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Abstract: Previously, cluster-based multi or many objective function techniques were proposed to
reduce the Pareto set. Recently, researchers proposed such techniques to find better solutions in the
objective space to solve engineering problems. In this work, we applied a cluster-based approach
for solution selection in a multiobjective evolutionary algorithm based on decomposition with bare
bones particle swarm optimization for data clustering and investigated its clustering performance. In
our previous work, we found that MOEA/D with BBPSO performed the best on 10 datasets. Here,
we extend this work applying a cluster-based approach tested on 13 UCI datasets. We compared with
six multiobjective evolutionary clustering algorithms from the existing literature and ten from our
previous work. The proposed technique was found to perform well on datasets highly overlapping
clusters, such as CMC and Sonar. So far, we found only one work that used cluster-based MOEA for
clustering data, the hierarchical topology multiobjective clustering algorithm. All other cluster-based
MOEA found were used to solve other problems that are not data clustering problems. By clustering
Pareto solutions and evaluating new candidates against the found cluster representatives, local search
is introduced in the solution selection process within the objective space, which can be effective on
datasets with highly overlapping clusters. This is an added layer of search control in the objective
space. The results are found to be promising, prompting different areas of future research which are
discussed, including the study of its effects with an increasing number of clusters as well as with
other objective functions.

Keywords: multiobjective evolutionary algorithm; multiobjective; genetic algorithm; particle swarm
optimization; evolutionary algorithm; data clustering; bare bones particle swarm optimization

1. Introduction

Clustering is widely used to find hidden structures in data. In clustering, a set of C
cluster centers v = {v1, . . . , vC} represents prototypes of clusters. Each cluster contain
similar objects in a dataset Z = {z1, . . . , zN} with N objects and D dimensions, where each
object is a vector z = {z1, . . . , zD}. The goal of clustering is to learn the partition matrix
U of a dataset. The partition matrix shows that an object zj belongs to the cluster Ci and
is represented by a C × N matrix as U = [uij] where i = 1, . . . , C and j = 1, . . . , N such
that ∑C

i=1 uij = 1. In hard clustering, such as k-means, uij = 1 if zj ∈ Ci and 0, otherwise.
In fuzzy clustering, such as fuzzy C-means (FCM), uij ∈ {0, 1} and arg maxi uij if zj ∈ Ci.
These conventional techniques aims to minimize a single objective function as follows:

J =
C

∑
i=1

N

∑
j=1

um
ij ||zj − vi||2 (1)
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where m, the fuzzy parameter, is 2. With a single objective function, different character-
istics of hidden structures found in the dataset may not be well captured [1]. Combining
multiple objectives into one may not fully reflect conflicting characteristics, such as cluster
compactness and separation [2]. Thus, multiple objective functions that are optimized
simultaneously in an evolving population of solutions were developed [3]. In this way,
cluster characteristics can be more accurately defined, evolving to better solutions. Appli-
cations of multiobjective evolutionary algorithms (MOEA) in clustering have shown to be
effective in identifying meaningful clusters [1,3,4].

In MOEA clustering or multiobjective clustering (MOC), many works focused on
improving the algorithms through the treatment of chromosome encoding, use of objective
functions [5], choice of MOEA, incorporation of other techniques, such as swarm intelli-
gence, choice of evolutionary operations and selection of the final solution [6,7]. While
applications of MOEAs are covered in many works and surveys [1,6], there is a research
gap where few studies have applied newer MOEA strategies in data clustering problems,
tested on datasets with different characteristics [8–10]. With this motivation, we previously
investigated the application of a variety of MOEA algorithms to QPSO, BBPSO and fuzzy
clustering algorithms tested on 10 UCI datasets [4]. Decomposition-based MOEA with
bare bones particle swarm optimization (MOEA/D BBPSO) performed the best on most
datasets. In this work, as continuation, we applied a cluster-based MOEA/D optimization
technique to BBPSO clustering (CM-BBPSO) to introduce good Pareto solutions into the
Pareto set to be considered for selection and investigated its performance for data clustering
problems. To the best of our knowledge, there is very little work done in cluster-based
MOEA for data clustering. Most cluster-based MOEA are for solving other engineering
problems but not data clustering.

The cluster-based approach in solution selection have become increasingly popular in
multiobjective optimization (MOO). The cluster-based selection approach applied to more
than one objective function optimization was first proposed by [11]. The approach gener-
ated a reduced Pareto set in many-objective optimization (MaOO) problems to solve its
scaling problem. Furthermore, cluster-based approaches are also applied to improve good
Pareto set in multi- and many-objective optimization problems, such as applying clustering
with a flexible similarity metric [12] and applying cluster-based solution selection [13].
Chen et al. [14] applied density-based fuzzy C-means clustering in a dynamic nondomi-
nated sorting multiobjective genetic algorithm to improve traffic congestion. While these
cluster-based approaches improve the MOO algorithms, to the best of our knowledge, such
approaches are not commonly applied to data clustering problems.

In this paper, we aim to incorporate the cluster-based MOEA selection strategy into
a BBPSO clustering framework and investigate its clustering performance. By applying
clustering on the Pareto set, we hope to benefit from the combined strength of solutions
based on found cluster representatives to guide the solution selection. As part of our
ongoing studies in PSO clustering, we also investigate and compare with the MOEA
strategies in a PSO and fuzzy clustering framework. Our objectives are two-fold: first,
to compare and study the clustering performance of CM-BBPSO and MOPSO clustering
when compared to single objective BBPSO clustering algorithms to determine whether
cluster-based MOEA/D strategy is effective for clustering; secondly, we would like to
study the clustering behavior of these algorithms by applying them on datasets of different
characteristics, such as size, cluster number, number of dimensions, density and overlap.
We test on 13 UCI datasets [15] and compare with BBPSO and MOEA clustering algorithms
from our previous work.

The outline of the paper is as follows. We discuss a few latest works that applied
cluster-based selection in MOEA. Next, we present the materials and methods we used in
our proposed technique, starting with a brief introduction of MOEA/D, followed by an
explanation of our methodology of cluster-based MOEA/D BBPSO (CM-BBPSO). Next,
we present the details of our experiments and data used. The results and discussion are
presented next, and the paper ends with conclusion.
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2. Related Work

In this section, we discuss two aspects relating to this study. First, the development
of cluster-based MOO, where clustering approaches are used to solve solution selection
problems in MOO for engineering problems, not data clustering. Here, clustering is
applied on the fitness values of MOO solutions, and not on the data samples. Such
techniques have not been applied to data clustering problems such as in pattern recognition
or knowledge discovery. Second, we review the latest development of multiobjective
clustering techniques applied to the data clustering problem.

