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Abstract: This paper investigated the flexible job-shop scheduling problem with the heat treatment
process. To solve this problem, we built an unified mathematical model of the heat treatment process
and machining process. Up to now, this problem has not been investigated much. Based on the
features of this problem, we are intended to minimize Cmax, maximize the space utilization rate of
heat treatment equipment, and minimize the total delay penalty to optimize the scheduling. By taking
the dynamic process arrival under consideration, this paper proposed a set of decoding rules based on
the heat treatment equipment volume and job delivery date to achieve a hybrid dynamic scheduling
solution during one scheduling procedure. When the utilization rate of heat treatment equipment
volume is maximized, and the job delivery date is taken under consideration, it is preferred to
minimize the number of workpiece batches in the same job, and reduce the waiting time of the
pending job. In combination with the improved adaptive non-dominated genetic algorithm, we
worked out the solution. Furthermore, we verified the effectiveness of the proposed decoding rules
and improved algorithm through algorithm comparison and calculation results. Finally, a software
system for algorithm verification and algorithm comparison was developed to verify the validity of
our proposed algorithm.

Keywords: heat treatment process; decoding based on the equipment volume and delivery date;
non-dominant genetic algorithm; the utilization rate of heat treatment equipment volume

1. Introduction

Flexible Job-shop Scheduling Problem (FJSP) is always deemed as the scheduling
problem closest to actual production by a majority of scholars and enterprises, primarily
used to solve the scheduling problem that only one workpiece can be processed by a single
equipment such as machining in the workshop at a certain point of time. Nevertheless, in
actual production process, mechanical parts not only need producing through machining and
other processes, but batch heat treatment process is also involved, as shown in Figure 1. In
view of the above fact, traditional job plan scheduling often only takes machining process
into account, regards heat treatment process as outsourcing, only gives it adequate waiting
time, and believes this heat treatment process can be replaced. Apparently, the method of
replacing heat treatment process with adequate pure waiting time fails to present more
accurate heat treatment plan, accurate heat treatment completion time of the work piece
is unavailable through subsequent machining process, and the job plan ends up lacking
instructive significance.

The difference between heat treatment process of mechanical workpiece and other
machining process lies in that machining process is characterized by one machining equip-
ment only processing one workpiece at a certain point of time, but heat treatment process
is characterized by one heat treatment equipment processing a batch of workpieces simul-
taneously at a certain point of time, this batch of workpieces have the same heat treatment
conditions, and the total volume of this batch of workpieces does not exceed maximum
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capacity of this heat treatment equipment. The heat treatment process method considerably
differs from batch process of the last testing or cleaning process of semiconductor parts,
the batch process of semiconductor parts belongs to the last process, and any type of parts
can be put into the batch processing equipment for processing simultaneously, whereas
mechanical heat treatment process is an intermediate part, followed by other processes
afterwards, and only workpieces with the same or similar heat treatment process can be
combined and put into the same heat treatment equipment for processing.
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In response to the above flexible job-shop scheduling problem with heat treatment pro-
cess, this article aims to solve the needs of arranging workpieces on processable equipment
in a reasonable order, and rationally combine the workpieces to process on heat treatment
equipment in a reasonable order, so as to minimize the maximum makespan of workpiece
and maximize the utilization rate of heat treatment equipment, while meeting the delivery
date of workpiece.

2. Literature Review

Classic flexible job-shop scheduling problem (FJSP) has been very compliant with
actual production workshop, and extensively and deeply studied, but in semiconductor
industry, ceramic manufacturing and other fields, flexible job workshop cannot be accu-
rately described because they have batch processing part. Under this, batch scheduling has
gradually caught people’s eyes, under extensive research of people.

Early scholars mostly solved the batch scheduling problem through heuristic rule.
Ikura Y et al. (1986) considered two problems when solving single batch processing
machine, proposed a scheduling rule based on First-Only-Empty with time complexity of
O(n) for the job scheduling problem without deadline, acquired minimum makespan, and
obtained optimal solution; for the scheduling problem with the same job scale and deadline,
considered workpiece assignment date and deadline, proposed a scheduling rule based on
Greedy-Adjusted-Bunching with time complexity of O(n2), gained high-quality scheduling
scheme, and proved high efficiency of both rules [1]. Chandru V et al. (1993) adopted
an optimal branch and bound algorithm to accurately solve single machine and parallel
machine scheduling problem against the research background of the last test operation in
semiconductor manufacturing, and proved the proposed heuristic algorithm through a
large number of experiments, which can obtain better solution within a reasonable cpu
time [2]. On the context of semiconductor-based test aging operation, Uzsoy, R (1994)
considered different production scales when solving batch scheduling problem, indicating
such problems were NP-hard problems. He proposed two heuristic rules, and combined
with branch and bound algorithm to show the ability of obtaining a better solution in
conjunction with experiments [3]. When studying the same constraint problem, Dupont,
L (1998) took minimized average flow time as the optimization target, and proposed a
new DYNA heuristic rule method that if the workpiece size was between 1 and 10, there
were significant advantages, but the advantages were not obvious for large-scale problem
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scheduling results [4]. Azizoglu, M (2000) considered different job processing times and
different job scales when studying batch scheduling problems, and proposed more effective
branch and bound algorithm, to prove through experiments that returns optimal solutions
for problem instances with up to 25 jobs within 30 min of CPU time [5]. Chang and Wang
et al. (2004) studied batch scheduling problems of different job scales, while considering
different arrival time α and different processing time β at the same time, proposed a
heuristic algorithm, with minimum makespan as the optimization target, and concluded
through experimental results that when the ratio of α to β was greater than 1, it had certain
instructive significance [6].

