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Abstract: To improve the path planning efficiency of a robotic arm in three-dimensional space and 

improve the obstacle avoidance ability, this paper proposes an improved artificial potential field 

and rapid expansion random tree (APF-RRT) hybrid algorithm for the mechanical arm path plan-

ning method. The improved APF algorithm (I-APF) introduces a heuristic method based on the 

number of adjacent obstacles to escape from local minima, which solves the local minimum problem 

of the APF method and improves the search speed. The improved RRT algorithm (I-RRT) changes 

the selection method of the nearest neighbor node by introducing a triangular nearest neighbor node 

selection method, adopts an adaptive step and generates a virtual new node strategy to explore the 

path, and removes redundant path nodes generated by the RRT algorithm, which effectively im-

proves the obstacle avoidance ability and efficiency of the algorithm. Bezier curves are used to fit 

the final generated path. Finally, an experimental analysis based on Python shows that the search 

time of the hybrid algorithm in a multi-obstacle environment is reduced to 2.8 s from 37.8 s (classic 

RRT algorithm), 10.1 s (RRT* algorithm), and 7.4 s (P_RRT* algorithm), and the success rate and 

efficiency of the search are both significantly improved. Furthermore, the hybrid algorithm is sim-

ulated in a robot operating system (ROS) using the UR5 mechanical arm, and the results prove the 

effectiveness and reliability of the hybrid algorithm. 

Keywords: mechanical arm; path planning; artificial potential field method; rapid expansion  

random tree algorithm; virtual new node 

 

1. Introduction 

In recent years, China’s logistics industry has developed rapidly to meet the increas-

ing demand for e-commerce in response to the internet economy and the rapid develop-

ment of warehousing automation technology [1]. The intelligent robotic arm industry is 

developing rapidly. The robotic arm, as its name implies, is designed to imitate a human 

arm for moving, grasping, lifting, and loading objects, among other operations [2]. There-

fore, robotic arms are widely used in the logistics and warehousing industry. To grasp a 

specified object and place it in the specified position, it is necessary to bypass complex 

obstacles and find an efficient and collision-free path, which is very simple for humans 

but presents many technical problems that need to be considered for the robotic arm. 

Thus, for the robotic arm, its path planning is one of the most important technical prob-

lems. Successful path planning can greatly improve the storage and grabbing efficiency 

and has long been a research hotspot in robotic applications. 
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2. Related Research 

Among the existing path planning algorithms, the artificial potential field (APF) 

method for path planning was first proposed by Khatib [3] in 1986. The idea is to use 

virtual force to make the robot navigate obstacles. The disadvantages of this algorithm are 

as follows: The algorithm easily falls into local minima or oscillates, and it is difficult to 

reach the target point when there are obstacles nearby. The rapid expansion random tree 

(RRT) algorithm was first proposed by the American professor LaValle [4] in 1998. The 

RRT method is a path planning algorithm based on sampling and an efficient multi-di-

mensional space with complete probability but is not optimal. However, the randomness 

of the RRT method causes it to be blind and exhibit a low efficiency; in addition, the re-

sulting path is tortuous and not smooth enough, and the search speed is slow in a narrow 

area. A large number of scholars have made different improvements to these two algo-

rithms. Zheng et al. [5] proposed a new minimum criterion and designed an improved 

virtual obstacle local path planning method to overcome the tendency of the APF algo-

rithm to easily fall into local minima and other shortcomings. Sun et al. [6] proposed the 

use of dynamic windows to improve the APF method to solve the problem of being 

trapped in local minima. Zhang et al. [7] proposed a curved path planning algorithm for 

overtaking cars based on an improved APF method, and an optimal guaranteed perfor-

mance control strategy for tracking the curved paths for overtaking cars based on linear 

robust control theory was proposed. Han et al. [8] proposed an improved APF method to 

solve the problems of large swinging trajectories and easily falling into local minima that 

are encountered by the classic APF method in unmanned aerial vehicle (UAV) trajectory 

planning. Zhang et al. [9] proposed a path planning method for multiple underwater un-

manned vehicles (UUVs) in a three-dimensional environment based on the “domain”, 

which solves the disadvantages of unreachable targets near obstacles, local minima, and 

oscillations encountered in the classic APF method. Tian et al. [10] proposed an overall 

configuration planning method of continuum hyper-redundant manipulators (CHRMs) 

based on an improved APF method that avoids complicated inverse kinematics and vastly 

reduces the computational complexity. Li et al. [11] proposed a path planning method for 

mobile mechanical arms based on the sparse node RRT algorithm that solves the problem 

of excessively searching in the local space and reduces the number of invalid nodes. Ge et 

al. [12] proposed a free-floating space robot (FFSR) trajectory planning method based on 

the dynamic RRT* algorithm, which can rapidly generate a feasible robot movement tra-

jectory. Gan et al. [13] proposed a 1–0 goal-bias RRT algorithm to reduce the computa-

tional time and complexity, even in complex environments. Qureshi et al. [14] proposed 

the potential function-based RRT* (P-RRT*) method by incorporating the APF algorithm 

into the RRT* method. The proposed algorithm allows a considerable decrease in the num-

ber of iterations and thus leads to more efficient memory utilization and an accelerated 

convergence rate. Jeong et al. [15] proposed Quick-RRT* (Q-RRT*), a modified RRT* algo-

rithm that generates a better initial solution and converges to the optimal solution faster 

than RRT*. Q-RRT* enlarges the set of possible parent vertices by considering not only a 

set of vertices contained in a hypersphere, as in RRT*, but also their ancestry up to a user-

defined parameter, thus resulting in paths with less cost than those of RRT*. Wang et al. 