2.1. Cluster-Based Multiobjective Optimisation

An early work on cluster-based solution selection in the Pareto set was proposed
by [11], applied to generate a reduced Pareto set to solve the scaling and high-dimensional
problems in many-objective optimization (MaOO). There is an increasing number of works
that apply such an approach to improve the MOO solution selection. Here, the fitness
values of solutions are clustered to find representatives (cluster centers). This means that
solutions with similar fitness values are grouped together and a representative for each
group is generated for guiding the solution selection or for the evolution of the solutions.
Agrawal et al. [16] applied fuzzy clustering in multiobjective particle swarm optimization
to perform electrical power dispatching, particularly to minimize fuel cost and emission.
Their technique outperformed traditional MOO techniques, including NSGA, NPGA and
SPEA. In [17], a density-based clustering approach DBSCAN was applied in MOO to find
diverse optimal and near-optimal Pareto fronts to solve water resource problems. During
dominance check, only local comparisons with solutions sharing the same clusters were
checked.The authors stated that the introduction of a dissimilar index in the clustering
for deciding whether to select or remove solutions for further evolution gave users more
control as decision support. Hua et al. [18] used an agglomerative hierarchical cluster-
based approach with Ward’s linkage in MOEA to guide selection in a way that maintains
diversity and reduces convergence time. Their technique was applied to solve the problem
of poor solutions selection due to an irregular Pareto front. The authors shared that using
K-means generated spherical clusters and required a prior number of clusters. Liu et al. [12]
proposed a flexible similarity metric for cluster-based MOEA to handle both convex- and
concave-shaped Pareto fronts.

Chen et al. [14] applied density-based Fuzzy C-means in clustering in a dynamic
nondominated sorting multiobjective genetic algorithm to determine Pareto fronts distri-
bution, applied to improve traffic congestion. In their previous work [19], they applied a
clustering method that was based on the VAR and PRE method. While these cluster-based
approaches improve MOO algorithms, to the best of our knowledge, such approaches
are not commonly applied to data clustering problems. So far, we found only [20], who
applied cluster-based MOO for data clustering, proposing the hierarchical topology-based
cluster representation, which is based on a tree-based graph for multiobjective clustering
(HT-MOC), scalable to large datasets. The approach involves the use of a seeding algorithm
followed by the use of the formulation of minimum spanning trees before MOC clustering
processes, which include an ensemble operator to produce consensus clusterings before
the final selection operator is employed. As such cluster-based MOO techniques have
shown to improve optimized solutions, we opted to apply K-means, as it is simple to
implement and works fast, compared to density-based clustering. We understand that
the shape of the Pareto front may not be convex, but we proceeded with k equaling two.
As there is little work on cluster-based MOO for clustering, we chose simple techniques
to evaluate the effective of the approach. Our approach is different from [20], as we did
not apply ensemble, nor is our cluster-representation tree-based. We used the generic
centroid-based encoding.
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2.2. Multiobjective Clustering

MOEA is popularly applied in data clustering. Mukhopadhyay et al. discussed exten-
sively MOEA clustering as well as the application of metaheuristics, such as differential
evolution, particle swarm optimization and genetic programming, for data clustering.
In [21], Armano and Farmani developed a multiobjective particle swarm optimization
algorithm for automatic data clustering, using connectivity and cohesion objective func-
tions and a locus-based adjacency genetic scheme. They reported their results using ARI,
but ARI was not used in this study, making it not comparable. Wang et al. [22] proposed
two ensemble MOEA clustering algorithms, NSGA-II-ECFE and MOEA/D-ECFE, using
four objective functions, DB, Dunn, cohesion, and stability, for patient stratification. Their
ensemble construction involved using K-means to generate base clustering. They tested
on 55 synthetic and 35 real patient stratification datasets. Unlike Wang et al. [22] and
Zhu et al. [20], we did not use ensemble techniques but chose to use a simple swarm intelli-
gence technique BBPSO to maintain our population of solutions. Instead of PSO, as in [21],
we used BBPSO, which is parameter-free. It is interesting to note that despite its simplicity,
there are not as many works applying BBPSO or MOO BBPSO to data clustering. To name
a few, Omran et al. applied BBPSO clustering for unsupervised image segmentation [23],
using a quantization-error-based objective function. Jiang and Wang [24] proposed coop-
erative bare-bone particle swarm optimization (CBPSO) for data clustering, using a new
centroid-based encoding scheme for each particle and the Chernoff bounds on a suitable
population size.

Other MOC techniques apply other nature-inspired approaches. Peng et al. [25] pro-
posed a multiobjective fuzzy clustering framework, MOFC-TMS, with a tissue-like mem-
brane system, which has a special cell structure for integrating a non-dominated sorting
technique with a modified differential evolution mechanism. The proposed technique was
developed to optimize three objective functions and was demonstrated to produce good
results on many benchmark datasets. Kushwaha et al. [26] proposed a magnetic optimiza-
tion algorithm (MOA) inspired by the magnetic force for data clustering. The algorithm is
not sensitive to initialization, and the particle update is based on the magnetic resultant
force. Guo et al. [27] proposed the evolutionary state-based novel multiobjective periodic
bacterial foraging optimization algorithm (ES-NMPBFO). This is a novel multiobjective
periodic bacterial foraging optimization (BFO) algorithm for data clustering, incorporating
PSO mechanisms into the chemotaxis operation.

2.3. Motivation

The HT-MOC [20] is a highly effective cluster-based MOO algorithm for solving
challenging and large clustering problems, with overlapping and mixed-density clusters,
applying many sophisticated techniques, such as tree-based graph cluster representation
for a hierarchical topology for clustering and ensemble clustering. As there are few works
in cluster-based MOO for data clustering, we hope to develop a simple cluster-based MOC
technique, comprising familiar good-performing algorithms, with little to no parameter
setting, to show its effectiveness to interested practitioners. For MOEA clustering, there is
no local search in the evolutionary algorithm. The search for pbest in BBPSO is a local search
within the sample search space. By applying cluster-based MOO selection, we introduced
local search when selection solutions evolve in the next generation in the objective space.
For the cluster-based part of the MOO, we applied K-means with two clusters. Like [17],
only local comparisons with solutions sharing the same clusters are checked for dominance.
For the MOO, we used MOEA/D to find gbest using the pbest particles found by BBPSO.
MOEA/D can simultaneously evolve subproblem multiobjectives and provide a scalar
solution. They showed good performance in data clustering tasks. BBPSO does not require
any parameter setting and showed good results for clustering. We hope that by testing on
common datasets and using common evaluation metrics, the work can be a reference for
the future direction of applying and developing cluster-based MOC to solve sophisticated
clustering problems.
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2.4. Contribution

1. We developed a novel framework that requires little to no parameter setting consisting
of a simple swarm intelligence technique BBPSO and MOO technique MOEA/D with
a solution update based on K-means for data clustering. To the best of our knowledge,
this approach has not been explored.

2. We ran extensive investigations to evaluate its performance. We tested on 13 datasets
with different characteristics and evaluated using 5 different popular metrics. We
compared our results with other work to show how the proposed technique performs
relatively. We conducted other analysis such as analysis of the convergence plot to
assess the stability of the proposed technique and visual examination of biplots of the
clustering found by the proposed technique.

3. Materials and Methods

In this section, we describe the techniques, experiments and data used to implement
and evaluate the proposed technique, CM-BBPSO.

3.1. Bare Bones Particle Swarm Optimisation

The BBPSO was introduced to simplify PSO, removing the need for parameters or
velocity [28]. Each particle p ∈ {1, . . . , P} in the swarm holds two properties: (a) its current
position xp and (b) its personal best position pbestp. At each iteration t, the position of the
particle is updated based on N(µ, σ), a multivariate Gaussian distribution with mean µ,
and standard deviation σ as follows:

xp(t + 1) = N(µ, σ)

µ =
pbestp(t) + gbest(t)

2
(2)

σ = |pbestp(t)− gbest(t)|

In addition to parameter reduction, the multivariate Gaussian distribution operator
helps maintain diverse candidates in the population for pbest particles to improve from.
The BBPSO clustering algorithm to be used in this study is shown in Algorithm 1. The
gbest particles are evolved from pbest particles and refined using cluster-based MOEA/D.