As metaheuristic algorithm such as genetic algorithm (GA) and simulated annealing
algorithm (SA) were emerged and widely applied in research, many scholars used them
in the field of batch scheduling, and verified a well-designed metaheuristic algorithm
could lead to a solution better than heuristic algorithm within a reasonable time through
a large number of experiments. Melouk S et al. (2004) used the simulated annealing
algorithm to solve the scheduling problem of single batch processing machine. Compared
with running results of CPLEX, it featured faster running time and better scheduling
solution, especially manifested in the most significantly shortened makespan under 50–
100 jobs [7]. Damodaran and Manjeshwar et al. (2006) solved batch scheduling problem
of different job scales by using genetic algorithm, and compared with previous SA, GA
can get better solution in a shorter time, with better robustness [8]. Damodaran et al.
(2007) proceeded from the improvement of equipment utilization rate, adopted simulated
annealing algorithm to solve batch scheduling problem of different job sizes, and proved
that the simulated annealing algorithm had faster processing time, by comparing with
CPLEX [9]. Manjeshwar and Damodaran et al. (2009) proposed a heuristic algorithm based
on Johnson’s algorithm and simulated annealing algorithm, while studying flow shop
scheduling problem with two batch processors, verified the effectiveness of algorithm
through random experiments, and applied such algorithm in electronic manufacturing
companies, thus increasing maximum makespan by 20–25% on average through actual
running verification, delivering demonstrative application to actual enterprises [10]. When
studying a two-stage flexible flow shop problem where parallel batch processing equipment
existed at each stage, Gerstl and Mosheiov (2014) [11] proposed a polynomial time dynamic
programming algorithm, considered the optimization target as makespan minimization
and flowtime minimization, but without sufficient instances for verification. Xu et al.
(2012) considered job release time, processing time and job size scheduling issues in batch
scheduling, and verified by introducing waste and idle definitions, using ant colony
algorithm, combining with the proposed candidate list strategy and heuristic information
construction method, comparing GA algorithm experiment that the ant colony algorithm
in combination with candidate list had better robustness, and always better than GA
algorithm, which was more obvious in large-scale job instances [12].

When studying the scheduling problem of single batch processing machine with
different job sizes, Jia and Leung (2014) took wasted space minimization as the optimization
target, max-min ant system algorithm, combined with candidate set strategy and wasted
space-based heuristic pheromone update, introduced specific local search method to obtain
better algorithm performance, and verified superiority of algorithm through a large number
of experiments [13]. When studying batch scheduling problem of flexible flow shop,
Zeng Z et al. (2018) took the maximum makespan, power consumption and material loss
model as the optimization target, established multi-objective optimization model, adopted
hybrid non-dominated genetic algorithm II (NSGA -II) to solve it, and took the actual
paper mill scheduling problem as an example to verify the effectiveness of this method
by comparing manual scheduling [14]. Muter B (2020) studied scheduling problem of
single and parallel batch processing machines, proposed a reconstruction method based
on Dantzig-Wolfe two-layer decomposition parallel batch processing machine, and gave
precise algorithm, so that strict upper and lower limits of parallel problem were available
by using the single processing machine, providing insights for the solutions of follow-up
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researches [15]. Through regarding the waiting time of the workpiece as the scheduling
target, considering the dynamic arrival time, and ensuring the delivery time, Shen Fengping
et al. (2020) figured out this problem with the heuristic algorithm for the batch process in
combination with the particle swarm algorithm. The effectiveness of the algorithm was
verified by simulation [16]. However, they only considered the mechanical batching of
workpieces to be processed in batch limited by the batch machine capacity, but failed to
consider the combination of this workpiece batch with the subsequent workpiece batch
with the similar process, which makes the space utilization rate of the batch machine small.
To minimize the maximum makespan, Liu Rong et al. (2020) figured out this problem
with the integrated block decoding rules and improved genetic algorithm, and verified the
ability of the cluster selection strategy jumping out of the local optimal solution and the
feasibility of the algorithm through simulation [17]. However, they failed to consider the
space utilization rate of the batch machine, and the blind batching of workpieces with the
urgent delivery time may lead to the delay.

In summary, batch scheduling problem has attracted the attention of scholars at home
and abroad, and considerable results have been achieved, but the investigated problems
are much simpler than those tackled by this paper. This paper tackled the FJSP of the heat
treatment process and machining process, which is closer to that occurred in the actual
workshop.

The research background of this paper is aerospace pump valve parts. Their produc-
tion process involves frequent heat treatment, and the heat treatment workshop belongs to
another independent production department. Because this workshop undertakes the heat
treatment job of multiple workshops in the whole plant, and can organize internal tasks of
the heat treatment process by itself, it is very difficult to guarantee the delivery time of a
single product. Although there are many types and large quantities of aerospace pump
valve parts, their material, size and thickness are similar to each other, and these types
have the potential for the batch heat treatment. Changing the current scattered delivery
time for the heat treatment leads to unnecessary waiting and blind batching. Therefore,
it is essential to improve the orientation of the quantity of the part production workshop-
manufactured parts delivered to the heat treatment workshop to satisfy the heat treatment
furnace-enabling conditions. This method is an effective way to address this problem in
this paper.

