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Abstract: Epileptic diseases take EEG as an important basis for clinical judgment, and fractal algo-
rithms were often used to analyze electroencephalography (EEG) signals. However, the variation
trends of fractal dimension (D) were opposite in the literature, i.e., both D decreasing and increasing
were reported in previous studies during seizure status relative to the normal status, undermining
the feasibility of fractal algorithms for EEG analysis to detect epileptic seizures. In this study, two
algorithms with high accuracy in the D calculation, Higuchi and roughness scaling extraction (RSE),
were used to study D variation of EEG signals with seizures. It was found that the denoising opera-
tion had an important influence on D variation trend. Moreover, the D variation obtained by RSE
algorithm was larger than that by Higuchi algorithm, because the non-fractal nature of EEG signals
during normal status could be detected and quantified by RSE algorithm. The above findings in
this study could be promising to make more understandings of the nonlinear nature and scaling
behaviors of EEG signals.

Keywords: electroencephalography (EEG) signal; Seizure detection; fractal dimension; Higuchi
algorithm; roughness scaling extraction

1. Introduction

Electroencephalography (EEG) signals have been widely used in various fields [1–5]
in recent years because it is easy to measure and could be displayed in real time. It is
very important to analyze EEG and obtain its implicit correct and important information,
because that EEG signals is closely related to brain activity, which could reflect the psycho-
logical state, emotional changes, brain activity and the body functionalities, etc. [6]. There-
fore, EEG is crucial for understanding the information processing of the human brain [4],
enabling the investigations on human brain activity and cognitive processes. The study of
effective changes through EEG signals also could promote learning and works [1]. At the
same time, EEG signals could also be used to detect psychological and physiological dis-
eases [5,7], which played an important role in the advanced knowledge and treatment
of major depression [2,3], autism [1], schizophrenia [8], Parkinson’s syndrome [9] and
epilepsy. In addition, EEG signals can be used to measure emotion recognition [10–12] and
sleep quality [13], and had important applications in neuromarketing [14], biometrics [15]
and brain–computer interface and games [16].

In the recent decades, EEG signals have been one of the most important approaches in
clinical disease diagnosis and have authoritative diagnostic information for epilepsy [17].
Epilepsy is a common mental disease, which is a chronic mental disease caused by the
sudden and temporary disorder of brain function, which could attributed to the paroxysmal
abnormal discharge of brain nerve cells. The detection of epilepsy mainly refers to EEG
signals, according to the clinical manifestations and EEG signals records of patients to
judge epileptic seizures, and according to the EEG signals for epileptic seizure lesion
location, efficacy and postoperative evaluation. Therefore, it is quite necessary to study
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the algorithms that could accurately analyze EEG signals for the automatic detection of
epileptic seizures. Using the fractal algorithm to detect epileptic seizures was an important
method and had been demonstrated [18,19]. Currently, there were many commonly used
fractal algorithms, among which the Higuchi algorithm was highly recommended because
of its accuracy and high speed [20,21]. In our previous studies, roughness scaling extraction
(RSE) algorithm was proposed to detect epileptic seizures, which could be more accurate
to calculate fractal dimension (D) relative to the traditional algorithms including Higuchi
algorithm [22,23].

An important basis for using the fractal algorithms to detect epileptic seizures was the
D variation during seizure status compared with normal status. However, it was found that
some publications reported that D in the seizure status had a downward trend [21,24,25],
while other literature reported an upward trend of D variation [20,22,23,26,27], and such a
significant divergence and its cause had not been studied in the available literature. Such a
significant difference seriously undermined the feasibility and even the reliability of fractal
algorithms in epileptic detection. Therefore, it would be of great importance to carry out
an investigation on which trend of D variation in the seizure status should own and the
underlying mechanism of the divergence mentioned above.

In this study, based on EEG signals of the CHB-MIT Scalp EEG Database, both Higuchi
and RSE algorithms with high accuracy in D calculation were used to calculate D values
of epileptic EEG signals and study the D variation during seizure status compared with
normal status. The denoising process for EEG signals was essential and there were lots
of noise reduction methods, such as wavelet decomposition [28,29] and empirical mode
decomposition (EMD) [30,31]. To be consistent with previous research, the denoising
process in this study was wavelet decomposition with passband filtering and had been
widely used to alleviate the noise influences [22,23,28,29]. The reason for the above-
mentioned difference of D variations were analyzed and it was found that the denoising
operation had an important influence on D variation trend. Besides, the effects of signal
denoising and algorithm accuracy in the detection of epileptic seizures were discussed
based on the statistical analysis on the caculated results.