[16] proposed a novel learning-based multi-RRT (LM-RRT) approach for robot path plan-

ning in narrow passages. The LM-RRT approach models the tree selection process as a 

multi-armed bandit problem and uses a reinforcement learning algorithm that learns ac-

tion values and selects actions with an improved epsilon-greedy (epsilon (t)-greedy) strat-

egy. Lee et al. [17] proposed a motion planning algorithm by exploiting RRT stars (RRT 

stars) and dynamic movement primitives (DMPs). Hao et al. [18] proposed a Dubins-RRT* 

algorithm to involve the construction of a recovery path for an agricultural mobile robot 

(AMR) under kinematic constraints. The planned path avoids obstacles and incurs the 

minimum cost from a rendezvous point to the recovery platform. However, in general, 

the problems in the above research are as follows. (1) The improved APF algorithms can-

not readily solve the problem of local minima in the search process, and the local minima 
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cannot be adjusted in a timely manner. In addition, when there are obstacles at both the 

target point and the starting point, the obstacles cannot be effectively avoided to reach the 

target point quickly, and the generated path is relatively tortuous. (2) The improved RRT 

algorithms cannot quickly find a reliable path in a complex, multi-obstacle environment. 

Moreover, the algorithm cannot be adjusted well for different environmental conditions, 

which is not conducive to improving the algorithm efficiency, and the generated path is 

not sufficiently smooth, causing the mechanical arm to undergo impacts and become 

damaged in actual operation and severely shortening the service life of the mechanical 

arm. 

In response to the above problems, the present paper proposes an improved hybrid 

three-dimensional path planning algorithm for mechanical arms that combines the APF 

method and the RRT algorithm. The proposed algorithm is used to solve the path plan-

ning problem of the manipulator in an environment with complex obstacles. Compared 

with the existing path planning algorithms, the main contributions of this article are as 

follows: 

1. In the I-APF (I-APF) method, a heuristic method based on the number of adjacent 

obstacles to break away from the local minimum is proposed so that the algorithm 

can quickly eliminate local minima and break away from obstacles. 

2. In the I-RRT (I-RRT) algorithm, a triangular nearest neighbor node selection method 

is proposed, which improves the convergence of the algorithm. 

3. Based on the I-APF algorithm and the I-RRT algorithm, a hybrid algorithm is pro-

posed that combines these two improved algorithms to search for the optimal path. 

First, the distance between the nearest neighbor node and the obstacle is judged. Ac-

cording to the different distances, the I-APF method and the I-RRT algorithm are 

used to expand the path, which improves the search speed and obstacle avoidance 

ability of the algorithm. 

The rest of this article is organized as follows. Section 3 introduces the classic APF 

method and the classic RRT algorithm. Then, Section 4 introduces the improved APF and 

RRT hybrid algorithm. In Section 5, to smooth the path, the path is fitted with a Bezier 

curve. In Section 6, the planned path is verified by an experimental simulation using Py-

thon language development tools and robot operating system (ROS) tools. 

3. Background 

3.1. Principles of the Classic APF Method 

The APF method makes the object move and reach the target point under the action 

of a force field, which includes a gravitational field and a repulsive field [19–21]. 

The gravitational field function Uatt(q)
 
is as follows: 

21
( ) ( , )

2
att goalU q q q=  (1) 

where ε is the scale factor, ρ(q,qgoal) represents the Euclidean distance between the target 

object qgoal and the current position q, and the gravitation Fatt(q)
 
of the corresponding target 

object is the derivative of the gravitational field: 

( ) ( ( )) ( )att att goalF q U q q q= − = −  (2) 

The repulsive field Urep(q) function is as follows: 
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where η is the repulsion scale factor, ρ(q,qobs) represents the Euclidean distance between 

obstacle qobs and current position q, and ρ0 represents the influence radius of each obstacle. 

Then, the repulsion Frep(q) is the derivative of the repulsive field: 

02
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q q if q q
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 


−  


= − = 

 


（ ）
（ ）  

(4) 

where ∇ρ(q,qobs) represents the derivative of ρ(q,qobs), the target object generates gravita-

tion, the object is guided to move towards the target object, and the obstacle generates 

repulsion to avoid the obstacle, as shown in Figure 1. The resultant force field U(q) (result-

ant force F(q)) that an object receives at any point in the field is equal to the vector sum of 

the target object’s gravitational field (gravity) and the total repulsive field (repulsion) of 

obstacles encountered. The formula is as follows: 

( ) ( ) ( )att repU q U q U q= +  (5) 

( ) ( )F q U q= −  (6) 

 

Figure 1. Diagram illustrating the principle of the APF method. 

3.2. Principles of the Classic RRT Algorithm 

The principle of the classic RRT algorithm is to use an initial point as the root node 

qinit. In each subsequent expansion, a random node qrand is randomly generated in the map. 

The nearest function selects a node qnearest
 
to qrand based on the Euclidean distance on the 

existing random tree and expands this node in the direction of qrand with a step distance 

through the extend function to obtain a new node qnew. Evaluating whether qnew collides 

with an obstacle proceeds as follows. If it collides, growth is abandoned, qnew is removed, 

and a random node is regenerated; if there is no collision, qnew is added to the random tree, 

and qnew’s parent node is assigned to qnearest, as shown in Figure 2. When the distance be-

tween the node of the random tree and the target point is less than a specific value m, the 

program is terminated, as a collision-free path from the starting point to the target point 

has been obtained. The above steps are followed until reaching the target point, as shown 

in Figure 3. 