Algorithm 1 Pseudocode for BBPSO Clustering

1: Set max number of iterations I, max number of iterations T, Population size S, t = 0, i = 0,
generate population P and initialize gBestList using MOEA/D and all pbest pbestList

2: while i < I do
3: while t < T do
4: Calculate any parameters
5: for Each particle do
6: Calculate new p using (2)
7: Check new p is within search range R
8: Calculate fitness of p and pBest using quantization error function from [23]
9: If new p dominates pBest, update p and pBest with new p

10: end for
11: gBestList = getGBestList(pbestList) using cluster-based MOEA/D (Algorithm 2)
12: end while
13: end while
14: Evaluate crowding distance of all solutions in gBestList
15: Choose gBest with largest crowding distance

3.2. Decomposition-Based Multiobjective Evolutionary Algorithm

The decomposition-based MOEA (MOEA/D) uses three approaches—the weighted
sum, Tchebycheff and penalty-based boundary intersection (PBI)—to convert MOP into
scalar optimization subproblems, simultaneously solved by evolving a population of
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solutions [29]. Unlike previous MOO techniques, such as dominance-based MOEA, there
is no clear ranking of Pareto solutions, while with MOEA/D, such a ranking is possible, as
the gpbi function is expressed as a scalar value as defined in the objective below. MOEA/D
with the PBI approach for an m-objective problem [29] is defined as follows:

Minimize: gpbi(x|λ, z∗) = d1 + θd2

subject to: x ∈ Ω (3)

where

d1 =
||(z∗ − F(x))Tλ||

||λ||
d2 = ||F(x)− (z∗ − d1λ)||, (4)

where x is a candidate solution, θ > 0 is a predefined penalty parameter, z∗ = (z∗1 , . . . , z∗m)T

is the reference point such that z∗i = min{ fi(x)|x ∈ Ω}, ˘ = (λ1, . . . , λm)T is a weight
vector such that λi ≥ 0 for ∀i = 1, . . . , m and ∑m

i=1 λi = 1. In this study, x is a candidate
solution that undergoes the evaluation process of cluster-based MOEA/D to be selected
for next generation, as detailed in Algorithm 2, line 15.

Algorithm 2 Pseudocode for Cluster-based MOEA/D
1: Initialization phase:
2: Set external population EP = ∅
3: Initialize N, number of subproblems
4: Generate a uniform spread of N weight vectors λ1, . . . , λN

5: For each i = 1, . . . , N, generate B(i) = {i1, . . . , iT} where λi1 , . . . , λiT are the T closest weight
vectors to λi using Euclidean distance

6: Using solutions in pbestList to generate initial population x1, . . . , xN ∈ Ω where xi is current
solution to ith subproblem and set fitness value of all individuals FVi = F(xi) for i = 1, . . . , N

7: Initialize reference point z = (z1, . . . , zm)T where zi is the best value so far for objective fi
8: Set number of clusters k as 2
9: Cluster individuals x1, . . . , xN based on their similarity in the FV matrix and find which xic is

most representative for each cluster c.
10: Update phase:
11: for c = 1, . . . , k do
12: Reproduction: Generate new solution y using genetic operators on two solutions xk and xl

where indexes k and l are randomly chosen from B(i)
13: Improvement: Apply any improvement heuristic on y to produce y′

14: Update z: For each j = 1, . . . , m, if zj < f j(y′), set zj = f j(y′)
15: Update neighbors: For each j ∈ B(i) belonging to cluster c, if gpbi(y′|λj, z) ≤ gpbi(xj|λj, z),

gpbi values calculated using (3), set xj = y′ and FV j = F(y′)
16: Update EP: Remove solutions in EP dominated by y′ and add y′ to EP if no vectors in EP

dominate y′.
17: end for
18: Termination Condition: Stop and output EP if termination condition is met.

3.3. Cluster-Based MOEA/D BBPSO

Each solution in a multiobjective clustering (MOC) problem is regarded as a set of
cluster centers Xs or v in (1). Cluster connectedness (Conn) and within-sum-of-squares
(WSS) [3] are used as objective functions in this work to evaluate the best solution candi-
dates. The final solution is then selected using crowding distance on the external population.
In a MOC framework, the population P contains S solutions with X = {X1, . . . , Xs} where
the matrix of each solution Xs represents C cluster centers of a dataset containing N objects
and D dimensions as follows:
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Xs =


x11 x12 . . . x1D
x21 x22 . . . x2D

...
...

. . .
...

xC1 xC2 . . . xCD

 (5)

In the CM-BBPSO clustering framework, there are two parts. The BBPSO clustering
algorithm is in charge of updating the particles in the swarm. The pBests from BBPSO are
selected based on the quantization error-based fitness function from [23]. BBPSO is used
because it requires lesser parameters than PSO and performs well in clustering, based on
previous work [30]. Next, we subject the pbest solutions found by BBPSO to the cluster-
based MOEA/D algorithm for solution evolving and selection to find the gbest for the
BBPSO framework. The population size for the cluster-based MOEA/D is the same as
the swarm size for the BBPSO. The objective functions Conn and WSS are used to update
FV matrix and then evaluate solutions in lines 6, 15, 16 in Algorithm 2. Newly evolved
solutions are compared with existing ones and the better one is selected to be updated. The
fitness matrix FV containing WSS and Connectedness fitness values of the better solution
are stored.

The cluster-based approach used in this study is adapted from [13] and applied at
line 9 in Algorithm 2 in the MOEA/D PBI framework from [29] to find the gBest candidates,
given all pBest. Here, we apply k-means clustering with k = 2 to guide the solution
selection. Based on the fitness values in the FV matrix of N subproblems, we cluster them.
The improved potential individual y′ is evaluated against neighbors belonging to the group
and added to EP if it has a more favorable evaluation value. In doing so, the application
of the cluster-based approach is to improve the local search within the objective space for
new candidates, while the genetic operators maintain a random global search. We will
test on higher k values to explore deeper in future work. In this work, we apply a small k
value and simple conventional algorithms and distance measures, such as k-means and
Euclidean distance, to study the effects of clustering-based MOEA/D as a preliminary
study. Indeed, more investigation is required to understand deeply the Pareto solutions
found in the objective space and the more sophisticated methods to deal with challenging
Pareto solutions as proposed in [18].

To investigate its performance, we tested on 13 public datasets and compared cluster-
based MOEA/D BBPSO (CM-BBPSO) with the following MOPSO clustering frameworks:
IBEA QPSO (IB-QPSO), SPEA2 QPSO (SP-QPSO), MOEA/D QPSO (M-QPSO)and BBPSO
(M-BBPSO), and MOEA/GLU QPSO (MG-QPSO) and BBPSO (MG-BBPSO), where the
respective MOEAs are individually incorporated into a fuzzy, QPSO or BBPSO clustering
framework as described in Algorithm 1 in [4]. An abbreviation list is given before the
References section.

3.4. Experiments

We employed similar experiment settings in [4] with a swarm size of 20 and maximum
iteration of 100, together with the following experiment settings. We previously obtained
good results using similar datasets. Ten generations are run in the cluster-based MOEA/D
framework, and each experiment is run thirty times. The data are scaled before applying
clustering. To produce different solutions, we set the MOC algorithms to generate more
than one solution. The final solution is selected by crowding distance. The number of
clusters is set as the number of classes in the dataset.

