
algorithms

Article

A Visual Mining Approach to Improved Multiple-
Instance Learning

Sonia Castelo 1,2, Moacir Ponti 3 and Rosane Minghim 4,*

����������
�������

Citation: Castelo, S.; Ponti, M.;

Minghim, R. A Visual Mining

Approach to Improved

Multiple-Instance Learning.

Algorithms 2021, 14, 344.

https://doi.org/10.3390/a14120344

Academic Editor: Frank Werner

Received: 31 October 2021

Accepted: 24 November 2021

Published: 27 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 EPIS, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru; s.castelo@nyu.edu
2 NYU Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
3 ICMC, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil; moacir@icmc.usp.br
4 School of Computer Science and Information Technology, University College Cork, T12 YN62 Cork, Ireland
* Correspondence: r.minghim@cs.ucc.ie

Abstract: Multiple-instance learning (MIL) is a paradigm of machine learning that aims to classify a
set (bag) of objects (instances), assigning labels only to the bags. This problem is often addressed by
selecting an instance to represent each bag, transforming an MIL problem into standard supervised
learning. Visualization can be a useful tool to assess learning scenarios by incorporating the users’
knowledge into the classification process. Considering that multiple-instance learning is a paradigm
that cannot be handled by current visualization techniques, we propose a multiscale tree-based
visualization called MILTree to support MIL problems. The first level of the tree represents the bags,
and the second level represents the instances belonging to each bag, allowing users to understand
the MIL datasets in an intuitive way. In addition, we propose two new instance selection methods
for MIL, which help users improve the model even further. Our methods can handle both binary
and multiclass scenarios. In our experiments, SVM was used to build the classifiers. With support
of the MILTree layout, the initial classification model was updated by changing the training set,
which is composed of the prototype instances. Experimental results validate the effectiveness of our
approach, showing that visual mining by MILTree can support exploring and improving models in
MIL scenarios and that our instance selection methods outperform the currently available alternatives
in most cases.

Keywords: visual classification; multiple-instance learning; data mining; active learning

1. Introduction

Many machine learning problems can be solved by standard supervised learning
techniques, in which an object is represented by a single feature vector [1]. However,
there are problems in which the target of the classification is a set of several instances,
each one represented by a separate feature vector. This is the case of multiple-instance
learning (MIL) [2]. In MIL, an object, called a bag, contains a set of instances. MIL was
introduced in [3] to solve the problem of drug activity prediction, but many other studies
have already applied this approach successfully, such as image classification [4], cancer
detection via images or sequences [5,6], text categorization [7], speaker recognition [8]
and web mining [9]. Amongst the characteristics of problems that are fit to be solved
by MIL approaches are those in week supervision scenarios that do not work well with
standard machine learning pipelines [10]. Although multi-class classification is possible
with MIL, most studies addressed only binary classification where a bag can belong either
to a positive or negative class: a bag is labeled as positive if it contains at least one positive
instance; otherwise, it is labeled as a negative bag.

Different supervised methods have been proposed to handle the MIL problem [11–14].
A widely used strategy is to convert the multiple-instance problem into a classical super-
vised learning problem by selecting a single feature vector (instance) among the several in
each bag. This instance is often called instance prototype, which is later used to represent

Algorithms 2021, 14, 344. https://doi.org/10.3390/a14120344 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2059-9463
https://orcid.org/0000-0002-4799-8774
https://doi.org/10.3390/a14120344
https://doi.org/10.3390/a14120344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14120344
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14120344?type=check_update&version=4

Algorithms 2021, 14, 344 2 of 28

the bag both in training and classification steps, assuming it is sufficient to represent it
correctly [2,15,16]. Take, as an example, the image classification case where each image
would be considered as a bag and its segmented regions (represented by separate feature
vectors) as instances. Applying this type of strategy, the hypothesis would be that one
region in each image–instance prototype can represent the whole image and distinguishes
that “bag” from the others. Selecting a prototype by its relevance often needs to account
for different factors such as similarity measures and the bias of the importance selection
algorithm [17]. In this context, users should play a central role in defining the selection
criteria and adjusting parameters for the target model.

Visualization techniques have been successfully employed to help users in standard
classification tasks [18–21]. However, these techniques are not directly applicable to the
case of multiple-instance data for two reasons: first, they do not scale well, which is a
problem since the MIL dataset is often large due to the granularity of instances. Second,
visualization methods are often designed to visualize all instances in the same space.
An adequate visualization for this task should distinguish between bags and instances,
reflecting the typical structure of an MIL dataset in the same layout.