Algorithms 2021, 14, 321 5 of 22 
 

 

Figure 2. Classic RRT mind map. 

 

Figure 3. Path planning diagram of the classic RRT algorithm. 

4. Improved Algorithms 

This section first conducts a collision detection analysis of obstacles, and the results 

are used to plan the path of the UR5 manipulator. An I-APF method is proposed to avoid 

local minima of APF, and an I-RRT algorithm is proposed to improve upon the slow con-

vergence speed and poor search efficiency of the classic RRT algorithm. However, the I-

APF method leads to tortuous paths and unreachable targets when there are obstacles at 

the start and end points, and the I-RRT algorithm still has a low search efficiency in an 

environment with complex obstacles. Notably, the hybrid algorithm that combines the I-

APF method and the I-RRT algorithm overcomes the shortcomings of these respective 

algorithms. Finally, the principles and implementation steps of the hybrid algorithm are 

given below. 

4.1. Collision Detection 

A collision detection analysis is carried out. This article uses the universal robot UR5 

mechanical arm for the research, uses the geometric envelope in space to simplify the ob-

stacles and mechanical arm model, establishes an environment perception model through 

sensors, establishes an environmental model map, and divides the map into an obstacle 

space and obstacle-free space [22]. Usually, obstacles are irregular. To facilitate the calcu-

lation, the obstacles are usually idealized as an enclosed ball, and the joints of the robotic 

arm are idealized as cylindrical. In this way, the computational load can be reduced [23]. 

Suppose the coordinates of the center of the sphere are (x, y, z), the radii of the spheres are 

R1 and R2, and the radius of the cylinder is r; then, the distances between the coordinates 

initq

nearestq

randq

newq

图5 经典RRT思维图 图6 经典RRT算法路径图
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of the centers of the two spheres and the central axis of the cylinder are calculated, denoted 

d1 and d2. As shown in Figure 4, when d > r + R, the robotic arm does not collide with the 

obstacle; otherwise, the arm collides with the obstacle. This method can greatly improve 

the computational efficiency. 

 

Figure 4. Collision detection model. 

4.2. I-APF Algorithm 

According to the principles of the classic APF method, the algorithm has some short-

comings. When there is an obstacle at the starting point, the repulsive force causes the 

path to be tortuous. When the target point is near an obstacle, the obstacle makes it diffi-

cult for the object to reach the target point. When the gravitational force and the repulsive 

force on the object are equal, objects fall into local minima. 

In view of the local minima problem of the classic algorithm, some scholars have 

proposed the idea of using virtual sub-targets [24] to make the robot escape from the local 

minimum. However, the location of the virtual sub-target is random, which inevitably 

leads to the blindness of the algorithm; that is, the robot deviates from the target or enters 

an obstacle area. This paper proposes a heuristic method for deviating from local minima 

based on the number of adjacent obstacles. The method includes three steps. Step 1: Make 

a judgement on the local minimum. Step 2: If the object is stuck, take the local minimum 

as the center, draw a circle with twice the step length in the RRT algorithm as the radius, 

record the number of obstacles in the circle as O, and record the total number of obstacles 

in the space as S. Step 3: Introduce a heuristic function to calculate the new potential field 

force. The specific process is as follows. 

When the object falls into a local minimum, the gravitational field and repulsive force 

field received by the robotic arm are equal in size but in opposite directions. By judging 

the size and direction of the gravitational field and repulsive force field of the robotic arm, 

whether the robotic arm falls into a local minimum can be evaluated. When the robotic 

arm falls into a local minimum, the number of nearby obstacles is obtained by using twice 

the step length in the RRT algorithm as the radius, and then a heuristic function is estab-

lished to calculate the new force field. The heuristic function F is as follows: 

F = α(O/S)M+β(1-O/S)N  (7) 

where α and β are the repulsion scale factor and the gravitational scale factor, respectively, 

O is the number of obstacles, S is the total number of obstacles in space, M represents the 

repulsive force of the obstacles in the circle on the robotic arm, and N represents the grav-

itational force of the target point on the robotic arm. According to the heuristic function, 

the more obstacles there are in the circle, the greater the repulsive force of the robot arm 

will be, and the path will expand in the direction deviating from the obstacle to the target 

point, which is beneficial for the robot arm to quickly avoid the obstacle. Figure 5 shows 

a path planning diagram of the I-APF method. 

R1

R2

r

h

d2

d1

Robot link i

Irregular obstacles

Spherical obstacle
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Figure 5. I-APF method path diagram. 

4.3. I-RRT Algorithm 

The principle of the classic RRT algorithm shows that the algorithm has randomness 

and a strong obstacle avoidance ability, but this inevitably increases the search time and 

reduces the efficiency, and the search path is long and tortuous, which takes up a rela-

tively large amount of memory. When there are many obstacles, the efficiency of the al-

gorithm is greatly reduced. Therefore, this paper improves on the classic RRT algorithm 

and proposed the I-RRT algorithm. The specific improvements are as follows. 

4.3.1. Path Collision Detection 

The classic RRT algorithm performs collision detection for nodes but does not con-

duct collision detection along the path. If the path results in a collision with obstacles, the 

generated path does not meet the actual requirements. In this paper, collision detection is 

performed on the path in the Collision_check_line() function. The specific method is to 

pass between two nodes in the random tree, calculate the Euclidean distance between the 

two nodes in the three-dimensional space, and set the division rate (Discretepoint). The 

number of divided points is equal to the distance between the two points divided by the 

division rate. The path is divided into many points, and whether these points collide with 

obstacles is evaluated. 