To solve this problem through optimizing several parameters, such as minimizing the
total job delay penalty, minimizing the maximum workpiece makespan and minimizing the
utilization rate of the heat treatment equipment volume, this paper proposed an improved
non-dominated genetic algorithm, and two decoding methods for the machining process
and batch process with the batch processing step as the node based on the process encoding
method. At the early stage of population initialization, we took the batch processing as a
node, and adopted the heuristic rule, that is, the smaller relaxation time the process adopts
before the batch process, the longer the heat treatment time is, and the higher priority the
workpiece combined with the previous batch has. While the process after the batch process
adopted the heuristic rule to perform initialization, that is, the shorter the relaxation time
is, the higher priority the workpiece has. Meanwhile, we adopted the adaptive crossover
and mutation operator to avoid prematurity of the algorithm, theoretically promoting
continuous evolution of the algorithm, and thus achieving the global search.

3. Problem Description & Mathematical Modeling
3.1. Problem Desctription

The flexible job-shop scheduling problem with heat treatment process studied in this
paper is an extension of traditional flexible job-shop scheduling problem. This problem
involves n jobs to be processed, each job Jj (j = 1, 2, . . . , n) has different delivery dates Dj,
the quantity and size are Nj and Sj respectively, each workpiece has machining process and
a heat treatment process, and heat treatment process can be an intermediate processing
process. With m-1machining equipment and 1 heat treatment equipment of limited capacity,
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each machining equipment can only process one workpiece simultaneously, and each heat
treatment equipment can process multiple workpieces at the same time on the premise
of unexceeding its capacity. Each job is known to be able to combine with other jobs
of heat treatment simultaneously. The difficulty of this research problem lies in rational
arrangement of job processing sequence and equipment selection under the premise of
limited resource scheduling, combined batch processing in heat treatment part, as well as
minimization of maximum makespan of workpiece and utilization rate of heat treatment
equipment volume, while meeting job delivery date.

In the problem of this article, the following assumptions need consideration:

(1) The process is not performed by batches in the machining part;
(2) Total volume of each batch of job is less than maximum volume of heat treatment

equipment;
(3) All jobs can start processing at time 0;
(4) All equipment can be processed at time 0;
(5) The processing date system of all equipment is consistent;
(6) The circulation time between adjacent processes is not considered;
(7) The processing time of each equipment in machining process is unchanged;
(8) After the previous process of heat treatment process is completed, uniformly move

for heat treatment processing;
(9) Once heat treatment starts, it cannot be interrupted, and other jobs cannot be added

before the treatment is completed;
(10) All workpieces in the same job must complete heat treatment, before uniformly move

for the next process.

3.2. Mathematical Modeling

Parameters:

Jj: Job j, j = 1, 2, . . . n, of which n indicates the quantity of Jobs;
pcj: Jj delay penalty coefficient;
Nj: size of Jj, j = 1, 2, . . . n;
Dj: Delivery date of Jj, j = 1, 2, . . . n;
sj: Single piece volume of Jj, j = 1, 2, . . . n;
Oji: ith process of Jj, i = 1, 2, 3, . . . Gj, Gj is the number of process for Jj;
Mp: Equipment p, p = 1, 2, 3, . . . m, of which m indicates the quantity of equipment;

Bp =

{
1, i f Mp is Heat Treatment Machine;

0, Otherwise;
;

Tji: Theoretical single piece processing time of Oji (machining process);
HTj: Theoretical heat processing time of Jj;

Xjip =

{
1, i f Oji can be processed on Mp

0, Otherwise
;

Kji =


1, i f Oji is next process o f the

heat treatment process
0, Otherwise

;

Rjk =


1, i f Jj and Jkcan be combined f or

processing at the same time
0, Otherwise

;

C: Theoretical volume of heat treatment equipment;

Decision variables:

Sji: Oji processing start time (machining process);
Eji: Oji processing end time (machining process);
PTji: Actual processing time of Oji (machining process);
Ej: Jj completion time;
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IDj =

{
1, i f Ej > Dj,
0, Otherwise

;

TDj: Jj delay penalty; Bq: batchs q, q = 1, 2, . . . n, q is the number of heat treatment
equipment processing batches;

Yjq =

{
1, i f Jj exist o f Bq

0, Otherwise
;

Njq: the count of Yjq;

Vjip =

{
1, i f Oji is processed by Mp,

0, Otherwise
;

Cq: The actual occupied volume of the qth heat treatment;
Sq: The actual starttime of the qth heat treatment;
Tq: The actual process time of the qth heat treatment;
Eq: The actual endtime of the qth heat treatment;

Ujip−j′i′p =


1, i f Oji is the next process o f

Oj′i′ processed on Mp
0, Otherwise

;

The flexible job-shop scheduling problem with heat treatment process studied herein
has three scheduling targets, namely minimizing maximum makespan of workpiece (Equa-
tions (1) and (4)), maximizing average utilization rate of heat treatment equipment volume
(Equation (2)) and minimizing delay penalty of workpiece (Equation (3)).

min : Cmax = max
(
Ej
)
, ∀j (1)

max : ηh =
1
q
·

q

∑
q=1

Cq

C
, ∀q (2)

min :
n

∑
j=1

(
Ej − DJ

)
·IDj·pcj (3)

Ej = max
(
Eji
)
, ∀j, i (4)

Sji ≥ 0, ∀j, i (5)

PTji = Tji·Nj, ∀j, i (6)

Eji = Sji + PTji, ∀j, i (7)

m

∑
p=1

Xjip > 0, ∀j, i, p (8)

(
Sji − Euv

)
·
(
Suv − Eji

)
·Vjip·Vuvp ≤ 0, ∀j, i, u, v (9)