2. Data and Methods
2.1. EEG Signals

The EEG signals used in this study were from the CHB-MIT Scalp EEG Database [32–34],
which was collected at the Children’s Hospital Boston, consisting of EEG recordings from
pediatric subjects with intractable seizures. All the EEG signals were sampled at 256 Hz.
There were 198 recordings of seizures in the CHB-MIT database, 109 effective recordings
of seizures were selected based on the time length (800 s) and seizure recognition for
comparison. Table 1 contained the descriptions for each recording obtained by the CHB-
MIT database and included the file names of the EEG signals, labels of seizure, number of
calculation and seizure durations.

Table 1. EEG signals used in this study from CHB-MIT Scalp EEG Database.

File Names (Patients) Seizure Labels Number Seizure Durations (s)

CHB01 (1) 6 1–6 400–(440,427,440,451,490,501)
CHB03 (3) 6 7–12 400–(465,469,452,447,464,453)
CHB04 (4) 3 13–15 400–(511,505,516)
CHB05 (5) 5 16–20 400–(515,510,496,520,517)
CHB06 (6) 8 21–28 400–(414,415,415,420,416,412,413, 416)
CHB07 (7) 2 29–30 400–(486,496)
CHB09 (9) 4 31–34 400–(464,479,471,462)
CHB10 (10) 2 35–36 400–(489,454)
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Table 1. Cont.

File Names (Patients) Seizure Labels Number Seizure Durations (s)

CHB12 (12) 31 37–67

400–(461,413,423,420,432,432,
445,437,497,440,435,427,
425,442,452,448,438,436,
446,421,423,427,425,423,

443,455,451,428,429,425,423)
CHB13 (13) 1 68 400–465
CHB14 (14) 7 69–75 400–(414,420,422,414,441,422,416)
CHB15 (15) 1 76 400–577
CHB16 (16) 1 77 400–414
CHB17 (17) 3 78–80 400–(490,515,488)
CHB18 (18) 3 81–83 400–(455,468,446)
CHB19 (19) 1 84 400–477
CHB20 (20) 6 85–90 400–(430,439,438,449,435,439)
CHB21 (21) 1 91 400–412
CHB22 (22) 2 92–93 400–(474,472)
CHB23 (23) 6 94–99 400–(513,447,471,462,427,484)

CHB24 (24) 10 100–109
400–(425,425,425,432,427,419,

424,419,427,468)

2.2. Higuchi Algorithm

Higuchi algorithm [35] is based on the length measurement of signals L(k). Taking k
sampling points as the unit, D satisfies:

L(k) ∝ k−D (1)

For signal X = x(1), x(2), x(3), . . . , x(N), k = kmin, . . . , kmax, rebuild k new time series:
Xm

k = x(m), x(m + k), x(m + 2k), . . . , x(m + bN−m
k c · k), m = 1, 2, 3, . . . , k, among them: m

is the initial point, k is the interval, b c denotes the Gauss’ notation and both m and k are
integers. For k reconstructed new sequences, calculate the length of each sequence Lm(k):

Lm(k) =
1
k
·
(b(N−m)/kc

∑
i=1

| x(m + i · k)− x[m + (i− 1) · k] |
)
· N − 1
b(N −m)/kc · k (2)

N is the total number of signal, and N−1
b(N−m)/kc·k is the normalization correction factor.

Take the average length of k sequences with the same interval as the signal length L(k)
corresponding to interval k, namely:

L(k) =
1
k

k

∑
m=1

Lm(k) (3)

ln L(k) ∝ −D ln k (4)

Given that each signal series X(k) and the corresponding series length L(k), fitted in
the double logarithmic coordinates, D is the opposite slope of the signal. The accuracy of
Higuchi algorithm is generally high under various noise levels when kmax is in 40 and 50
based on the previous literature [36,37], and kmax = 42 is used in this study.

2.3. RSE Algorithm

RSE algorithm is based on the scaling relationship of root-mean-squared roughness
(Rq) and the data-point length (L), which satisfy:

Rq = ALH = AL2−D (5)
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Among this equation, A: Rq value when L = 1; H: Hurst exponent (0 < H < 1);
D: fractal dimension (D = 2− H). The Rq and L of the fractal curve satisfy the above
equation, and D can be obtained by fitting a straight line to them in the double logarithmic
coordinate system:

ln Rq = (2− D) ln L + ln A (6)

The special feature of RSE algorithm was the flattening operation on the segmented
sub-series in prior to Rq calculation, whose details could be found in our previous publica-
tion [22]. Therefore, the RSE algorithms with various flattening orders were denoted in
this study as RSE-f1 and RSE-f2, which used first-order polynomials (y f 1 = ax + b) and
second-order polynomials (y f 2 = ax2 + bx + c), respectively.