Unlike previous approaches, in this paper, we propose the use of visualization to
support user intervention in the multi-instance classification pipeline. We target the
tasks of instance prototype selection and training set building by the analyst, performed
interactively after a preliminary solution has been obtained by an automatic procedure. The
central visualization in the approach is the MILTree, a multi-scale visualization technique
based on the Neighbor-Joining similarity tree [22]. In the first level, only bags are placed,
reducing the amount of data to be visualized compared to laying out all instances on the
visual plane. The second level projects the instances belonging to a single bag, allowing the
user to explore its contents. Each bag in the first level is connected to its instances in the
second level, producing an intuitive structure that facilitates data analysis.

In addition to the visual support to MIL, we also propose two new instance selection
methods with multiclass support: one integrating the MILTree with Salient Instance Se-
lection (MILTree-SI) and the other with Medoids Selection (MILTree-Med). MILTree-SI is
based on the MILSIS method [16], which assumes that negative bags only have negative in-
stances, while our method considers that negative bags can have positive instances as well.
This adapts it for applications such as image and text. The MILTree-Med method uses the
k-Medoids clustering algorithm to partition the unlabeled instances in an attempt to find
positive and negative clusters, thus identifying the instance prototypes as their medoids.

In that context, the main contributions of this work are:

• MILTree—a novel tree layout for multiple-instance data visualization;
• MILTree-Med and MILTree-SI—two new methods for instance prototype selection;
• MILSIPTree—a visual methodology to support multiple-instance data classification.

2. Related Work

The first studies in the MIL field included the Diverse Density (DD) [3], DD with
Expectation Maximization (EM-DD) [23] and MI-SVM [11]. Later, several methods were
proposed using instance selection strategies, such as MILES [15], MILIS [2] and IS-MIL [12].
These methods tackle the MIL problem by converting it into regular supervised learning.
This is carried out by choosing instance prototypes (IP) for each bag, which then can be
used to learn a classifier. MILSIS [16] is also a method based on instance selection that aims
to identify instance prototypes named Salient Instances, which are true positive instances
in positive bags.

When visualization, data mining and machine learning are studied in the same context,
it is possible to provide better tools for exploring and understanding data [24]. Studies
relating these topics become even more important in the case of unstructured data since
we need to obtain representations of those objects in reduced dimensions [25,26]. There are
several related studies aiming at supporting the classification process by means of visual

Algorithms 2021, 14, 344 3 of 28

tools [18–21]. To process multidimensional data, previous visual mining approaches have
employed both multidimensional projections and trees.

Multidimensional projections map high dimensional vectors into points in a low
dimensional space, such as 2D or 3D [27]. The result of this projection is a point placement
on a plane, normally corresponding closely to a similarity relationship so that an instance
is likely to be placed close to other similar instances and far from those that are not
similar [28]. A large variety of techniques can be used to perform projection, such as
Principal Component Analysis (PCA) [29], Multidimensional Scaling (MDS) [30], Least
Square Projection(LSP) [31], Local Affine Multidimensional Projection (LAMP) [32], tSNE
and UMAP. Although projections have improved greatly in precision and performance, they
are prone to producing overlapping points, causing clutter that hampers the interaction for
datasets that are reasonably large.

On the other hand, similarity trees enforce the separability of the points by including
edges between elements and causing branches between groups of similar points. They
are constructed from the distances between the instances to be displayed. The Neighbor-
Joining (NJ) method, originally proposed for re-constructing phylogenetic trees [22], is of
particular interest. NJ builds unrooted trees, aiming at minimizing the tree length and
number of tree branches by finding pairs of closed instances and creating a branch from
them. In this paper, we employ an improved NJ tree layout algorithm [33] that runs faster
than the original NJ [22].

Our paper presents a novel contribution by extending the notion of visually supporting
classification tasks to the case of multiple-instance learning, providing a methodology that
assigns visual layouts to MIL tasks. We use a novel multi-level NJ tree, allowing users to
explore MIL datasets, select the training set, create a model, visualize classification results,
as well as update the current model using novel methods, as detailed in the next section.

3. Background and Related Concepts

In this section, we briefly present the main concepts regarding multi-instance learning
and visual support for classification tasks.

3.1. Multiple Instance Learning

In supervised learning, we define classification as follows: given an instance space
X (also called input space) composed by individual instances—each one is represented
by a feature vector—and a label space Y (output space) composed by classes that can be
assigned to each sample, the task is to build a classifier, i.e., a map f : X → Y . The classifier
is often obtained by using a training set of instances as input with their corresponding
true labels [1].

In MIL, an object is represented by different parts, although the object itself has its own
label, each part may have, in principle, different labels. This causes the classical supervised
learning definition to perform poorly in multi-instance scenarios.

Formally, a multiple-instance learning algorithm learns a classifier fMIL : 2X →
{−1,+1}, taking as input a dataset composed by bags Bi, with i = 1, · · · , n. Each bag
contains a set of instances; the jth instance inside a given bag is denoted as Bij, and
j = 1, · · · , ni, in which ni is the number of instances inside the bag Bi. Considering a binary
classification scenario, positive and negative bags are denoted, respectively, by B+

i and B−i .
For the sake of simplicity, we will denote a bag as B when it represents either positive or
negative bags.