Sji +
(
1−Ujip−j′i′p

)
·L ≥ Sj′i′ + PTj′i′ (10)

m

∑
p=1

Bp = 1, ∀ p (11)

Eq = Sq + Tq, ∀q (12)

Rjk·
HTj

HTk
= Rjk (13)

B

∑
q=1

Njq = Nj, ∀j (14)

Eji ≤ Sj(i+1), ∀j, i (15)

min
(
Yjq·Sq

)
≥ max

(
Eji·
(
1− Kji

))
, ∀j, i, q (16)
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min
(
Sji·Kji

)
≥ max

(
Yjq·Eq

)
(17)

Equations (5)–(7) indicate the relationship between the end time, actual processing
time and start time of a process. Equation (8) indicates that each processing process should
have at least one piece of processable equipment. Equations (9) and (10) indicate that the
same equipment can only execute one process at most at any time. Equation (11) indicates
that only one piece of heat treatment equipment can be available. Equation (12) indicates
the relationship among the start time, end time and heat treatment processing time of each
batch on the heat treatment equipment. Equation (13) indicates that only those workpieces
with the same heat treatment processing time can enter the same batch. Equation (14)
indicates that if the same job is divided into multiple batches for processing, the total
quantity of workpieces in all the batches belonging to this job is equal to the total quantity
of this job. Equation (15) indicates that each process can start only after the previous process
is completed. Equation (16) indicates that for the workpieces in the same batch for the heat
treatment, only after the previous process of this batch is completed, these workpieces in
this batch can be processed with the heat treatment. Equation (17) indicates that after all
workpieces of the same job have been processed with the heat treatment, the next process
of this job can start.

4. Improved Non-Dominated Sorting Genetic Algorithm

It can be seen from the above model that it is a non-linear mathematical model with
multiple optimization objectives. Generally, this problem can be solved with traditional
methods, such as the linear weighting method and efficacy coefficient method, but the
corresponding precise weight cannot be provided. Additionally, a large number of exper-
iments are required to further determine its scope, and its subjectivity is predominated.
With the increase of the job scale, these methods cannot solve the subsequent resulting
problems. This paper adopted the Non-dominated Sorting Genetic Algorithm (NSGA-II),
which is featured with the powerful parallel search capability, and can get multiple Pareto
optimal solutions in one run. So, it is extremely suitable for solving the multi-objective FJSP
with the heat treatment process herein. Through introducing the new dominated sorting
method, and adopting the congestion degree and elite retention strategy, the NSGA-II
algorithm has overcome obvious shortcomings of the original NSGA algorithm, such as
the high time complexity and short of the elite retention strategy. As a result, it has been
applied to numerous industries with excellent results.

Compared with the traditional NSGA-II algorithm, the improved NSGA designed
herein has the following features: (1) Designed a kind of process-based one-layer encoding
with the heat treatment process as a node to execute initialization according to different
urgency degrees before and after the heat treatment process during the population ini-
tialization; (2) Performed decoding according to the production scheduling rule of the
equipment utilization rate to maximize the equipment utilization rate in the specific pro-
cess order; (3) Abandoned the fixed crossover and mutation probability of the traditional
NSGA-II in the crossover and mutation operation, and adopted the adaptive crossover and
mutation probability, which can integrate the global search capability of the algorithm with
its convergence. The flowchart based on the improved NSGA is shown in Figure 2.
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4.1. Encoding Mechanism of the Process with the Heat Treatment Process as a Node

This paper adopts a process-based encoding method with the heat treatment process
as a node, which can number all processes of each job, and especially mark the heat
treatment process. In this way, the machining processes before and after the heat treatment
process can be quickly distinguished, and further compiled according to the number of
its occurrences in the chromosome. Figure 3 shows a chromosome containing 7 genes, of
which the gene marked with ‘H’ is the heat treatment process. It can be seen from this figure
that the heat treatment process of Job 1 is located at the 5th position, the heat treatment
process of Job 2 is located at the 7th position, and the heat treatment process of Job 3 is
located at the 8th position. It can be seen from this chromosome that the organization
sequence is as follows: Machining process 1 of Job 1→Machining process 1 of Job 3→
Machining process 2 of Job 3→Machining process 1 of Job 2→ heat treatment process of
job 1→ Heat treatment process of Job 3→ Heat treatment process of Job 2→Machining
process 2 of Job 2→Machining process 2 of Job 1.
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4.2. Decoding Rules Based on the Equipment Utilization Rate

With regards to the said encoding rule, we adopted the decoding rule based on
the equipment utilization rate, and still took the heat treatment process as a node. The
machining process before and after the heat treatment process follows the decoding rule
based on the bottleneck equipment, while the heat treatment process follows the decoding
rule based on the utilization rate of the heat treatment equipment. In this section, let’s
take the scheduling of five jobs (including the heat treatment process) on four pieces of
machining equipment and one piece of heat treatment equipment as an example, and their
settings are shown in Tables 1 and 2.
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Table 1. Processing scheduling of 5 jobs on 4 equipment and 1 heat treatment equipment.