However, the Rq− L curves in double logarithmic coordinates obtained in RES algo-
rithms was not linear globally. In our recent work [38], it has been demonstrated that such
a linear scope, named as scaling region, was the efficient partial for D calculation, and a
scaling region interception method was proposed to enhance the accuracy of RSE algorithm.

The scaling region interception method was based on the characteristics of the scaling
region in the Rq− L curve. First, a seventh-order polynomial f (l) was used to fit the entire
Rq− L curve. Second, the first and second derivatives ( f ′(l) and f ′′(l)) of the f (l) were
obtained. Due to the linearity of the scaling region, the corresponding f ′(l) should be a
constant in the region, while f ′′(l) should be close to 0. Therefore, the scaling region was
determined according to the first criterion of | f ′′(l)| < δ1. The series of l values in the
region was marked as li, then the corresponding f ′(l) values were calculated and averaged
to obtain f ′(li), which could be considered as the scope of the region. Since there was
always fluctuations in the actual curves, the second criterion |( f ′(l)− f ′(li))/ f ′(l)| < δ2
should also be met, and the obtained series were Li, which should be a continuous segment
corresponding to the target scaling region in the Rq− L curve. Besides, the obtained series
of Li should be more than half of the total series of Li, otherwise the scaling region was
represented the whole property of the global data. For a batch of data, the corresponding
scaling region and the parameter δ1, δ2 should be fixed. In this study, δ1 = 0.5 and δ2 = 0.75
were used to identify the scaling regions. After using the scaling region interception
method, RSE-f1sc and RSE-f2sc algorithms were added for calculation.

Besides, the sample double logarithmic plots, the thorough discussions on linear part
for both Higuchi and RSE methods and the parameters for the determination of linear
regressions of EEG signals could be found in the previous studies [22,23,38]. In these
studies, Higuchi algorithm and RSE algorithm were found to be reliable at signal-noise
ratios of 50 dB and 40 dB, while the accuracy of RSE algorithm was superior to that of
Higuchi algorithm, the overlapping between seizure and normal statuses was small when
RSE algorithm was used. Therefore, this study used Higuchi algorithm and RSE algorithm
to calculate the D of EEG signals based on the previous research results.

2.4. Analysis Flow

The calculation flowchart of fractal analysis on epileptic EEG signals was illustrated in
Figure 1. All the above algorithms (Higuchi, RSE-f1, RSE-f1sc, RSE-f2 and RSE-f2sc) would
be used on both the raw and denoised signals to obtain the calculated fractal dimension
(Dc) values. The denoised process used in this study included the filtering with a passband
of 0.7–45 Hz and the 5-layered wavelet decomposition. The Dc values obtained by the
same algorithms were suffixed by “w5” to indicate the denoising process.
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Figure 1. The calculation flowchart of fractal analysis on epileptic EEG signals.

3. Results and Discussion

All 109 groups of 800-s EEG signals were analyzed by using Higuchi and RSE algo-
rithms. The double logarithmic plots were shown in Figure 2, including the typical curves
of raw and denoised signal with Higuchi and RSE-f1 algorithm.

The typical EEG signals from raw and denoised data with seizure onset and the
corresponding Dc values were shown in Figure 3. The results of the raw data of CHB14_04
and CHB24_01 could be observed in Figure 3a,b, respectively. In the seizure status, Dc was
increased in CHB14_04 but decreased in CHB24_01. However, all Dc were increased in the
seizure status after denoising, as shown in Figure 3c,d.

It should be noted that the variation of Dc values between seizure and normal statuses
obtained by using Higuchi algorithm was the least obvious, while that of RSE-f2sc algo-
rithm was the most obvious, enabling the effective distinguishing of different status based
on Dc values. The more obvious variation of RSE-f2sc algorithm could be attributed to the
influence of scaling region interception method. The Dc values of RSE-f1sc and RSE-f2sc
could be below 1 in the normal status, which indicate that the non-fractal nature of EEG
signals during normal status. In our recent publication [23], it had been demonstrated that
only RSE algorithm could quantify the complexity of non-fractal features, and there could
be a continuity of Dc variation across fractal and non-fractal.
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Figure 2. Four typical double logarithmic curves of (a) raw signal with Higuchi algorithm,
(b) denoised signal with Higuchi algorithm, (c) raw signal with RSE-f1 algorithm, and (d) denoised
signal with RSE-f1 algorithm.

