n = new_n; If new_m < m then m = new_m;
13 end for

/*The particle and its own optimal history particle perform cross operation*/
14 for i in rang(N):
15 Each particle crosses with its own optimal history particle
16 Update N;
17 Solve the objective function after crossover: k = fitness(N);

18
Output the optimal new_n value of the most global particle swarm; its own optimal

value new_m
/*Update m, n*/
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19 If new_n < n then n = new_n; If new_m < m then m = new_m;
20 end for

/*Single-site mutation for each particle swarm */
21 for i in rang(N):
22 Random single-site mutations for each particle swarm;
23 Update N;
24 Calculate the objective function value after mutation: k = fitness(N);

25
Output the optimal new_n value of the most global particle swarm; its own optimal

value new_m
/*Update m, n*/

26 If new_n < n then n = new_n; If new_m < m then m = new_m;
27 end for
28 end for
29 /*Output*/
30 Output the global optimal k and corresponding N workpiece production sequencing

Figure 2. The main process of parallelized hybrid particle swarm optimization.
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3.2. Detailed Design of the Algorithm
3.2.1. Coding Scheme Design

The research problem is mixed mixed-flow workshop scheduling, in which there
are job workshops and flow workshops and the coding methods in genetic coding are
compared. The three workshops are designed with a unified coding. After the coding
design is completed, the workshops are independently optimized and dispatched. First,
determine the minimum production ratio of the number of products produced according
to actual needs. According to the minimum production ratio, determine the minimum
production ratio for the product-assembly workshop, component-assembly workshop and
parts-processing workshop, then perform independent coding. In the workshop, letters
and numbers are used to represent products, components and parts. The same letters
represent the same products, components and parts. If we need to put into production,
the P, Q and R products are 2, 1 and 2; the number of required components X and Y is 2
and 3; the parts required for parts processing A, B and C are 2, 1 and 2. Then, the coding
method in the product-assembly workshop can be (P1, P2, Q1, R1, R2); the coding of the
component-assembly workshop is (X1, X2, Y1, Y2, Y3); the coding of the part processing
workshop is (A1, A2, A3, B1, C1, C2, C3).

3.2.2. Crossover and Mutation

Enter the number of artifacts to generate N (total number of particles) random artifact
sequences. After crossover and mutation with the global optimal value and its own optimal
value, respectively, filter and update the one that can produce a better target value particle.
In this step, the crossover and mutation operations can be regarded as random walk
operations on the permutation group of the workpieces arranged in order. The mutation is
a single-step walk of exchange and the crossover can be a walk formed by a combination
of multiple basic exchanges. This step is similar to the speed update in the classic PSO.
Whether to perform a walk is only True or False in this algorithm. This step simulates the
weighting factor [27] in the classic PSO. Crossing with the local (self) and global optimal
values, respectively, simulates the two velocity terms in the classic PSO. Both the mutation
and crossover operations have a certain degree of randomness, which ensures that a single
particle can jump out of the local optimal solution possibility.

3.2.3. Parallelization of Hybrid Particle Swarm Algorithm

Pyspark is a tool of Spark and a library of sparkAPI written in python provided by
Spark. Parallelization is achieved through Pyspark. First, the PSO coding is converted
into a parallel RDD, then the process of solving the objective function is applied to all the
particles through the Map operation provided by Spark. The time for each particle to be
transformed into the objective function is summarized to obtain the optimal result.

4. Instance Verification
4.1. Examples of Mixed Mixed-Flow Workshop Scheduling

Now, we take the loader manufacturing workshop as an example [15] to verify the
model and algorithm. The production system is composed of the parts-processing work-
shop, component-assembly workshop and product-assembly workshop. The four products
produced are Q1, Q2, Q3, and Q4. The corresponding parts and component demand matrix
of the products are shown in Table 1, below.

The parts-processing workshop mainly produces eight kinds of self-made parts. The
set of parts is {A, B, C, D, E, F, G, H} and the set of machines in the workshop is {M1, M2,
· · · , M10}. The parts in batches are processed on the machine. The processing time and
process sequence are shown in Table 2 below and the time unit is s.
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Table 1. Product demand matrix.