Workpiece Batch Process Single Piece Processing Time/h Whether Heat Treatment Processable Equipment

Job1 12

O11 3 N M1/M3
O12 2 N M2/M3/M4
O13 5 Y B1
O14 3 N M1/M4

Job2 16

O21 4 N M1/M2
O22 2 N M2/M4
O23 5 Y B1
O24 3 N M1/M3/M4

Job3 15

O31 2 N M2/M3
O32 4 N M1/M4
O33 6 Y B1
O34 3 N M1/M2

Job4 14

O41 2 N M1/M4
O42 3 N M1/M2
O43 3 N M1/M3/M4
O44 5 Y B1
O45 2 N M1/M3

Job5 17

O51 3 N M1/M2
O52 2 N M2/M3/M4
O53 6 Y B1
O54 2 N M1/M4

Table 2. Basic data of the decoding rule example.

Job Workpiece Quantity in Job Single Workpiece Volume Heat Treatment Time Delivery Date Jobs to Form Batches

Job1 12 2 5 150 Job2; Job4
Job2 16 3 5 200 Job1; Job4
Job3 15 3 6 230 Job5
Job4 14 2.5 5 185 Job1; Job2
Job5 17 2 6 160 Job3

1. Decoding rules for machining processes before and after the heat treatment process

The machining process follows the decoding rules based on the bottleneck equipment
to guarantee full utilization of equipment resources, reduce uneven distribution of bottle-
neck equipment, improve the coordination of the scheduling solution in resources, and
maximize the equipment utilization rate. Take the chromosome [2, 1, 1, 3, 5, 4, 4, 4, 2, 3, H1,
H3, H2, H4, H5, 4, 5, 2, 1, 3] as an example to perform decoding based on the equipment
utilization rate of the machining process with the procedure as follows:

Step 1.1: Find the process corresponding to the next gene in the chromosome without
equipment, and judge whether it is a machining process. If it is not, implement Step
1.4. If it is, judge whether it is a process before the heat treatment process, and if it is,
implement Step 1.2, otherwise implement Step 1.5;

Step 1.2: Traverse the set of optional machining equipment for this process, and calculate
the bottleneck degree BNp of each optional equipment Mp according to Equation (18).
The larger the BNp value is, the more the processes are on this equipment. So this
equipment is the bottleneck equipment.

BNp = LEp +
n

∑
j=1

Gj

∑
i=1

(
Tji·Nj

)
·Xjip (18)

Among them, LEp indicates the end time of the last process on the equipment Mp at
the current time node.
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Step 1.3: Choose the equipment with the smallest equipment bottleneck degree from the
set of optional equipment for this process, and implement Step 1.4;

Step 1.4: Judge whether there is any unscheduled process in the current chromosome. If
there is, implement Step 1.1; otherwise, stop decoding;

Step 1.5: If the process is the machining process after the corresponding heat treatment
process, judge whether the heat treatment process of the job corresponding to this
process is arranged. If so, implement Step 1.2, otherwise the implement decoding rule
2.1 of the heat treatment process;

2. Decoding rule of the heat treatment process

During the production scheduling process of the heat treatment, to maximize the
utilization rate of the heat treatment equipment volume, (1) it is required to batch the
workpieces of the same job, and combine them with the workpieces of other jobs. However,
the larger the number of batches in the same job, the smaller the number of workpieces in
each batch. If the same job is distributed in a scattered manner, there is a time interval for
heat treatment operation between different small batches. The batch that has completed
heat treatment processing prior to the last batch has to wait in the waiting area for the last
batch of this job to complete heat treatment processing before they are uniformly delivered
to the next machining equipment for processing, which is not in favor of minimizing the
maximum makespan of the job; (2) Meanwhile, because the job is dynamically delivered
to the heat treatment process, it is unknown when the job that can be batched with the
pending job will arrive. If it is only considered to maximize the heat treatment equipment
volume, the job waiting time must be increased, and thus the job delivery date cannot be
satisfied as required.

Therefore, we designed a decoding rule based on the heat treatment equipment
volume and job delivery date herein. When maximizing the utilization rate of the heat
treatment equipment volume in combination of considering the job delivery date, we tried
to reduce the batching quantity of workpieces in the same job and waiting time of pending
jobs. This decoding rule introduces a combined batch processing acceptance factor δ, which
balances the effects of both the delay rate td of the job delivery date and the increase
rate ∆η of the utilization rate η of the heat treatment equipment volume in an all-round
manner. The risk factor of the combined batch processing at the current time is δt =

tdt
∆ηt

.
The smaller the delay rate of the current job delivery date, the larger the utilization rate of
the heat treatment equipment volume, and the smaller the risk probability of combined
pending batch processing. Among them, the increase rate of the utilization rate of the heat
treatment equipment volume is ∆η = η − η′, where η′ is the utilization rate of the previous
equipment volume.

The decoding rule based on the heat treatment equipment volume and job delivery
date designed herein can be executed as follows:

Step 2.1: Initialize the remaining volume C′ = C of the current heat treatment equipment;
Step 2.2: Judge whether this process is the heat treatment process, if it is, obtain the

job Jj corresponding to the current process, its unit volume Sj, job quantity N, and
quantity N′ of workpieces without the combined batch, and then implement Step 2.3.
Otherwise implement Step 1.2;

Step 2.3: Jj can be combined with a batch Ch in the uncompleted batch set, and implement
Step 2.4; otherwise reset Ch+1′ = C− N′ × Sj to generate a new batch Ch+1, and then
implement Step 2.8;

Step 2.4: If the remaining volume of the heat treatment equipment of the current batch
is Ch′ ≥ N′ × Sj, update Ch′ = Ch′ − N′ × Sj, and the current job batch grouping
is completed. The start and end time of the job Jj’s heat treatment process can be
obtained according to the heat treatment node and time of this batch, and implement
Step 2.5; otherwise, implement Step 2.7;