Figure 3. Typical EEG signals from (a) CHB14_04 raw data, (b) CHB24_01 raw data, (c) CHB14_04
denoised data and (d) CHB_01 denoised data with seizure durations (the range between red dotted
vertical lines) and the corresponding variations of Dc values, which were calculated by using Higuchi,
RSE-f1, RSE-f1sc, RSE-f2 and RSE-f2sc algorithms, respectively.

It was generally regarded that the brain activities during seizure status would become
more complex. Since Dc reflect the complexity of features such as signals and surfaces, it
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could be inferred that Dc should be larger during seizure status [23]. However, the two
opposite variation trends of Dc in Figure 3b were different, which were both found in
various publications as mentioned above. It was speculated that the influence of noise was
the cause for such a difference, thus the Dc values of the seizure and normal statuses for all
EEG signals were compared.

The fractal analysis on EEG signals was illustrated in Figure 4, where the 10 subfigures
were the mean values of Dc by using various algorithms from all 109 groups of 800-s raw
and denoised EEG signal. As shown in Figure 4, the mean values of Dc were larger in the
seizure status at most groups of both raw and denoised EEG signals, and the trend was
more obvious after denoising. To further analyze the influence of denoising on EEG signals
based on fractal analysis, all Dc values in Figure 4 were statistically analyzed.
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Figure 4. Dc mean values by using various algorithms: (a,c,e,g,i) raw EEG signals; (b,d,f,h,j) denoised
EEG signals. Red and black symbols represented seizure and normal statuses, respectively.

For raw EEG signals, Dc values were not much different from various algorithms
between the seizure and normal statuses, and Dc values of the seizure status were generally
larger. The Dc values of RSE-f1 were the largest while those of RSE-f2sc were the lowest,
and all Dc values were above 1, as shown in Figure 5a.

After denoising, all Dc values were reduced for various algorithms. The Dc values of
Higuchi were the largest, and those of RSE-f2sc were the lowest. Dc values were below 1
in the seizure status of RSE-f1sc, RSE-f2 and RSE-f2sc algorithms, as shown in Figure 5b.
For the RSE algorithm, the Dc values became lower after using the scaling region intercep-
tion method. Meanwhile, Figure 5b showed higher absolute differences between seizure
and normal statuses but also larger error bars. However, the corresponding standard
deviation was small, which meant that the error bars come from few data, the distribution
of the overall data tended to the mean value. Additionally, the values of Dc difference
between seizure and normal statuses became larger under the same algorithm after being
denoised. Therefore, the statistical analysis on the Dc difference needed to be conducted to
further illustrate the effect of noise reduction, the values of Dc difference were divided into
ten groups under various algorithms of raw and denoised signals, respectively.
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Figure 5. Dc mean values based on Figure 3 for seizure and normal statuses calculated by (a) raw
signals and (b) denoised signals using various algorithms. The red lines were represented the error
bar, and red solid boxes on each column were represented the corresponding standard deviation.

First, the distribution of each group was tested, where the Shapiro–Wilk test in R lan-
guage was used (Shapiro–Wilk normality test, shapiro.test), the results were summarized
in Table 2, which was mainly used to test the normal distribution of Dc differences value
between seizure and normal statuses [39]. W and p-value are the test statistic, and the null
hypothesis of this test is that the sample is originated from a normally distributed parent.
When p-value is less than the selected significance level (usually 0.05), the null hypothesis
is rejected. As shown in Table 2, not all of the ten groups were normally distributed with a
significance level below 0.05, therefore the Dc difference of the same algorithm between
raw and denoised signals were tested with Wilcoxon Two-sample Rank sum test.

Table 2. Shapiro–Wilk test results of the values of Dc difference between seizure and normal statuses.

Data Algorithm W p-Value

Higuchi 0.98944 5.58 × 10−1

EEG-raw
RSE-f1 0.98895 5.18 × 10−1

RSE-f1sc 0.98831 4.68 × 10−1

RSE-f2 0.98811 4.52 × 10−1

RSE-f2sc 0.98258 1.66 × 10−1

Higuchi 0.98921 5.39 × 10−1

EEG-denoised
RSE-f1 0.96064 2.65 × 10−3

RSE-f1sc 0.96723 8.68 × 10−3

RSE-f2 0.95819 1.74 × 10−3

RSE-f2sc 0.97522 3.95 × 10−2

Second, since each group was independent, the different groups of the same algorithm
were paired data, the commonly used Wilcoxon Two-sample Rank sum test in R language
was used to test the difference between groups (Wilcoxon rank sum test, Wilcox.test) [40].
W and p-value are the test statistic, when p-value is less than the selected significance level
(usually 0.05), the Dc difference value of the two groups are considered to be significantly
different. As shown in Table 3, the p-value of each algorithm was less than 3 × 10−3,
revealing the highly distinguished differences between seizure and normal statuses under
the same algorithm after denoising, and the results were consistent with Figures 4 and 5.
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Table 3. Willcoxon Two-sample Rank sum test results between the different groups (raw and
denoised signals).