4.3.2. Goal-Bias Strategy 

According to the classic algorithm, the random tree is expanded by selecting random 

points, resulting in a low path search efficiency. Therefore, this paper adopts the idea of 

target bias [25]. Random point generation is used to select the target point with a certain 

probability PgoalDampleRate and can effectively reduce the blindness of the algorithm. When 

the random probability is greater than PgoalDampleRate, a random point is generated, and when 

the random probability is less than PgoalDampleRate, the target point is taken as the random 

point, which speeds up the convergence rate. 

4.3.3. Triangular Nearest Neighbor Node Selection Strategy 

The traditional nearest neighbor node selection strategy uses the node in the tree with 

the closest Euclidean distance to the random sampling point as the nearest neighbor node. 

This paper proposes a triangular nearest neighbor node selection method, and the specific 

steps are as follows: If a random sampling point is not the target point, the connections 

between the random sampling point, the node in the tree, and the target point are estab-

lished to form a triangular area; then, the sum of the distances of the three sides of the 

triangle is calculated as the cost function of the nodes. Then, the cost function can be ex-

pressed as: 

2 2 2

goal rand rand goalCost (q) = (||q -q ||  +||q -q|| +||q -q|| )  (8) 

Then, the nearest neighbor node in the triangle is: 
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nearest node iq  = {q T  | Cost(q )=min{Cost (q)}}  (9) 

The triangular nearest neighbor node selection can combine the nearest Euclidean 

distance to the random point and the nearest Euclidean distance to the target point to 

select the nearest neighbor node, which improves the convergence efficiency of the algo-

rithm and further reduces the blindness of the algorithm. 

4.3.4. Adaptive Step Size 

The classic algorithm has a fixed step length for expansion; approaching obstacles 

cannot be avoided well, causing collisions and occupying a large amount of memory, and 

the generated step length grows towards a random point without directionality. Both of 

these issues lead to a reduction in the efficiency of the algorithm, so an adaptive step size 

strategy is adopted [26]. When the minimum distance between qnearest and the obstacle is 

greater than the step size, the obstacle is marked as s, the idea of gravity in the APF 

method is introduced into the adaptive step size of the RRT algorithm [27], and the ran-

dom tree is guided to grow towards the target. On the basis of the original RRT algorithm 

growing towards random points, the step component G(n) towards the target is added so 

that the new node has a tendency to deviate towards the target point. The formula of step 

F(n) is defined as follows: 

F(n) = R(n) + G(n)  (10) 

where F(n) represents the traction step length of the nth node, R(n) represents the traction 

step length of the nth node by a random point, and G(n) represents the traction step length 

of the nth node by the target object. The gravitational potential energy U of the target point 

to the nearest node is known by the APF method and is defined as follows: 

21
*

2
p goal nearU K x x= −  (11) 

where kp represents the gravitational coefficient and ‖xgoal−xnear‖ represents the absolute 

value of the Euclidean distance between the position vector xgoal of the target point and the 

position vector xnear of the nearest node. Then, the gravitational force G is the derivative of 

the gravitational potential energy U, namely, 

*p goal nearG K x x= −  (12) 

Then 

( ) *
goal near

p

goal near

x x
G n k

x x


−
=

−
 (13) 

where ρ represents the step length of random growth; then, R(n) can also be deduced as 

( ) * rand near

rand near

x x
R n

x x


−
=

−
 (14) 

where ‖xrand−xnear‖ represents the absolute value of the Euclidean distance between the 

position vector xrand of the random point and the position vector xnear of the nearest node. 

By inserting Equations (13) and (14) into Equation (10) to obtain the traction step length 

of the nearest node as Equation (15), defined as 𝐹1(𝑛), the following formula is obtained: 

1( ) * *
goal nearrand near

p

rand near goal near

x xx x
F n k

x x x x
 

−−
= +

− −
 (15) 

When the minimum distance to the obstacle is less than the step length, two situa-

tions are possible. 
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Case 1: First, a virtual new node is generated according to the above steps, and 

whether the distance between the virtual new node and obstacle s is less than the distance 

between the nearest node and the obstacle is evaluated. If the distance is less than the 

distance between the nearest node and the obstacle, then the virtual new node has a ten-

dency to approach the obstacle is proven. Then, the virtual new node is removed, the step 

length of the new node growth is changed, and the step length is reduced on the basis of 

the step length 𝐹1(𝑛), which is defined as the step length 𝐹2(𝑛). The formula is as follows 

2
2

1

( ) ( * * )
goal nearrand near

p

rand near goal near

x xdist x x
F n k

dist x x x x
 

−−
= +

− −
 (16) 

where dist1 represents the distance between the nearest node and obstacles and dist2 rep-

resents the distance between the virtual new node and obstacles. Whether the node col-

lides with an obstacle is evaluated. If it collides, a random node is regenerated; if there is 

no collision, a new node is added to the random tree. 

Case 2: If the distance between the virtual new node and obstacles is greater than the 

distance between the nearest node and obstacles, it proves that the new node has a ten-

dency to grow away from the obstacle. Then, the step length of the new node generation 

adopts the step length of the classic RRT algorithm, defined as the step length 𝐹3(𝑛), and 

the formula is as follows: 

3( ) * rand near

rand near

x x
F n

x x


−
=

−
 (17) 

Then, whether the node collides with an obstacle is evaluated; if it collides, a random 

node is regenerated, and if there is no collision, a new node is added to the random tree. 

4.3.5. Removing Redundant Nodes 

Due to the randomness of the classic RRT algorithm, the path may oscillate. Redun-

dant nodes are removed to process the path from the starting point to the target point 

generated by the random tree [28]. Starting from the first node qinit, the subsequent path 

nodes are connected in turn, the second node is ignored, and the third node is connected. 