Parts Q1 Q2 Q3 Q4 X Y

A 1 1 / / / /
B / / 1 1 / /
C 1 1 / / / /
D / / 1 1 / /
E 1 1 / / / /
F / / 1 1 / /
G / / / / 1 /
H / / / / / 1

Component X 1 1 / / / /
Component Y / / 1 / / /

Note: “/” means that the product has no relationship with the required parts.

Table 2. Parts-processing time and process sequence.

Parts

Machine A B C D E F G H

M1 300.1 375.1 0 0 0 0 0 0
M2 375.2 450.2 0 0 0 0 0 0
M3 375.3 450.3 0 0 0 0 0 0
M4 0 0 450.1 450.1 0 0 450.1 525.1
M5 0 0 0 0 450.1 525.1 375.2 450.2
M6 0 0 525.2 525.2 0 0 0 0
M7 0 0 0 0 525.2 450.2 0 0
M8 0 0 375.3 375.3 375.3 375.3 0 0
M9 0 0 0 0 0 0 600.3 600.3
M10 0 0 375.4 375.4 600.4 600.4 0 0

The component-assembly workshop is mainly responsible for the assembly of com-
ponents X and Y. The assembly time and steps are shown in Table 3 below and the unit
is s.

Table 3. Component-assembly process and time.

Process Component X Component Y

1 147 126
2 126 147
3 126 168
4 105 105
5 157 168
6 126 105
7 168 168
8 147 126
9 147 168

The final assembly line of the product has 33 assembly stations and the corresponding
assembly time and procedures for products Q1, Q2, Q3 and Q4 are shown in Table 4 below
and the unit is s.
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Table 4. Product final assembly process and time.

Process Q1 Q2 Q3 Q4

1 105 84 91 105
2 140 147 133 126
3 154 161 140 175
4 140 126 140 147
5 133 147 126 140
6 147 154 147 161
7 126 133 133 140
8 147 140 154 147
9 147 133 133 140
10 140 140 133 140
11 140 147 147 154
12 154 161 147 154
13 126 133 133 126
14 147 154 147 161
15 126 133 133 140
16 140 147 140 133
17 147 154 140 147
18 140 147 147 140
19 140 133 140 133
20 154 161 147 161
21 140 133 140 168
22 168 161 161 168
23 161 161 154 147
24 168 175 161 168
25 161 168 161 168
26 140 147 147 147
27 126 133 140 133
28 126 126 126 119
29 154 154 147 140
30 161 154 154 161
31 161 147 168 161
32 140 133 126 133
33 161 168 161 161

During the planning period, the tasks for the production of products Q1, Q2, Q3 and
Q4 are divided into 320 units, 160 units, 320 units and 320 units. The minimum production
ratio is 2:1:2:2. According to the known conditions, it can be known that the required
parts X and Y are divided into 480 and 640 and the minimum production ratio is 3:4. The
required parts A–H are 480, 640, 480, 640, 480, 640, 480 and 640, respectively, and the
minimum production ratio is 3:4:3:4:3:4:3:4. Calculate according to the parallelized particle
swarm algorithm, set the size of the population to 20 and the number of iterations to 300.

It runs in a 64-bit stand-alone Windows 10 operating system, 32 G running memory,
10 cores and 20 threads. In Spark’s Local mode, parallel computing of algorithms is
realized. In the case of local[N] mode, the optimal plans for the assembly scheduling of
parts, components and products are obtained, respectively, {E1, G1, F1, D1, G2, D2, F2, B1,
F3, C1, F4, A1, H1, A2, E2, C2, B2, A3, D3, H2, H3, G3, B3, D4, H4, B4, C3, E3}; {X1, X2, Y1,
Y2, Y3, Y4, X3}; {Q3, Q1, Q1, Q3, Q2, Q4, Q4}; the total completion time is 15,508 s. Using
the immune genetic algorithm IA [15], the total completion time is 15,679 s. Using the PSO
algorithm, the total completion time is 15,660 s. Figure 3 shows the evolution curve of
this algorithm.
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Figure 3. Algorithm evolution curve.