The evaluation metrics used are accuracy, F1 and Kappa for external evaluation, and
QE, WSS and BSS for internal evaluation. Different works in data clustering use different
measures, which make comparison of other work difficult. There appears to be a mixed
opinion to use external metrics to evaluate clustering, while another school of thought
is that the point of clustering is to generate labels to perform classification and aims to
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generate such labels. This depends on the objective of the users and it is not within our
scope to discuss this matter. We present both types of criteria for relevant researchers.

To evaluate the clustering performance and investigate in clustering behavior of CM-
BBPSO, we conduct several analyses. We compare the CM-BBPSO with non-cluster based
MOEA/D BPPSO and with BBPSO to study how the cluster-based MOEA/D approach
has made a difference. Previously in [4], we observed that the application of MOEA/D
in BBPSO algorithm improves the performance. By comparing with BBPSO clustering
techniques, we can determine if the cluster-based MOEA/D approach further improves
BBPSO and M-BBPSO.

CM-BBPSO is then compared with other MOPSOs and MOO Fuzzy algorithms to
evaluate its performance. In particular, M-Fuzzy is found to perform competitively to M-
BBPSO in [4]. Previously, we were not able to obtain results on CMC, segment and vehicle
datasets. Through this analysis here, we are re-evaluating by comparison with the said
algorithms and the additional datasets, which usually give poor results, as was reported
in [30]. We also compare CM-BBPSO results with the existing cluster-based MOO technique
HT-MOC [20], MOC techniques MOFC-TMS [25], VAMOSA [31], GenClustMOO [32],
MOAC [26], ES-NMPBFO [27] and BBPSO clustering technique CBPSO [24] based on
commonly reported datasets and evaluation metrics.

The following swarm sizes and maximum iterations (presented as ss-mi) are tested:
20–100, 30–100, 30–200 and 40–100. This is done to study whether am increase in the two
parameters will improve clustering. The biplot visual examination allows us to evaluate
CM-BBPSO performance in comparison with the ground truth, examining how well CM-
BBPSO identifies overlapping clusters. With the analysis of the convergence plots of pbest,
we can evaluate the stability of CM-BBPSO.

3.5. Data

The algorithms are tested on 13 datasets obtained from the UCI Machine Learning
Repository: Appendicitis, CMC, Dermatology, Ecoli, Glass, Iris, Seeds, Sonar, Vehicle,
WDBC, Wine, WOBC and Segment [15]. Full details and t-SNE biplots of the datasets
are found in [30]. These datasets have different types of characteristics, such as sizes N,
dimensions n and cluster numbers c, as well as having different intensity of densities and
overlapping. We are particularly interested to see the effects of CM-BBPSO on challenging
datasets with highly overlapping clusters and a combination of the following characteristics:
high number of classes, mixed densities, imbalanced class ratios. We choose a mixture of
datasets for which most algorithms tend to produce good results as well as challenging
datasets, such as Glass, Sonar, Ecoli, Segment, Vehicle and CMC. Many works tested
algorithms with datasets with 2 or 3 classes, such as Iris, Wine, Appendicitis, WOBC and
WDBC, which give good results.

4. Results
4.1. BBPSO Comparisons

In Table 1, we compare the performance of CM-BBPSO with MOEA/D BBPSO and
BBPSO evaluated on 13 UCI datasets and using 5 metrics: accuracy, F1-score (F1), Kappa
(Cohen’s κ index), between sum of squares (BSS), within sum of square (WSS) and quanti-
zation error (QE). The best result for each measure is highlighted in bold.

We observe that CB-MOEAD-BBPSO performed best in the CMC, Ecoli and Sonar
datasets, three of which are challenging datasets containing either many imbalanced, highly
overlapping and/or mixed density clusters. These datasets appear to be more challenging
as shown in our previous work ([4,30]). This demonstrates that using the cluster-based
selection of optimal solutions helps to choose good solutions for challenging datasets.
We observed that M-BBPSO produced the best WSS values in 11 datasets, indicating that
M-BBPSO tends to optimize cluster compactness. BBPSO produced the best BSS values in
all the datasets, indicating that BBPSO optimizes cluster well-separatedness. CM-BBPSO
had the worst (smallest) BSS values in four datasets and the worst (largest) WSS values
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in two datasets. M-BBPSO produced the worst BSS values in 9 datasets, while BBPSO
produced the worst WSS values in 11 datasets. This shows that BBPSO is good for finding
well-separated clusters, such as in Iris and Seeds, with a small number of clusters, while
M-BBPSO is good for finding clusters that are compact, such as WDBC and WOBC. Based
on the BSS and WSS measure, we observed that CM-BBPSO balances between these two
properties of compactness (WSS) and well-separatedness (BSS), not doing better on one,
such as M-BBPSO and BBPSO as discussed earlier. Such characteristics are useful when
dealing with datasets with highly overlapping clusters and high dimensions. QE is another
type of measure to indicate compactness and shares the same trend as WSS.

Table 1. Performance of cluster-based MOEA/D (CM), MOEA/D (M) and ordinary BBPSOs with the best result produced
by the algorithm for each dataset presented in bold.

Dataset BBPSO Accuracy F1 Kappa BSS WSS QE

Appendicitis CM-BBPSO 0.771± 0.08 0.629± 0.15 0.280± 0.28 325± 144 249± 18 2.56± 0.43
M-BBPSO 0.817± 0.05 0.676± 0.14 0.367± 0.27 229± 108 230± 189 2.49± 0.54

BBPSO 0.818± 0.07 0.717± 0.11 0.449± 0.20 979± 572 271± 58 2.54± 0.56

CMC CM-BBPSO 0.402± 0.02 0.371± 0.04 0.089± 0.05 6590± 1540 4150± 186 2.88± 0.25
M-BBPSO 0.400± 0.02 0.352± 0.03 0.063± 0.04 5230± 973 4020± 142 2.77± 0.19

BBPSO 0.390± 0.02 0.355± 0.05 0.064± 0.06 16,600 ± 3680 5080± 504 3.49± 0.330

Dermatology CM-BBPSO 0.651± 0.07 0.556± 0.08 0.570± 0.08 7620± 1060 1870± 58 5.31± 0.31
M-BBPSO 0.666± 0.08 0.572± 0.10 0.588± 0.10 7440± 936 1760± 56 5.11± 0.37

BBPSO 0.680± 0.08 0.607± 0.11 0.605± 0.10 10,300 ±1340 1930± 94 5.28± 0.37

Ecoli CM-BBPSO 0.499± 0.07 0.333± 0.05 0.372± 0.06 1060± 183 576± 19 1.97± 0.33
M-BBPSO 0.493± 0.08 0.326± 0.06 0.364± 0.08 1110± 181 558± 28 1.89± 0.20

BBPSO 0.437± 0.05 0.266± 0.04 0.295± 0.05 1910± 293 694± 43 2.01± 0.13

Glass CM-BBPSO 0.429± 0.04 0.351± 0.05 0.235± 0.04 818± 186 438± 19 2.75± 0.45
M-BBPSO 0.462± 0.05 0.382± 0.05 0.280± 0.06 864± 168 422± 28 2.69± 0.56