Step 2.5: If Ch′ = 0, complete this batch, update the start and end time of all jobs in this
batch, update Ch+1′ = C, and implement Step 1.2; otherwise, implement Step 2.7;
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Step 2.6: If there is no job in the gene behind the current gene that can be batched with Jj

in code, update Ch+1′ = C to complete this batch, and implement Step 1.2; otherwise,
calculate the acceptance probability of the first heat treatment process Jk behind Jj
in the code by job Jj. Among them, when the non-heat treatment process between
two genes is simulated as the pure theoretical processing work hours, the current
moment t is the earliest start time of Jk, and calculate δt =

tdt
ηt

. If δt ≤ 0.865, choose

Wait, and implement Step 1.2; otherwise, update Ch+1′ = C to complete this batch,
and implement Step 1.2;

Step 2.7: If there is no job in the gene behind the current gene that can be batched with Jj
in code, and N′ × Sj > C, N′ = N′ − C′/Sj, complete this batch, reset and proceed to
the next batch, and update N′ = N′ − C′/Sj. You can obtain the start time of the new
batch according to the completion time of the previous batch, and obtain the start and
end time of the heat treatment process of job Jj, and implement Step 1.2; otherwise,
implement Step 2.8;

Step 2.8: Calculate the acceptance probability of the first heat treatment process Jk behind
Jj in code by job Jj. Among them, when the non-heat treatment process between two
genes is simulated as the pure theoretical processing work hours, the current moment
t is the earliest start time of Jk, and calculate δt =

ηt
tdt

. If δt ≥ 0.865, choose Waite,
and N′ = N′ − Ch′/Sj to complete this batch. Reset and proceed to the next batch,
update Ch+1′ = C− N′ × Sj. You can obtain the start time of the new batch according
to the completion time of the previous batch, and obtain the start and end time of
the heat treatment process of job Jj, and implement Step 1.2; otherwise, complete
this batch, reset and proceed to the next batch, and update Ch+1′ = C− N′ × Sj. You
can obtain the start time of the new batch according to the completion time of the
previous batch, and obtain the start and end time of the heat treatment process of job
Jj, and implement Step 1.2;

This section takes the heat treatment process of five jobs as an example to decode the
above case according to the above steps. Tables 1 and 2 show the basic data (of which the
volume of the heat treatment equipment is 40), and Figure 4 shows the arrangement results
of the heat treatment process.

1 
 

 
Figure 4 
 
Figure 4. Heat Treatment Decoding Process Instance.
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4.3. Population Initialzation

To acquire accurate solutions, the population initialization method herein is not
generated randomly, but the initial solution is generated by following the heuristic rule
based on the urgency degree defined herein. Compared with the initial feasible solution
generated from an entirely random number, this method can lead to an ideal scheduling
plan at the early stage of evolution. The urgency degree proposed in this article is defined as
follows. With the heat treatment process as the node, distinguish the machining processes
before and after the heat treatment process from each other. The urgency degree of the
machining process before the heat treatment process is affected by the possibility of batch
grouping of the heat treatment and the relaxation time of the job where this process
belongs, and the urgency degree of the machining process after heat treatment process is
only affected by relaxation time of the job where the process belongs. The earlier the job
process that can be batched is selected, and the earlier the process with the small relaxation
time of the job where the process belongs is selected. Initialization is conducted accordingly.

4.4. Adaptive Crossover Operator

This paper adopts the adaptive crossover operator based on the process encoding,
which can prevent the algorithm from obtaining a local optimal solution. In this way, it
can be seen that its quality directly determines the global search ability of the algorithm.
The standard NSGA-II algorithm adopts the fixed crossover probability, where Pc is the
crossover probability ( Pc = 0.4 ∼ 0.8). The larger the crossover probability is, the more
rapidly the new individuals are generated, and the more easily the excellent individuals can
be destroyed. The adaptive crossover operator can judge the population status according
to the evolution algebra. When it is relatively dispersed, the crossover is performed with a
large probability, and the probability calculation is shown in Equation (19).

Pc = maxPc − (maxPc −minPc)×
i

Gen
(19)

This paper adopts the POX crossover. First of all, the genes in the chromosome are
randomly divided into two parts (i.e., the fixed-order item and fixed-position item), and
then the genes of the fixed-position item in the parent individual P1 and P2 are passed to
the offspring S1 and S2 without any change. Afterwards, the genes of the fixed-order item
of the parent individual P2 and P1 are inserted into the gaps of S1 and S2 in order. Figure 5
shows the crossover operation process.
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4.5. Adaptive Mutation Operator

The standard NSGA-II algorithm adopts the fixed mutation probability, where Pm is
the mutation probability ( Pm = 0.001 ∼ 0.01). If it is too small, it may cause the algorithm
falling into premature convergence of the local optimum. The adaptive mutation operator
can judge the population status according to the evolution algebra, and perform mutation
operation with a large probability when the population individual tends to converge at the
later stage of evolution. The probability is calculated as shown in Equation (20).