If the object does not collide with the obstacle, the second node on the path is deleted. If 

there is a collision, then the node is retained, the parent node of the collision point is used 

as the new evaluation node, and the above steps are repeated until the target point is 

reached. The final series of reserved nodes is saved into Path 2 and connected to obtain 

the path after removing redundant nodes, as shown in Figure 6. The collision here refers 

to the collision detection of the path mentioned in Section 4.3.1. Figure 7 shows the path 

diagram generated by the I-RRT algorithm. Algorithm 1 shows the pseudocode of the I-

RRT algorithm. 
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Algorithm 1: I-RRT                                                                   

1.initialization

2.S       qinit;

3.while true do

4.      q(rand)=random() or end();

5       if  q(rand) = random()

6.            q(nearest)        Triangle_nearest_list_index(node_list, q(rand)); 

7.      dist1       Nearest distance(q(nearest) obstacles); 

8.      if dist1 > expandDis

9.         q(new)        Extend(expandDis,q(nearest), Direction Angle)

10.    else

11.       q(new)=virtual(Extend(expandDis,q(nearest),DirectionAngle)     

12.       dist2        Nearest_distance(q(new), obstacles)

13.       if dist1 > dist2

14.            q(new)        Extend(expanddis,q(nearest),Direction Angle)

15.      else 

16.            q(new)        Extend(expandDis,q(nearest),Direction Angle)

17.    if collision_check(q(new))

18.       Tree.add(q(new))

19.    if dist(q(new),q(end))< expandDis

20.       return Goal

21.    else

22.       continue

23.return path

24.path2       remove_redundant_nodes(path)

25.return Graph                               

 

 

Figure 6. Diagram of the I-RRT algorithm implementation to remove redundant nodes. 

 

Figure 7. I-RRT algorithm generation path diagram. 

Target
Starting point

Obstacle
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4.4. Improved Hybrid Algorithm of the APF and RRT 

The I-APF method deals with the local minimum problem in the classic algorithm, 

but when there are obstacles at the starting point, the repulsion causes a tortuous path. 

When there are obstacles at the target point, the target is unreachable, and vibration oc-

curs. The I-RRT algorithm significantly improves the search efficiency, but its efficiency is 

still low in the case of multiple obstacles. This article adopts the strategy of combining the 

two improved algorithms (I-APF, I-RRT) to give full play to the advantages of the two 

algorithms to avoid defects. 

4.4.1. Principle of the Improved Hybrid Algorithm 

The principle of the hybrid algorithm is as follows. First, the tree node is initialized, 

and the distance between the nearest node and the obstacle is continuously detected. If it 

is detected that the minimum distance between the current node and the obstacle is 

greater than twice the step length, it means that there is no obstacle near the current node, 

and the I-APF method is used for rapid expansion. If the minimum distance between the 

current node and the obstacle is less than twice the step length, the I-RRT algorithm is 

adopted to make full use of the efficient obstacle avoidance ability of the RRT algorithm, 

and the above steps are repeated until the target point is reached. The hybrid algorithm 

can effectively improve the efficiency of path searching and resolve the following problem 

of the APF method: When there are obstacles at the starting point, the repulsive force 

causes a tortuous path, and the target is unreachable when there is an obstacle at the target 

point. Furthermore, the hybrid algorithm also solves the problem of the classic RRT algo-

rithm, which has a significantly lower efficiency when there are more obstacles, and the 

generated path is shorter and smoother. 

4.4.2. Improved Hybrid Algorithm Implementation 

According to the principle of the improved APF and RRT hybrid algorithm, the spe-

cific implementation steps are described as follows. 

Step 1: Initialize the parameters, and define the obstacle environment, starting point, 

target point, step length, and target sampling rate. 

Step 2: Determine the distance between the current node and the obstacle. If the dis-

tance between the current node and the nearest obstacle is greater than twice the step 

length, execute Step 3. If the distance between the current node and the nearest obstacle 

is less than twice the step length, execute Step 4. 

Step 3: Use the I-APF method to search and move forward under the combined force 

of the target and obstacle. (1) Calculate the gravitational and repulsive forces. (2) Deter-

mine whether the gravitational and repulsive forces experienced by the current node are 

equal and opposite. If they are equal, the object falls into a local minimum, the heuristic 

method based on the number of adjacent obstacles is used to escape from the local mini-

mum so that the algorithm escapes from the local minimum, and the end effector of the 

robotic arm is guided to continue to move. If they are not equal, proceed to Step (3). (3) If 

the distance between the current node and the target point is less than the step length or 

if the distance between the nearest node and the nearest obstacle is less than twice the step 

length, then the I-APF method search process is ended, the path node obtained by the APF 

method is added to the Pathpath, and the Pathpath and the latest node q(new) are re-

turned. Otherwise, jump to Step (1). 

Step 4: If the distance between the current node and the nearest obstacle is less than 

twice the step length, the I-RRT algorithm is used to search for the path. (1) Initialize the 

tree, set the initial node and target point, and define the step size, target sampling rate, 

and segmentation rate. (2) Start the iteration and sample the state space. When the random 

probability is less than the target sampling rate, the sampling point selects the target point. 

If it is greater than the target sampling rate, random sampling points in the space are se-

lected. (3) Select the nearest neighbor node according to the triangle nearest neighbor node 
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selection method and calculate the distance dist1 between this node and the nearest obsta-

cle. (4) Determine whether the distance dist1 is greater than the step length. If so, the step 

length 𝐹1(𝑛) is used for expansion. If not, generate a virtual new node according to the 

step length 𝐹1(𝑛) and calculate the distance dist2 between the virtual new node and the 

nearest obstacle. (5) If dist2 < dist1, the new node has a tendency to move towards obstacles. 