BBPSO 0.424± 0.04 0.354± 0.05 0.229± 0.05 2430± 861 640± 119 2.95± 0.66

Iris CM-BBPSO 0.721± 0.10 0.672± 0.14 0.582± 0.15 421± 123 205± 34 1.41± 0.29
M-BBPSO 0.731± 0.09 0.677± 0.13 0.597± 0.13 439± 85.8 172± 23 1.27± 0.32

BBPSO 0.786± 0.08 0.769± 0.11 0.679± 0.12 674± 93.6 166± 9 1.10± 0.07

Seeds CM-BBPSO 0.727± 0.12 0.684± 0.16 0.590± 0.18 1050± 456 431± 53 2.10± 0.37
M-BBPSO 0.798± 0.13 0.758± 0.18 0.696± 0.19 1100± 295 375± 37 1.83± 0.24

BBPSO 0.876± 0.08 0.870± 0.10 0.814± 0.12 1890± 191 358± 25 1.71± 0.13

Segment CM-BBPSO 0.547± 0.06 0.497± 0.06 0.471± 0.07 23,700 ± 3610 6520± 324 3.15± 0.41
M-BBPSO 0.581± 0.06 0.528± 0.08 0.511± 0.07 23,500 ± 2980 6140± 267 3.1± 0.57

BBPSO 0.560± 0.07 0.523± 0.08 0.487± 0.08 33,700 ±4470 7730± 704 3.3± 0.29

Sonar CM-BBPSO 0.552± 0.05 0.516± 0.06 0.112± 0.09 7670± 1430 1810± 76 9.13± 0.70
M-BBPSO 0.541± 0.03 0.474± 0.07 0.076± 0.07 6300± 1360 1750± 55 9.05± 0.82

BBPSO 0.536± 0.04 0.455± 0.10 0.067± 0.09 21,300 ± 11,200 2360± 396 11.8± 2.08

Vehicle CM-BBPSO 0.374± 0.02 0.340± 0.032 0.168± 0.03 11,100 ± 2310 2950± 194 3.66± 0.59
M-BBPSO 0.378± 0.02 0.328± 0.03 0.175± 0.03 10,600 ± 2200 2780± 125 3.79± 0.83

BBPSO 0.379± 0.02 0.360± 0.03 0.173± 0.03 17,500 ± 3130 3110± 308 3.69± 0.36

WDBC CM-BBPSO 0.782± 0.13 0.712± 0.19 0.478± 0.31 9290± 3260 3000± 226 6.08± 1.07
M-BBPSO 0.852± 0.09 0.814± 0.14 0.651± 0.24 8910± 2490 2840± 190 5.67± 0.94

BBPSO 0.785± 0.11 0.698± 0.19 0.463± 0.30 37,300 ± 10,200 4320± 539 8.26± 1.23

Wine CM-BBPSO 0.719± 0.15 0.691± 0.18 0.579± 0.23 1710± 366 622± 36 3.5± 0.25
M-BBPSO 0.800± 0.15 0.778± 0.20 0.695± 0.24 1640± 395 586± 25 3.31± 0.18

BBPSO 0.840± 0.13 0.827± 0.16 0.764± 0.18 3170± 489 640± 44 3.55± 0.33

WOBC CM-BBPSO 0.896± 0.10 0.865± 0.16 0.749± 0.27 3800± 1700 1630± 392 2.87± 0.62
M-BBPSO 0.949± 0.07 0.945± 0.07 0.894± 0.11 3560± 988 1300± 109 2.27± 0.17

BBPSO 0.878± 0.03 0.85± 0.048 0.707± 0.09 9460± 545 1560± 90 2.91± 0.27
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4.2. MOO Comparisons

We compare CM-BBPSO with other MOC algorithms from our previous work. We
present the results on three datasets, CMC, Segment and Vehicle, in Tables 2–4 which
were not published in [4] due to run issues for clustering algorithms using multiobjective
evolutionary algorithms with the global loop update (MG) [33], indicated as NA. The
results for the other 10 datasets were published. In these three challenging datasets,
CM-BBPSO performed competitively, particularly for CMC where it had the second best
accuracy, F1, Kappa and BSS. In this comparison, CM-BBPSO did not outperform any other
MOC, nor BBPSO techniques. Instead, M-Fuzzy emerged as the superior algorithm in these
datasets for most evaluation metrics.

Table 2. Performance of CM-BBPSO and other clustering algorithms on CMC dataset with the best result produced by the
algorithm presented in bold.

Clus Algo Accuracy F1 Kappa BSS WSS QE

CM-BBPSO 0.402± 0.02 0.371± 0.04 0.089± 0.05 6590± 1540 4150± 186 2.88± 0.25
IB-Fuzzy 0.393± 0.02 0.368± 0.04 0.081± 0.05 5650± 1380 4260± 194 2.9± 0.14
IB-QPSO 0.401± 0.02 0.321± 0.05 0.056± 0.05 3980± 1130 4120± 157 2.97± 0.29
M-Fuzzy 0.404± 0.02 0.383± 0.03 0.100± 0.04 5310± 1280 3950± 174 2.72± 0.15
M-QPSO 0.402± 0.01 0.356± 0.04 0.069± 0.04 5820± 1370 4050± 129 2.86± 0.23
M-BBPSO 0.400± 0.02 0.352± 0.03 0.063± 0.04 5230± 973 4020± 142 2.77± 0.19
MG-Fuzzy 0.389± 0.02 0.365± 0.04 0.084± 0.05 6020± 1660 4250± 225 2.93± 0.18
MG-QPSO NA NA NA NA NA NA
MG-BBPSO NA NA NA NA NA NA
SP-QPSO 0.403± 0.02 0.331± 0.04 0.056± 0.04 3740± 988 3970± 142 2.75± 0.21
BBPSO 0.390± 0.02 0.355± 0.05 0.064± 0.06 16,600 ± 3680 5080± 504 3.49± 0.33

Table 3. Performance of CM-BBPSO and other clustering algorithms on Segment dataset with the best result produced by
the algorithm presented in bold.

Clus Algo Accuracy F1 Kappa BSS WSS QE

CM-BBPSO 0.547± 0.06 0.497± 0.06 0.471± 0.07 23,700 ± 3610 6520± 324 3.15± 0.42
IB-Fuzzy 0.548± 0.08 0.513± 0.08 0.472± 0.09 18,900 ± 3580 6650± 516 2.92± 0.34
IB-QPSO 0.536± 0.07 0.485± 0.08 0.459± 0.08 20,000 ±5920 6780± 356 3.34± 0.64
M-Fuzzy 0.586± 0.07 0.549± 0.08 0.517± 0.08 22,600 ± 3780 5980± 448 2.73± 0.31
M-QPSO 0.569± 0.07 0.524± 0.09 0.497± 0.08 24,800 ± 2610 6250± 371 3.18± 0.68
M-BBPSO 0.581± 0.06 0.528± 0.08 0.511± 0.07 23,500 ± 2980 6140± 267 3.10± 0.57
MG-Fuzzy NA NA NA NA NA NA
MG-QPSO NA NA NA NA NA NA
MG-BBPSO NA NA NA NA NA NA
SP-QPSO 0.554± 0.05 0.499± 0.05 0.479± 0.05 23,900 ± 3980 6060± 274 2.96± 0.58
BBPSO 0.560± 0.07 0.523± 0.08 0.487± 0.08 33,700 ±4470 7730± 704 3.30± 0.29

Table 4. Performance of CM-BBPSO and other clustering algorithms on Vehicle dataset with the best result produced by the
algorithm presented in bold.