Algorithm W p-Value

Higuchi 8733 2.02 × 10−9

RSE-f1 10553 <2.2 × 10−16

RSE-f1sc 10631 <2.2 × 10−16

RSE-f2 10909 <2.2 × 10−16

RSE-f2sc 10985 <2.2 × 10−16

The results from Figures 3–5 and Tables 2 and 3 indicated that the noise had a great
influence on fractal analysis of EEG signals. After denoising, Dc values calculated by
various algorithms could better distinguish the seizure status, the difference between the
seizure and normal statuses could be more significant. After using the scaling region
interception method, the RSE algorithm had a better performance in seizure detection.

In addition to the above results, since the Dc values should reflect the complexity
of the corresponding segmenting signal, i.e., theoretically the Dc should increase when
epilepsy occurred, the following ratio was used to compare the differences among various
algorithms. In this study, the following ratio meant the percentage of Dc increasing in the
seizure status. The following ratios was 72% for raw signals of all algorithms as illustrated
in Figure 6a. After denoising, all following ratios of various algorithms could reach 99%,
which meant that the noise indeed had an obvious influence on the fractal analysis of EEG
signals, particularly on the variation trends of Dc in seizure status.
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Figure 6. The results of the (a) following ratio and the (b) calculated time were illustrated by using
various algorithms of raw and denoised data. The red lines represented the error bar, and red letters
on each column represented the corresponding values.

In practical application, the calculation speed of the algorithm also needed to be
considered. The calculation times of one group of EEG signals were calculated by various
algorithms of raw and denoised signals, as shown in Figure 6b. The calculated times
were almost the same between raw and denoised EEG signals among various algorithms.
Compared with all algorithms, the Higuchi algorithm had the shortest calculated time,
while the RSE-f2 algorithm had the longest. The RSE algorithm would be shorter a little after
using the scaling region interception method, however, all kinds of RSE algorithms were
longer than 20 s. Higuchi algorithm, by contrast, had the shortest computing time, but its Dc
accuracy and variation significance were not as high as RSE algorithm. In order to achieve
a real-time monitoring, all the factors of high speed, Dc accuracy and variation significance
should be considered. In our future work, RSE algorithm would be accelerated significantly
by using an optimizing scheme, and the feasibility of artificial neural network [41] for
fractal analysis on EEG signals would be also investigated.

Besides, for the variation trends of fractal dimension in epileptic EEG signals, more
data of EEG signals need to be collected, other denoising algorithms like EMD and fractal
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algorithms like Box-counting need to be used to further verify the universality and necessity
of the noise reduction. The results of this study fully illustrated the influence of denoising
process on EEG signal and seizure recognition, and provided a general template for
studying the influence of specific signals not limited to EEG signal before and after noise
reduction, and provided a reference for future signal process and device development.

4. Conclusions

In this study, two opposite variation trends of fractal dimension in epileptic EEG
signals were demonstrated, which could both be consistent with the literature, and the
influences of denoising process were analyzed. Higuchi and RSE (RSE-f1, RSE-f1sc, RSE-f2
and RSE-f2sc) algorithms were used to calculate the Dc values of the EEG signals. Based
on the CHB-MIT Scalp EEG database, 109 groups of EEG signals which met the 800-s
requirement and had the correct epileptic seizures status were employed to carry out the
comparative study. The Dc values of the seizure and normal statuses were calculated by
using various algorithms of raw and denoised signals. To further illustrate the influences of
denoising, the following ratio and calculated time were also compared. This study would
be promising to help to make more understandings of the nonlinear nature and scaling
property of EEG signals. The conclusions of this study could be summarized as follows:

1. Dc could quantify the complexity of EEG signals, and the noise had a significant
influence on Dc variation trends of EEG signals. After denoised, the following ratio
calculated by all algorithms could be increased from 72% to 99%;

2. After using the scaling region interception method, Dc obtained by RSE-f1sc and
RSE-f2sc were more favorable to distinguish the seizure status from normal status,
because Dc values in normal status were generally below 1, which indicated the
non-fractal nature of EEG signals in such cases. The capability of RSE algorithm to
quantify the complexity of non-fractal features could be promising for the analysis on
EEG signals. The underlying mechanism of RSE algorithm and the fractal nature of
EEG signals in more clinical events would be investigated in our future study.
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