Remove the virtual new node and use step 𝐹2(𝑛) to expand. If dist2>dist1, the new node 

has a tendency to move away from obstacles; remove the virtual new node and use the 

step size 𝐹3(𝑛) to expand. (6) Determine whether the new node collides with obstacles; 

if there is a collision, skip to Step (2). Re-sample random points; if there is no collision, 

add the new node to the tree and assign the parent node of the new node to the nearest 

node (qnearest). (7) When the distance between the new node and the target point is less than 

the step length or the distance between the nearest node and the nearest obstacle is greater 

than twice the step length, end the iterative process; otherwise, skip to Step (2). (8) Use the 

collision detection method of the path to perform the process of removing redundant 

nodes on the generated path to obtain the processed path. (9) Add the processed path 

node to the Pathpath and return the Pathpath and the latest node q(new). 

Step 5: Determine whether the distance between the new node and the target point 

is less than the step length. If so, reach the target point, connect the new node and the 

target point, output the path graph, obtain a collision-free path from the start point to the 

end point, and exit the program. Otherwise, skip to Step 2. 

According to the specific implementation steps of the hybrid algorithm, Figure 8 

shows the flowchart of the hybrid algorithm and Algorithm 2 shows the pseudocode of 

the hybrid algorithm. 

 

Figure 8. APF-RRT algorithm flow chart. 
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5. Bezier Curve Path Smoothing 

Aiming at the phenomenon that the path generated by the algorithm has turning 

points and is not sufficiently smooth, reducing the performance of the robot arm due to 

its acceleration in actual operation, this paper uses Bezier curves to smooth the path 

[17,29]. Smoothing is realized on the basis of the original path, and n+1 nodes obtain the 

formula of an n-order Bezier curve: 

0 ,( ) ( ) , [0,1]n

i n i iC u B u p u==    (18) 

where Pi represents n + 1 points in space and the weight coefficient Bn,i(u) with the param-

eter u is the Bernstein basis function. The calculation method is as follows: 
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The final generated curve has a relationship with each of the n+1 points. These points 

determine the final direction of the curve and are called control points. The Bessel order 

in Equation (18) is n and is controlled by the n+1 control points. The start point and end 

point correspond to u = 0 and u = 1, respectively. The curve after Bezier fitting is shown in 

Figure 9a. The slight gap between the fitted curve and the original path may risk collision 

between the path and the obstacle. It can be seen from the figure that the fitting curve is 

likely to result in a collision with the obstacle only when the obstacle environment is very 

complex. For the simulation experiment, the success rate of the 200-path fitting experi-

ment in this paper is 100%. 

 

Figure 9. Comparison of the Bezier fitted curve and original path. 

6. Simulation and Experiment (Python and ROS Simulation) 

In this section, the improved APF and RRT hybrid algorithm is verified experimen-

tally. To verify that the algorithm can maintain excellent results in a multi-obstacle envi-

ronment, this hybrid algorithm is compared with the RRT, RRT*, and P_RRT* algorithms. 

The RRT* algorithm is a landmark algorithm among the improved RRT algorithms. It has 

a higher convergence rate and has been widely studied by scholars, while the P_RRT* 

algorithm introduces the idea of the APF method on the basis of RRT*, making the P_RRT* 

algorithm one of the path planning algorithms with the highest convergence efficiency. 

Experiments were carried out on different obstacle environments to verify the effective-

ness of the algorithm. This experiment used Python language development tools on a la-

boratory desktop HP computer with 4-GB memory and an Intel(R) Core (TM)i5-6500 CPU 

@3.20 GHz–3.19 GHz to find a smooth and collision-free path. Combining theory with 

reality, this work chose a simulation robot, the UR5 of the Danish UAO Company, for 

simulation experiments. The UR5 is a six-degree-of-freedom manipulator. Table 1 shows 

the motion control parameters of the UR5 robotic arm. 

  

(a) Bezier fitting curve (b) Original path
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Table 1. Manipulator motion control parameter table. 

Parameter Value 

Search step ρ 1.0 dm 

Starting point (0,0,0)/dm 

Ending point (8,10,10)/dm 

Gravitational coefficient ε, Kp 0.05 

Repulsion coefficient η 100.0 

α 0.4 

β 0.6 

Obstacle influence radius ρ0 0.3 dm 

Target sampling rate 0.1 

6.1. Experiments and Analysis in Python 

Experiment 1. A comparison among the algorithms for different numbers of obstacles 

was carried out to verify that the improved APF and RRT hybrid algorithm maintained a 

better search effect in the case of multiple obstacles. With a gradually increasing number 

of obstacles, the advantages and disadvantages of the proposed path planning algorithm 

were compared with those of the classic RRT algorithm, the RRT* method, and the P_RRT* 

algorithm. Each group of experiments was performed 200 times, and the average of the 

results is shown in Table 2, where the search success rate was that the search was within 

100 s of a successful search, and the search was unsuccessful outside of 100 s. 

Table 2. Comparison of various algorithms for different obstacle numbers. 