Clus Algo Accuracy F1 Kappa BSS WSS QE

CM-BBPSO 0.374± 0.02 0.34± 0.032 0.168± 0.0263 11,100 ± 2310 2950± 194 3.66± 0.59
IB-Fuzzy 0.369± 0.03 0.351± 0.03 0.160± 0.04 8450± 2430 2810± 283 3.33± 0.60
IB-QPSO 0.375± 0.03 0.321± 0.04 0.171± 0.03 8440± 2730 2940± 144 4.00± 0.83
M-Fuzzy 0.387± 0.03 0.355± 0.04 0.185± 0.03 10,200 ± 1360 2610± 86 3.16± 0.29
M-QPSO NA NA NA NA NA NA
M-BBPSO 0.378± 0.02 0.328± 0.03 0.175± 0.03 10,600 ± 2200 2780± 125 3.79± 0.83
MG-Fuzzy NA NA NA NA NA NA
MG-QPSO NA NA NA NA NA NA
MG-BBPSO 0.369± 0.02 0.323± 0.04 0.162± 0.03 9870± 1820 2770± 134 3.68± 0.85
SP-QPSO 0.378± 0.02 0.296± 0.03 0.179± 0.02 8210± 2010 2740± 114 4.42± 1.04
BBPSO 0.379± 0.02 0.360± 0.03 0.173± 0.03 17,500 ± 3130 3110± 308 3.69± 0.36
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Using the averages of the six evaluation metrics, we performed sum rank of each
algorithm across the 13 datasets. For algorithms with no results for certain datasets, we
gave a rank of 6 (middle rank). The sum rank table is presented in Table 5. We placed
MG algorithms at the end of the table, as they had issues in two or more datasets and
the sum rank may not fully reflect their performance. In these three challenging datasets,
CM-BBPSO was found to be very competitive. Overall, M-Fuzzy outperformed all other
techniques, acquiring the smallest sum rank across most of the evaluation metrics, followed
by M-BBPSO and M-QPSO. CM-BBPSO was ranked sixth.

In Table 6, we calculate the sum rank for clustering performance on two datasets only,
CMC and Sonar. Based on the external metrics of accuracy, F1 and Kappa, we can observe
that CM-BBPSO performed best in CMC and Sonar. We placed MG-QPSO and MG-BBPSO,
which had issues, at the end of the table as reference. The reason for isolating the two
datasets is to identify the clustering techniques that performed well on the two datasets.
Here, we observe that CM-BBPSO was the second best.

Table 5. Sum rank of algorithms based on performances on 6 metrics on all datasets with best two
sum rank values presented in bold.

Clus Algo Accuracy F1 Kappa QE WSS BSS Total

M-Fuzzy 51 45 47 29 34 70 276
M-BBPSO 54 54 54 61 57 66 346
M-QPSO 57 56 58 73 63 56 363
SP-QPSO 62 76 69 67 30 105 409
BBPSO 67 62 67 102 111 13 422
CM-BBPSO 83 77 82 95 102 52 491
IB-Fuzzy 99 88 96 52 101 86 522
IB-QPSO 96 100 101 104 101 104 606

MG-BBPSO * 76 84 80 57 49 85 431
MG-QPSO * 73 85 77 94 67 113 509
MG-Fuzzy * 99 88 91 69 105 73 525

* No results for 2 or more datasets.

Table 6. Sum rank of algorithms based on performances on 6 metrics on CMC and Sonar datasets
with best two sum rank values presented in bold.

Clus Algo Accuracy F1 Kappa QE WSS BSS Total

M-Fuzzy 5 5 5 4 3 13 35
CM-BBPSO 6 5 5 11 15 4 46
MG-Fuzzy 10 5 4 9 13 9 50
IB-Fuzzy 9 5 6 7 11 13 51
M-QPSO 11 10 10 11 12 7 61
M-BBPSO 13 13 13 8 10 12 69
IB-QPSO 10 16 15 17 15 12 85
SP-QPSO 13 19 19 12 6 19 88
BBPSO 17 14 15 20 20 2 88

MG-BBPSO * 12 15 14 10 7 17 75
MG-QPSO * 16 16 16 14 10 15 87

* No results for CMC.

In Table 7, we study which are the best two performing algorithms for the respective
datasets based on the six evaluation metrics, highlighted in bold. M-Fuzzy was the top 2
best for 7 out of 13 datasets, while M-BBPSO was top 2 for 5 datasets. Previously, without
the results from CMC, Segment and Vehicle, M-BBPSO was found to be best. CM-BBPSO
was top 2 for one dataset only, CMC.



Algorithms 2021, 14, 338 12 of 20

In Table 8, we compare the performance of CM-BBPSO with other reported algorithms
in terms of Accuracy and F1 score for five UCI datasets [15]: CMC, WOBC (Cancer), Iris,
Glass and Wine. Where results are not available, we left it blank. While CM-BBPSO was not
found to be the best in any of the datasets, it was found to outperform certain algorithms
in a few datasets. CM-BBPSO outperformed the following algorithms in the respective
datasets: MOAC in CMC and Iris, VAMOSA in WOBC and Wine and CBPSO in CMC.
This demonstrates that CM-BBPSO performs competitively, and this result is promising.
However, HT-MOC, MOFC-TMS, GenClustMOO and ES-NMPBFO outperformed CM-
BBPSO in the available common datasets.

Table 7. Sum rank values of algorithms for all 6 metrics for each dataset with best two algorithms presented in bold.

Dataset CM-BBPSO M-Fuzzy M-BBPSO SP-QPSO BBPSO IB-Fuzzy IB-QPSO M-QPSO MG-BBPSO MG-QPSO MG-Fuzzy

Appendicitis 54 12 46 30 35 29 61 32 37 47 12
CMC 20 11 33 31 39 33 44 25 36 * 36 * 33
Dermatology 36 34 23 15 25 51 56 27 42 29 57
Ecoli 36 34 32 24 50 52 37 23 26 27 52
Glass 48 27 22 20 46 52 43 28 28 27 50
Iris 44 37 33 40 10 51 33 38 19 22 57
Seeds 46 31 22 32 6 56 49 15 29 43 65
Sonar 26 24 36 57 49 18 41 36 39 51 17
WDBC 31 10 16 58 41 38 51 27 46 53 24
Wine 34 19 18 34 23 55 47 22 34 54 52
WOBC 53 16 25 15 51 25 63 33 31 48 34
Segment 35 11 18 24 28 33 46 21 36 * 36 * 36 *
Vehicle 28 10 22 29 19 29 35 36 * 28 36 * 36 *

Total 491 276 346 409 422 522 606 363 * 431 * 509 * 525 *
* Imputed rank values used.

Table 8. Comparison of CM-BBPSO with other reported cluster-based MOC, MOC and BBPSO clustering algorithms.