In this paper, the parallel hybrid particle swarm optimization (PHPSO), IA and PSO
algorithms are set to the same number of iterations of 50. Cbest is the optimal value of
the operation, Aver is the average value of the operation and the relative deviation of the
value dev [28]. Among them, dev1 is the comparison between PHPSO and IA and dev2 is
the comparison between PHPSO and PSO. If dev is positive, the solution obtained by the
compared algorithm is better. If dev is negative, the solution obtained by PHPSO is better.
Table 5 shows algorithm comparison.

Table 5. Algorithm comparison.

PHPSO IA PSO

Cbest(/s) Aver(/s) Cbest(/s) Aver(/s) Cbest(/s) Aver(/s) dev1(%) dev2(%)
15,508 15,526.92 15,688 15,734.38 15,660 15,682.4 −1.16 −0.98

It can be seen from Table 5, that PHPSO finds the optimal value within 50 iterations of
running time and the IA and PSO algorithms cannot find the optimal solution, indicating
that the PHPSO algorithm has a good ability to find the optimal solution. The average
value obtained by PHPSO in 50 iterations is smaller, indicating that the algorithm has a
strong global search ability, avoiding the limitation of the algorithm that is easy to fall into
the local optimum and the algorithm has strong convergence.

The parallel hybrid particle swarm optimization algorithm is compared with immune
genetic algorithm IA and PSO. A stand for IA or PSO algorithms. The comparison results
of the largest completion time of parts-, components- and product-assembly workshops are
shown in Table 6. The deviation obtained by the hybrid particle swarm algorithm solution
and the IA solution is

Dev = [(A− CPHPSO)/CPHPSO]× 100% (7)
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Table 6. Comparison of results.

Algorithm Workshop Processing Time/s Dev/%

Parts 7500 0
PHPSO Component 2247 0

Product 5761 0

Parts 7650 2
IA Component 2247 0

Product 5782 0.36

Parts 7575 1
PSO Component 2247 0

Product 5838 1.34

From Table 6, we can see that the PHPSO algorithm used in this article has a better
solution than the GA algorithm and the PSO algorithm in the parts workshop and product-
assembly workshop. Through the analysis of the results, the parallelized hybrid particle
swarm optimization algorithm can achieve overall optimization.

4.2. Computing Performance

To test the parallelization performance of the hybrid particle swarm algorithm, set
the population to 20 and the number of iterations to 40. Compare the running time of
algorithm serialization and algorithm parallelization. The tested data are as follows: when
the number of products is 7, the ratio of products is [2:1:2:2]; when the number of products
is 10, the ratio of products is [2:3:2:3]; when the number of products is 14, the ratio of
products is [3:4:5:2]. Compared with the running time of algorithm parallelization and
algorithm serialization, the computing speed is greatly improved by 2–4 times. As the
number of products input increases, the speed increases more obviously, reflecting the
advantage of the Spark platform in processing a large amount of data. The running time of
the algorithm is shown in Figure 4 below.

Figure 4. Algorithm running time.



Algorithms 2021, 14, 262 12 of 13

4.3. Results Discussion

In the case of a large batch in the hybrid mixed-flow workshop scheduling problem, the
algorithm in this paper can effectively solve the job shop scheduling problem and avoid the
algorithm falling into local optimization. Combined with the Spark platform, the parallel
design of the algorithm is realized. Compared with the serial operation of the algorithm,
the parallel design of the algorithm improves the efficiency of the algorithm. When the
bulk becomes larger, the demand data are also more complex and the enhancement of
the efficiency of the algorithm is also more obvious, in line with the advantages of the
Spark platform for big data processing. This paper also has limitations. Because this
paper is a single objective optimization, there are many influencing factors in the actual job
shop scheduling, such as inventory cost, so the next research should apply the proposed
algorithm to the job shop scheduling of multi-objective optimization.

5. Conclusions

In this paper, a parallel hybrid particle swarm optimization algorithm is proposed
for hybrid mixed-flow workshop scheduling problem. The Spark platform is combined
with intelligent algorithms to solve the problem of workshop scheduling in high-volume
situations. This can provide some reference for solving large-scale data processing in
workshop scheduling.

In the future, it is necessary to apply the parallel hybrid particle swarm algorithm to
the multi-objective shop scheduling problem. Consider combining the intelligent algorithm
for solving multi-objectives with the algorithm in this paper to improve it, so that it can be
applied to the problem of multi-objective workshop scheduling.
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