Obstacle Average Search Time Average Path Length 
Average Number of 

Sampling Nodes 
Search Success Rate 

 RRT RRT* P_RRT* APF-RRT 

10 20.0 22.5 70.4 100% 7.7 21.0 20.4 100% 6.9 20.6 20.5 100% 2.0 18.0 10.3 100% 

12 21.0 22.8 74.1 100% 8.13 21.2 20.6 100% 7.3 20.7 20.8 100% 2.1 18.0 10.4 100% 

14 37.8 23.5 95.7 95% 10.1 21.8 21.9 100% 7.4 20.7 21.0 100% 2.8 18.0 11.5 100% 

16 40.9 23.6 111.2 90% 10.3 21.8 23.8 100% 7.8 21.1 21.3 100% 3.2 19.1 11.9 100% 

According to Table 2, the search time, path length, number of sampling nodes, and 

search success rate of the algorithms are compared. The search time of the classic RRT 

algorithm was relatively short when there are few obstacles. When the number of obsta-

cles gradually increased, the search time greatly increased, and the search success rate 

decreased. Compared with the classic RRT algorithm, the RRT* method was superior. The 

average search time and the average number of sampling nodes were greatly improved, 

and the algorithm maintained good results when the number of obstacles gradually in-

creased. Compared with the RRT* algorithm, the P_RRT* algorithm exhibited further im-

provements, and the search efficiency was higher. With an increasing number of obstacles, 

stable search results can be maintained, but compared with the improved APF and RRT 

hybrid algorithm in this article, it still had the disadvantages of a low search efficiency, 

tortuous paths, and high average number of sampling nodes, which consumed more com-

puting memory. The hybrid algorithm in this paper showed a better effect when the num-

ber of obstacles gradually increased. 

Experiment 2. To analyze the effectiveness of the improved APF and RRT hybrid 

algorithm, this work compared various algorithms under the same conditions of obstacles 

and step lengths. Each set of experiments was performed 200 times, and the average of 

the results is shown in Table 3. 

According to the data in Table 3, the classic RRT algorithm had a slow search speed, 

a large number of sampling nodes, and tortuous paths when there were many obstacles, 

as shown in Figure 10a. Compared with the classic RRT algorithm, the RRT* algorithm 
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had a great improvement in the average search time, the path planning efficiency was 

higher, and the generated path was smoother, as shown in Figure 10b. The average search 

time of the P_RRT* algorithm was shorter than that of the RRT* algorithm. However, com-

pared with the improved APF and RRT hybrid algorithm in this paper, there were still 

shortcomings, such as a low search efficiency, tortuous paths, and a large demand on the 

computing memory. The improved hybrid algorithm in this paper still showed excellent 

results in the case of many obstacles, the search efficiency was higher, the path was shorter 

and smoother, and it overcame the phenomenon of tortuous paths and unreachable tar-

gets in the APF method when there were obstacles near the starting point and target point. 

To a certain extent, the blindness of the RRT algorithm was reduced, and the efficient 

obstacle avoidance ability of the RRT algorithm was fully utilized, as shown in Figure 10d. 

Table 3. Comparison of various algorithms under the same conditions. 

 Average Search 

Time 

Average Number of 

Sampling Nodes 

Average Path 

Length 

Search Success 

Rate 

RRT 37.8 95.7 23.5 95% 

RRT* 10.1 21.9 21.8 100% 

P_RRT* 7.4 21.0 20.7 100% 

APF-RRT 2.8 11.5 18.0 100% 

 

Figure 10. Comparison of paths generated by the different algorithms under the same conditions, such as the number of 

obstacles and step lengths. 

The comparison and analysis with the classic RRT algorithm, RRT* algorithm, and 

P_RRT* algorithm verified the effectiveness of the improved hybrid algorithm in this pa-

per. 
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Experiment 3. The reliability of the algorithm was evaluated by changing the step 

length of the RRT algorithm in the hybrid algorithm. Each step was carried out 200 times. 

The experimental results are shown in Table 4, and the trajectory of different step lengths 

is shown in Figure 11. 

Table 4. Comparison of hybrid algorithms with different step sizes. 

Step 
Average Search 

Time 

Average Number of 

Sampling Nodes 

Average Path 

Length 

Search Success 

Rate 

0.6 6.2 13.8 19.4 100% 

0.8 5.9 12.6 19.1 100% 

1.0 3.2 11.9 19.1 100% 

1.2 5.6 12.0 19.1 100% 

1.4 6.7 12.7 19.2 100% 

As shown in Table 4, the search time was the smallest when the step size was 1.0 

(42.8%~52.2% shorter than at the other step sizes). The search time at the left end with a 

step size of 1.0 gradually decreased, while the search time at the right end had an increas-

ing trend due to the excessive step size. The search time of the path did not decrease with 

increasing step size, and when the step size was 1.0, the search path was the shortest and 

the time was the shortest. In summary, when the step size was 1.0, the algorithm achieved 

the optimal effect. Therefore, the selection of the step size is still very important for the 

hybrid algorithm, and the experiment verified the reliability of the algorithm. 
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Figure 11. Comparison of hybrid algorithms with different step sizes. 

Figure 11 shows the trajectory diagrams of different step lengths fitted with Bezier 

curves. The effect is best when the step length is 1.0 in the figure: The trajectory is smooth, 

and the path is the shortest. 

6.2. ROS Simulation Experiment 

This section took the UR5 mechanical arm as the research object, conducted a simu-

lation analysis in the ROS, and set up the scenes required for robotic arm motion planning 

in MoveIt. The objects were added in MoveIt by creating a topic publisher, setting the 

basic shape and position of required obstacles and target objects, and publishing object 

information. The experiment was demonstrated by the visualization tool Rviz in the ROS. 