Pm = minPm + (maxPm −minPm)×
i

Gen
(20)
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This paper adopts the exchange of genes in the chromosome to achieve individual
mutation with the increased population diversification. The x in the following figure is the
mutation operator based on the gene exchange. Figure 6 shows the mutation operation
process.
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5. Instance Verification & Algorithm Comparison

To perform verification: (1) Accept the impact of the acceptance factor value on the
maximum makespan and heat treatment equipment utilization rate herein; (2) Through
comparing our algorithm with other algorithms based on other decoding rules, prove that
the decoding strategy proposed herein has improved the algorithm convergence in terms of
handling the FJSP with the heat treatment process. 12 instances MK01-12 are extended from
Brandimarte (1993) and the detailed information is shown in Figure 7, where n indicates
the job quantity of each instance, oj indicates the quantity scope of each job, m indicates
the quantity of machining equipment in this workshop, mh indicates the quantity of batch
processing equipment in this workshop, copro indicates the scope of the process quantity
contained in each job, meq indicates the scope of the quantity of optional processing
equipment for each machining process, proc indicates the scope of the processing time for
each machining process, del indicates the scope of the job delivery date, SingleV indicates
the volume of the single piece in each job, proh indicates the processing time of the heat
treatment process of each job, and HMaxVol indicates the maximum volume of the heat
treatment equipment in this workshop.
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All the above instance verification algorithms run on a personal computer with the
processor of i5-2400 CPU, dominant frequency of 3.1 GHz and memory of 4 GB. The
improved NSGA proposed herein was used to solve the problem. The number of iteration
times of the algorithm was set to 200, the initial population size is set to 100, the maximum
crossover probability was set to 0.45, the minimum crossover probability was set to 0.25,
the maximum mutation probability was set to 0.1, and the minimum mutation probability
was set to 0.01.
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To obtain the optimal value of the acceptance factor, in this section, we calculated
different values of the acceptance factor, and then obtained the solution result of the FJSP
with the heat treatment process with the improved genetic algorithm by following the
decoding rule proposed herein. For Case MK10 proposed above, we solved this problem
with the acceptance factor, provided that the value range is [0, 1] and the value increment is
0.001. Solved this problem with the acceptance factor at each value for 20 times respectively,
and investigated the maximum makespan, heat treatment equipment utilization rate and
running time of the best result, which are shown in Figure 8 below.
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Because this paper studied the multi-objective optimization problem with the adop-
tion of the non-dominated genetic algorithm, multiple non-dominated solutions may be
obtained during each algorithm calculation. Therefore, only the solutions with the shortest
running time in the Pareto optimal solution set are compared in this section. As shown
in Figure 7, the case solution was obtained within the effective time with the decoding
rule and adaptive cross-mutation operator proposed herein, and more than 90% of the
utilization rate of the heat treatment equipment volume was obtained. It can be seen from
this figure that when the acceptance factor is between [0.860, 0.871], the minimum Cmax
and maximum equipment utilization rate are obtained. Therefore, when the average value
δ = 0.860+0.871

2 = 0.865 is taken, the obtained maximum makespan is the smallest, and the
utilization rate of the heat treatment equipment volume is the largest.

To further verify the contribution of the decoding strategy proposed herein to the
improvement of the algorithm convergence, we performed algorithm comparison with
12 cases proposed in this paper, the number of iteration times of the algorithm was set
to 200, and the population quantity was set to 30. Table 3 shows the running results of
above 12 cases with different decoding methods for different heat treatment processes
in combination with the non-dominated genetic algorithm. Among them, A1 is the im-
proved non-dominated genetic algorithm herein based on the decoding strategy proposed
herein; A2 is the inverse scheduling strategy proposed in [18] in combination with the non-
dominated genetic algorithm. Table 3 shows that the solutions of 12 cases were calculated
with two algorithms for 20 times respectively to evaluate the scheduling objective and the
average running time of the algorithm for the best results. Figure 9 shows the convergence
diagram of two algorithms for MK12 (where Cmax is the average maximum total makespan
of workpieces, TP is the average total delay penalty, ηh is the average utilization rate of the
heat treatment equipment, and CT is the average running time of the algorithm).
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Table 3. Running results of the said 12 cases with the two algorithms.

Case
A1 A2

Cmax TP ηh/% CT/s Cmax TP ηh/% CT/s

MK1 57 3.10 93.17 4.2 73 1.23 85.2 6.4

MK2 53 0 93.89 10.2 64 1.02 75.3 8.7

MK3 319 0 93.13 78.9 327 13.45 79.8 61.9

MK4 117 0 94.01 21.8 147 38.76 81.9 14.8

MK5 249 9.81 92.27 18.7 256 46.87 74.6 12.9

MK6 164 0 91.82 62.1 193 21.92 72.8 57.8

MK7 228 0 94.32 42.7 236 46.91 70.7 29.4

MK8 485 0 93.79 37.2 534 5.89 74.9 22.8

MK9 541 11.68 94.21 191.4 567 38.64 73.1 185.1

MK10 532 0 89.88 179.6 576 29.36 75.2 185.0

MK11 1039 0 92.31 47.0 1169 101.62 75.0 41..4

MK12 1051 17.39 90.85 52.4 1089 123.47 75.7 45.6
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It can be seen from the said result data and convergence graph that for the different
case size:

(1) From the perspective of the optimal Cmax obtained with this algorithm: A1 can always
obtain the optimal Cmax smaller than that of A2, and this advantage becomes more
significant as the scale of the case increases. It has proved that the decoding rules
based on the heat treatment equipment volume and job delivery date proposed in this
paper can significantly improve the global optimization capability of an algorithm.

(2) From the perspective of the heat treatment equipment utilization rate obtained with
the algorithm: for all cases with different sizes, A1 can get a higher heat treatment
equipment utilization rate (all cases with A1 are greater than 88%, and most cases are
above 90%), and A1 is significantly better than A2.