CMC WOBC Iris Glass Wine

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

CM-BBPSO 0.402 0.371 0.896 0.865 0.721 0.672 0.429 0.351 0.719 0.691
HT-MOC (best) [20] 0.961 0.951
MOFC-TMS [25] 0.653 0.97 0.836 0.501 0.696
GenClustMOO [32] 0.647 0.969 0.823 0.503 0.698
VAMOSA [31] 0.593 0.816 0.682 0.415 0.516
MOAC [26] 0.401 0.218 0.893
ES-NMPBFO [27] 0.448 0.478 0.886 0.834
CBPSO [24] 0.398 0.961 0.908 0.509 0.711

4.3. Investigating Swarm Size and Maximum Number of Iterations

In Table 9, the performance of CM-BBPSO, using the following swarm-size and
maximum iteration pair settings ss-mi, 20–100, 30–100, 30–200 and 40–100, is presented.
Experiments with ss-mi of 40–100 achieved the best results in 6 out of 13 datasets. Further
experimentation using this setting will be considered. Overall, the results were considered
competitive for the different settings.
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Table 9. Performances of CM-BBPSO using different swarm size (s) and maximum iteration (i), s-i with the best result
produced by the s-i setting for each dataset presented in bold.

Appendicitis CMC Dermatology Ecoli

s-i Accuracy QE Accuracy QE Accuracy QE Accuracy QE

20-100 0.771± 0.08 2.56± 0.43 0.402± 0.02 2.88± 0.25 0.651± 0.07 5.31± 0.31 0.499± 0.07 1.97± 0.33
30-100 0.775± 0.08 2.61± 0.38 0.396± 0.02 3.00± 0.24 0.619± 0.09 5.35± 0.34 0.501± 0.06 2.10± 0.42
30-200 0.781± 0.07 2.57± 0.50 0.402± 0.02 2.94± 0.18 0.632± 0.09 5.38± 0.36 0.497± 0.08 1.92± 0.19
40-100 0.750± 0.11 2.49± 0.30 0.405± 0.02 2.94± 0.24 0.623± 0.08 5.30± 0.347 0.514± 0.06 2.00± 0.19

Glass Iris Seeds Segment

s-i Accuracy QE Accuracy QE Accuracy QE Accuracy QE

20-100 0.429± 0.04 2.75± 0.45 0.721± 0.10 1.41± 0.29 0.727± 0.12 2.1± 0.38 0.547± 0.06 3.15± 0.41
30-100 0.431± 0.04 2.72± 0.48 0.704± 0.12 1.49± 0.30 0.707± 0.13 2.14± 0.41 0.542± 0.07 3.08± 0.35
30-200 0.419± 0.04 2.65± 0.40 0.706± 0.09 1.51± 0.32 0.721± 0.11 2.11± 0.39 0.546± 0.06 3.17± 0.45
40-100 0.412± 0.05 2.80± 0.43 0.746± 0.11 1.45± 0.30 0.750± 0.13 2.05± 0.38 0.553± 0.05 3.12± 0.44

Sonar Vehicle WDBC Wine

s-i Accuracy QE Accuracy QE Accuracy QE Accuracy QE

20-100 0.552± 0.05 9.13± 0.70 0.374± 0.019 3.66± 0.59 0.782± 0.13 6.08± 1.07 0.719± 0.15 3.5± 0.25
30-100 0.553± 0.05 9.05± 0.63 0.385± 0.02 3.86± 0.89 0.811± 0.11 5.92± 0.92 0.712± 0.13 3.57± 0.31
30-200 0.554± 0.05 9.72± 1.02 0.377± 0.02 3.7± 0.65 0.808± 0.10 5.95± 0.92 0.713± 0.11 3.62± 0.27
40-100 0.533± 0.03 9.28± 0.75 0.378± 0.02 3.73± 0.65 0.763± 0.12 6.2± 1.11 0.694± 0.14 3.54± 0.25

WOBC

s-i Accuracy QE

20-100 0.896± 0.10 2.87± 0.62
30-100 0.917± 0.08 2.64± 0.37
30-200 0.915± 0.09 2.54± 0.21
40-100 0.927± 0.06 2.64± 0.31

4.4. Visual Examination of CM-BBPSO Clustering

We visually inspect CM-BBPSO clustering by comparing T-SNE biplots with the
ground truth. The biplots are generated using R package rtsne, and a perplexity value of
40 is applied to all datasets presented. In Figure 1a,e, we observe that clusters of CMC and
Sonar highly overlap, but CM-BBPSO was able to cluster correctly some data points located
between clusters. In Figure 2a–f, the ground truth and CM-BBPSO clustering biplots of
challenging datasets, Glass, Segment and Vehicle, are presented. For contrast, we present
the biplot for Iris in Figure 2h to show that CM-BBPSO can easily find the clusters. Where
clusters do not overlap, CM-BBPSO performs with no issues, though its strength is in
highly overlapping clusters.

In Figure 3, convergence plots of connectedness values of particles and their pbest
against the number of iterations for particles using CM-BBPSO on the Appendicitis dataset
are presented to show the convergence and, thus, the stability of CM-BBPSO. We observe
that the connectedness values of particles and their pbest converge on all four experiment
settings. It is interesting to note that fewer particles dominate the pbest value as the
algorithm reaches near the maximum iteration.
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(a) Ground Truth of CMC (b) CM-BBPSO Results on CMC

(c) Ground Truth of Ecoli (d) CM-BBPSO Results on Ecoli

(e) Ground Truth of Sonar (f) CM-BBPSO Results on Sonar

Figure 1. T-SNE biplots of CM-BBPSO best performing datasets. (a,c,e) Ground Truth for CMC, Ecoli
and Sonar, respectively, and their corresponding CM-BBPSO results in (b,d,f).
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(a) Ground Truth of Glass (b) CM-BBPSO Results on Glass

(c) Ground Truth of Segment (d) CM-BBPSO Results on Segment

(e) Ground Truth of Vehicle (f) CM-BBPSO Results on Vehicle

(g) Ground Truth of Iris (h) CM-BBPSO Results on Iris

Figure 2. T-SNE biplots of other datasets with overlapping clusters and of Iris. (a,c,e,g) Ground
Truth for Glass, Segment, Vehicle and Iris respectively and their corresponding CM-BBPSO results
in (b,d,f,h)
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(a) 20–100 (b) 30–100

(c) 30–200 (d) 40–100

Figure 3. Convergence plot of particles p and their pbest where p dominates pbest in line 9 in Algorithm 1 on Appendicitis
dataset using different swarm size (s) and maximum iterations (i), labeled as s-i in (a–d).

5. Discussion

From the various comparative analysis, it is evident that CM-BBPSO does not perform
better than the other algorithms on datasets with well-separated or a small number of
clusters, such as Iris, Wine, WOBC and WDBC. Instead, it performs well on highly over-
lapping clusters, such as Sonar and CMC. Although other MOC results, both from our
previous work and from other reported work, outperform CM-BBPSO on Sonar and CMC,
we consider the CM-BBPSO to be promising. It used a simple clustering with two clusters
for MOEA, and the results are not a lot worse. There was also no setting of parameters apart
from the number of clusters, swarm size and maximum iteration. Excluding population
size, maximum k and total generations, HT-MOC requires the parameters of neighborhood
size, upper limit, branching factor and length of minimum spanning tree links. Excluding
the number of objects, total generation and crossover, MOFC-TMS requires the degree of
the membrane system.

With the 2-cluster K-means cluster-based approach in MOEA/D, the local search
is introduced such that the evolved candidate is evaluated with the cluster closest to it
during the dominance check. This brought on the effect of balancing the compactness
and well-separatedness of the cluster as shown in Table 1. Further experimentation is
required to study the effects of clustering on solution selection and whether such effects
are consistent across other MOC algorithms.