First, the UR5 robotic arm model was loaded, the simulation function was enabled, and 

the start point and end point of the robotic arm were set. As shown in Figure 12, the gray 

robotic arm was the pose of the starting point, and the yellow robotic arm was the pose of 

the ending point. The obstacles in the picture are a table and eight regular-shaped cubes, 

and the green cuboid is the grasping target. This scenario was a locally restricted test sce-

nario with obstacle constraints and platform constraints. Before motion planning, the er-

(b) Step 0.6 to generate the path graph(a) 0.6 Bezier curve graph）

(d) Step 0.8 to generate the path graph(c) 0.8 Bezier curve graph

(f) Step 1.0 to generate the path graph(e) 1.0 Bezier curve graph

(h) Step 1.2 to generate the path graph(g) 1.2  Bezier curve graph

(j) Step 1.4 to generate the path graph(i) 1.4 Bezier curve graph
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ror transformation matrix was used to compensate for the parking error of the manipula-

tor, and the positions of the start point and end point of the manipulator were the postures 

after compensation. The improved APF and RRT hybrid algorithm was added to the Open 

Motion Planning Library (OMPL), and the corresponding YAML Ain’t Markup Language 

(YMAL) was modified. The Kinematics and Dynamics Library (KDL) solver that comes 

with MoveIt was used to solve the angle changes of each joint during the movement from 

the starting point to the ending point. A smooth and collision-free path from the starting 

point to the target point was obtained, as shown in Figure 13. The motion trajectory was 

smooth and did not collide with obstacles. 

 

Figure 12. The poses of the start and end points of the UR5. 

 

Figure 13. The trajectory diagram of the UR5 robotic arm. 

Figure 14 shows the changes in the six joints during the movement of the robotic arm. 

The position change of each joint was relatively stable and met the real movement needs 

of the robotic arm. The position of the joints at the start and end positions are shown in 

Table 5. Table 6 shows the average search time and search success rate of different algo-

rithms in the same obstacle environment. Each set of experiments was carried out 20 

times. Simulation experiments verified the feasibility of the algorithm. 

End pose

Starting pose



Algorithms 2021, 14, 321 20 of 22 
 

 

Figure 14. The position change of each joint of the robotic arm. 

Table 5. Initiation and termination of the robotic arm joint. 

 Joint 0 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 

The starting position 0.00112 0.00322 −0.00114 5.793 × 10-5 4.422 × 10-6 5.521 × 10-6 

The ending position −1.42552 −0.67803 −0.27888 4.10375 −0.70497 −3.14746 

Table 6. Search time and search success rate of different algorithms. 

 RRT RRT* P_RRT* APF-RRT 

Search time 19.1 9.3 6.2 3.0 

Search success rate 90% 100% 100% 100% 

7. Conclusions and Discussions 

This paper improves the classic RRT algorithm and the classic APF algorithm and 

combines the two improved algorithms. The combined hybrid algorithm made full use of 

the efficient obstacle avoidance ability of the RRT algorithm and the efficient guidance 

ability of the APF method. Moreover, it avoided the disadvantages of each algorithm, and 

the comparison and analysis with the other three algorithms verified the effectiveness of 

the improved algorithm in this paper. 

7.1. Discussions 

To resolve the shortcomings of the classic APF method and the classic RRT algorithm, 

this paper proposes an improved path planning method that combines the APF method 

and the RRT algorithm for the path planning of the manipulator. First, the distance be-

tween the obstacle and the nearest node was evaluated. Through the distance value, the 

I-APF and I-RRT algorithms were used to explore the path. This simultaneously solved 

the shortcoming that the APF method cannot reach the target point when there are obsta-

cles at the target point and made full use of the efficient obstacle avoidance ability of the 

RRT algorithm. The two algorithms alternated exploring the path until the target point 

was reached. The I-APF method introduced the heuristic method of breaking away from 

the local minimum based on the number of adjacent obstacles to solve the local minimum 

problem in the algorithm. The I-RRT algorithm included the triangular nearest neighbor 

node selection strategy, which effectively improved the obstacle avoidance ability and ef-

ficiency of the algorithm. In the same obstacle environment, compared with the classic 
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RRT algorithm, the search time of the improved APF and RRT hybrid algorithm was re-

duced by 92.5%, the number of sampling nodes was reduced by 87.9%, and the path length 

was reduced by 23.4%. Compared with the RRT* algorithm, the search time of the APF 

and RRT hybrid algorithm was reduced by 72.2%, the number of sampling nodes was 

reduced by 47.4%, and the path length was reduced by 17.4%. Compared with the P_RRT* 

algorithm, the search time of the APF and RRT hybrid algorithm was reduced by 62.1%, 

the number of sampling nodes was reduced by 45.2%, and the path length was reduced 

by 13.0%. With an increase in the number of obstacles, the improved hybrid algorithm 

also showed the excellent effect of steady increases in the search time, number of sampling 

nodes, and path length. 

7.2. Conclusions 

The improved hybrid algorithm gives full play to the advantages of the individual 

algorithms while avoiding the disadvantages of the individual algorithms and is more 

suitable for the path planning of robotic arms. However, in a complex environment with 

more obstacles, the number of sampling nodes of the improved hybrid algorithm in-

creases significantly. This is because the number of nodes randomly sampled by the RRT 

algorithm in the improved hybrid algorithm increases, increasing the consumption of 

computational memory and reducing the search efficiency. Therefore, it is recommended 

that future work focus on how to reduce the number of sampling nodes of the improved 

hybrid algorithm to reduce memory consumption and improve the efficiency of the algo-

rithm. 

This article focuses on the research of robotic arm path planning in a three-dimen-

sional environment, which can be used in a variety of unstructured environments, such 

as warehouse automation and handling on production lines. Future research will focus 

on adaptive path planning in a dynamic environment. 
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