(3) From the perspective of the algorithm running time: the running time of the two
algorithms is equivalent to each other, which has proved that the improved genetic
algorithm and the decoding rules based on the heat treatment equipment volume
and job delivery date proposed in this paper can complete the iterative optimization
within the limited running time.
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(4) From the perspective of the algorithm convergence speed: two algorithms have
excellent convergence at the initial stage, but A1 has the faster convergence speed
and better algorithm performance than A2 during the entire iteration process.

Figure 10 is the Pareto frontier of Case MK3. To display the output of the scheduling
result with the heat treatment process guided by the decoding rules, we generated the
equipment Gantt chart of a non-dominated solution of the Pareto frontier.
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Figure 10. Pareto frontier.

Figure 11 shows the equipment Gantt chart of the MK3 result obtained with the
algorithm proposed herein, where Equipment 6 is the heat treatment equipment. It can
be seen from the figure and Table 4 that the heat treatment process has been taken under
consideration timely, other machining processes are tightly scheduled on the equipment,
and the equipment utilization rate is high [19].
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Figure 11. Equipment Gantt Chart for the Corresponding Production Scheduling Results of Case
MK3.

Table 4. A non-dominated optimization target value and running time of MK3.

Case Cmax TP ηh CT

MK3 327 0 93.27 71.6

Among them, the batches on the heat treatment equipment corresponding to MK3
are shown in Figure 12 below. It can be seen from the data in this figure that the heat
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treatment equipment has been almost always in the running status after it started running,
and the equipment utilization rate of each heat treatment batch is high, which has directly
proved the effectiveness of the coding-encoding method containing the heat treatment
process proposed herein to solve the actual problems. In addition, it can be seen from
the following figure that the most of orders are processed in batch for the heat treatment,
but the heat treatment processing time of various batches is concentrated, which is more
beneficial to minimizing Cmax and ensuring the delivery time of workpieces. Meanwhile, it
has also proved the effectiveness of the decoding rules for the machining process based
on the equipment bottleneck and the heat treatment process based on the heat treatment
equipment volume and job delivery data.
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Figure 13 shows the equipment Gantt chart of the MK7 result obtained with the
algorithm proposed herein, where Equipment 6 is heat treatment equipment, and Table 5
shows the optimization target value and running time of this non-dominated solution. As
can be seen from the figure below, the machining equipment has almost been running
during the work, the heat treatment equipment has rarely waited during the processing,
the utilization rate of the heat treatment equipment is 94.13%, and heat treatment batches
are connected with each other at an almost zero gap. Such phenomena have proved
the effectiveness of the decoding rules for the heat treatment process based on the heat
treatment equipment volume and delivery date proposed herein.
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Figure 13. Equipment Gantt Chart for the Production Scheduling Results of Case MK7.

Table 5. A non-dominated optimization target value and running time of MK7.

Case Cmax TP ηh CT

MK7 221 1.01 94.13 43.8

Figure 14 shows the equipment Gantt chart of the MK12 result obtained with the
algorithm proposed herein, where equipment 8 is heat treatment equipment as shown in
the figure. Meanwhile, it also has proved the effectiveness of the decoding rules for the
heat treatment process-machining process proposed herein in large cases. Table 6 shows
the optimization target value and running time of this non-dominated solution.
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Figure 14 Figure 14. Equipment Gantt Chart for the Production Scheduling Results of Case MK12.

Table 6. A non-dominated optimization target value and running time of MK12.

Case Cmax TP ηh CT

MK12 1040 0 92.77 57.9

6. Conclusions

This paper investigated the FJSP with the heat treatment process from a novel per-
spective. To describe and solve this problem, we built an unified mathematical model of
the heat treatment process and machining process. To achieve scheduling optimization
objectives, such as minimizing Cmax, maximizing the space utilization rate of the heat
treatment equipment, and minimizing the total delay penalty, this paper proposed a set of
decoding rules based on the heat treatment equipment volume and job delivery date. This
set of rules regards the heat treatment process as a node, and divides the decoding process
into two coupling parts, that is, the heat treatment process scheduling and the machining
process scheduling.
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With the aim to minimize Cmax, we proposed a set of decoding rules for the ma-
chining process based on the equipment bottleneck to schedule the machining process
by considering the dynamic process arrival time. For the heat treatment process, when
the utilization rate of the heat treatment equipment volume is maximized, and the job
delivery date is taken under consideration, we proposed a set of decoding rules for the
heat treatment process based on the heat treatment equipment volume and the job delivery
date to schedule the heat treatment process. With this decoding rules, it is preferred to
minimize the number of workpiece batches in the same job, reduce the waiting time of
the job to be processed, and ensure the delivery date of the job. Finally, the subsequent
machining process is scheduled by following the decoding rules for the machining process
based on the equipment bottleneck to achieve the decoding of one chromosome in the end.

This decoding process can be oriented to the problem itself to avoid the generation of
invalid and poor solutions. In this way, a proper solution can be obtained in combination
with the improved adaptive non-dominant genetic algorithm.

To verify the effectiveness of the decoding rules and algorithms proposed herein, this
paper improved 12 cases in the Brandimarte (1993) literature. Furthermore, we obtained
several solutions with the decoding rules and improved non-dominated genetic algorithms
proposed herein, and the reverse scheduling strategy proposed in the reference in combina-
tion with the genetic algorithm, which have further proved the effectiveness and feasibility
of the set of decoding rules based on the heat treatment equipment volume and job delivery
date, and the improved non-dominant genetic algorithm proposed herein. It has guiding
significance for the production of aerospace pumps and valves and the scheduling of the
workshops with the same production mode.
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