From Tables 2–4, we observed that M-Fuzzy works well with the WSS as one of the
objectives to achieve good accuracy. Examining all WSS and accuracy results of MOC
algorithms from the previous and current work, those with best accuracy also produce the
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best WSS for 7 out of 13 datasets. Two thoughts came to mind: first, the objective functions
in Fuzzy and BBPSO clustering. All BBPSO objective functions are based on [23]. Using the
same objective function as that of Fuzzy clustering on BBPSO clustering may improve it.
Second is the objective functions in MOEA. The objective functions WSS and Connectivity
in MOEA may not be the best combination for all datasets, and more objective functions
can be considered. There is consideration to study the same framework, but with different
objective functions [34]. HT-MOC used variance and connectivity, while MOFC-TMS used
Jm, XB-index and Sym-index. With three objective functions, MOFC-TMS produced good
results for challenging datasets, such as CMC and Glass. To test on datasets with highly
overlapping clusters, HT-MOC was tested on CoverType and Shuttle datasets. This will be
considered in our further investigations.

So far, we applied the cluster-based approach only on MOEA/D BBPSO clustering.
From Table 5, despite having issues on the CMC dataset, M-Fuzzy was found to produce
good results; further investigation of applications of the cluster-based technique on it can
be considered. The latest cluster-based MOEA techniques were investigated in non-convex
clusters in objective space, which is of interest to our future investigation in clustering
problems. Furthermore, we would like to investigate adding the cluster representatives
in our reproduction pool to guide the evolution of new candidates, which was conducted
in [13], but we did not apply it in this manner. By including cluster representatives,
this can increase diversity while applying local search in the objective space during the
dominance check. The results from the current work is promising, and this work has
opened up potential research directions in applying cluster-based MOEA techniques for
data clustering, using as few parameters as possible.

5.1. Implications

The application of clustering on fitness values in the objective space during the
dominance check of solution evaluation in MOC added a layer of search control, which
affected the properties of the clustering in the decision space as observed in the clusters’
compactness and well-separatedness characteristics of CM-BBPSO, M-BBPSO and BBPSO
in their WSS and BSS values.

5.2. Insights

The local search introduced by cluster-based selection approach can be further ma-
nipulated through a more advanced design of clustering techniques in MOC to generate
refined clusters that can influence the evolution and selection of new candidates.

5.3. Limitations

The following are limitations of this work. Where improvements were found when
comparing with MOC from our previous work, CM-BBPSO did not demonstrate signifi-
cantly large improvements. This could possibly be due to the conservative cluster number
of two used in this study. So far, we applied the cluster-based approach only on MOEA/D
BBPSO clustering. From Table 5, despite having issues on the CMC dataset, M-Fuzzy was
found to produce good results. Further investigation of applications of the cluster-based
technique on it can be considered. Though the latest cluster-based MOEA techniques were
investigated in non-convex clusters in the decision space, we did not cover in this work
which is of interest to our future investigation. Furthermore, we would like to investigate
adding cluster representatives in our reproduction pool to guide the evolution of new
candidates, which was conducted in [13], but we did not apply it in this manner. By
including cluster representatives, this can increase diversity while applying local search in
the decision space.

5.4. Future Work

Based on our discussion and limitations, we consider the following future work and
direction. We will investigate the effect of more clusters and a larger swarm size, such
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as 40. The investigation of non-convex clusters in the decision space through cluster
algorithm design and the addition of cluster representatives in our reproduction pool to
guide the evolution of new candidates will be further studied, as the inclusion of cluster
representatives in the population pool can increase diversity while applying local search in
the decision space. As we used a different clustering objective for M-BBPSO as opposed
to M-Fuzzy which performed very well, we will be investigating the objective functions
in both the clustering of decision space and MOO parts as well as the effect of adding
more objective functions to MOC. As differential evolution (DE) is gaining popularity
as an effective swarm intelligence technique, we would like to apply DE in MOC and
compare with BBPSO and Fuzzy techniques. To increase rigor in our testing, we will
consider including two test datasets with highly overlapping clusters, CoverType and
Shuttle datasets, used in testing HT-MOC.

6. Conclusions

The cluster-based multiobjective evolutionary algorithm based on decomposition to
find gbest in a bare bones particle swarm optimization clustering framework was developed,
tested extensively on 13 UCI datasets and compared with 10 MOC algorithms from a
previous study. CM-BBPSO produced competitive results and better results in challenging
datasets with highly overlapping clusters that are hard to distinguish, such as CMC, Sonar
and Ecoli, when compared with other BBPSOs.

The comparison with MOC from our previous work showed that CM-BBPSO produces
competitively good results and is ranked highly on datasets with difficult to distinguish
clusters, such as CMC and Sonar.

Through the analysis of the WSS and BSS values, we observed that the effect of
clustering in MOEA balances between compactness and well-separatedness characteristics,
whereas M-BBPSO and BBPSO highly prioritize one over the other. This demonstrates
that the clustering adds another layer of search control in the selection of candidates in
MOEA, meaning that a local search is introduced during the dominance evaluation of new
solutions against neighbors in the objective space. This opens up new research directions
to explore novel local search, using clustering in the objective space of MOC.

Based on a comparative study of the results and methodologies in the reported litera-
ture, we found the results of our proposed technique, which uses almost no parameters, to
be promising and have identified several areas for future investigation, such as in apply-
ing a cluster-based approach to M-Fuzzy, increasing k, and investigation of the choice of
objective functions. The proposed technique, though it did not produce the best results,
outperformed two of the reported MOC algorithms, VAMOSA and MOAC, on several
datasets. We demonstrated that, using simple techniques, such as MOEA/D, BBPSO and
K-means, the proposed technique is able to perform competitively.

The results from different experimental settings of swarm size and maximum iteration
applied on CM-BBPSO showed that those with a smaller swarm size and maximum
iteration of 20 and 100, respectively, can achieve good results, which can also be examined
visually using the biplots. Furthermore, the convergence plots of CM-BBPSO showed that
the algorithm stabilizes as it reaches maximum iterations.

With the application of advanced techniques or additional objective functions, such as
those found in HT-MOC and MOFC-TMS, novel cluster-based MOEA can be developed
to solve complex clustering problems. We hope that the discussion of this work, together
with the extensive comparisons against existing MOCs across 13 datasets and 6 metrics,
can provide a useful reference and demonstration of the feasibility and effectiveness of
CM-BBPSO clustering to new or interested practitioners of BBPSO clustering, MOC and
cluster-based MOC algorithms.
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The following abbreviations are used in this manuscript:

PSO Particle Swarm Optimization
BBPSO Bare Bones PSO
QPSO Quantum-behaved PSO
MOEA/D Multi Objective Evolutionary Algorithm based on Decomposition
MOEA/GLU Multi Objective Evolutionary Algorithm with Global Loop Update
CM-BBPSO Cluster-based MOEA/D BBPSO
IB-Fuzzy Indicator-based Evolutionary Algorithm Fuzzy
IB-QPSO Indicator-based Evolutionary Algorithm QPSO
M-Fuzzy MOEA/D Fuzzy
M-QPSO MOEA/D QPSO
M-BBPSO MOEA/D BBPSO
MG-Fuzzy MOEA/GLU Fuzzy
MG-QPSO MOEA/GLU QPSO
MG-BBPSO MOEA/GLU BBPSO
SP-QPSO Strength Pareto Evolutionary Algorithm 2 QPSO
WSS Within-cluster Sum of Squares
BSS Between-clusters Sum of Squares
QE Quantization Error
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