One of the crucial steps in this process is how to assign a label to the bag given the
labels of its instances. The first MIL study [3], related to drug activity, assigned a positive
label to a bag that has at least one positive instance. This approach makes sense for that
application but has not been successful for other datasets [2]. The state-of-the-art strategies
often select a prototype instance in order to represent the bag, and there are many different
heuristics that can be used to perform this task.

Algorithms 2021, 14, 344 4 of 28

In the following sections, we will give further details about two strategies for in-
stance selection employed in multiple-instance learning. Moreover, we discuss ideas for
visualization and interaction to improve prototype instance selection.

3.2. Instance Prototype Selection
3.2.1. Salient Instance Selection Strategy

In MILSIS [16], the authors perform prototype selection in positive bags, obtaining
Salient Instances via “Rough Selection” and “Fine Selection”.

Rough Selection obtains two optimal positive instances from all positive bags, which
are basically those with the highest and lowest values of salience. First, all instances in
negative bags are grouped in a set B−. Then, the salience Sal(B+

ij) for each instance in a

given bag B+
i is computed as follows:

Sal(Bij) = ∑
Bik∈Bi\{Bij}

d(Bij, Bik), (1)

where d(., .) is the Euclidean distance function. A high salience value indicates that the
instance is different from the other instances in the bag.

After computing saliences inside B+
i , instances are sorted from the maximum (j = 1)

to the minimum (j = m) salience values. This is used to estimate the probability that B+
i1

(maximum) and B+
im (minimum) instances are positives given the set B− (see Equation (2)),

and then select an optimal positive instance, which will represent Bi:

Pr(l(Bij) = +1|B−) = 1− exp(−D(Bij, B−)/σ2), (2)

where l(.) is the label function, σ is a scaling factor larger than 0; D(Bij, B−) is the minimum
distance between Bij and all instances in B−:

D(Bij, B−) = min
Brt∈B−

d(Bij, Brt), (3)

Since Pr(l(Bij) = +1|B−) is proportional to D(Bij, B−) [16], from Equation (3), it is
possible to estimate how likely an instance is to be labeled as positive or negative by its
distance to the set of negative instances. Finally, the probabilities of each bag are compared
in order to find the optimal positive instance, i.e., the one with maximum distance to B−.

In Fine Selection, an optimal negative instance is selected from B− by its maximum
distance to the optimal positive ones. Then, starting with the optimal positive instances
obtained in the rough selection: B+

i1 and B+
im, it finds a true positive instance in each bag.

These true positive instances will be part of the Salient Instances. Algorithm 1 summarizes
the whole procedure. Note that B = B+ ∪ B−; n+ and n− are, respectively, the number of
instances inside positive and negative bags; and SalNum is the number of salient instances.

3.2.2. Medoids Instance Selection Strategy

The Medoids Instance Selection [34,35] strategy computes the medoid for each bag
using the k-Medoids algorithm. Each medoid will represent a bag, and then the multiple-
instance learning task is reduced to a traditional supervised learning task. The k-Medoids
algorithm is adapted to cluster the multiple-instance data so as to partition the unlabeled
training bags into k groups. After that, it re-represents each bag by a k-dimensional feature
vector, where the value of the ith feature is the distance between the bag and the medoids
of the ith group. In other words, the medoid of each bag has the minimum average distance
to the other bags in the same group, with all bags represented as k-dimensional feature
vectors in a regular supervised learning approach.

Algorithms 2021, 14, 344 5 of 28

Algorithm 1: MILSIS: Salience Instance Selection.
Input: B, SalNum
Output: Salient instances (prototypes) T.
B− = {Brt|Brt ∈ B−r , r = 1, 2, ..., n−};
maxDist = 0;
// Rough Selection
for i = 0 to n+ do

Compute Sal(B+
i1) for each instance in B+

i ; // (see Equation (1))
Re-sort all instances in B+

i in descending order of salience.;
Compute D(B+

i1 , B−) and D(B+
im, B−); // (see Equation (3))

if D(B+
i1 , B−) > D(B+

im, B−) and D(B+
i1 , B−) > maxDist;

then
maxDist = D(B+

i1 , B−) ;
optPosInst = B+

i1 ;
else

if D(B+
im, B−) > D(B+

i1 , B−) and D(B+
im, B−) > maxDist then

maxDist = D(B+
im, B−) ;

optPosInst = B+
im;

end
end

end
// Fine Selection
optNegInst = arg maxj∈B− d(j, optPosInst);
for i = 1 to n+ do

if d(B+
i1 , optNegInst) > d(B+

im, optNegInst) then
T = T ∪ B+

i1 , ..., B+
iSalNum ; // Set of salient instances

else
T = T ∪ B+

i(m−SalNum+1), ..., B+
im ;

end
end
Return T;

4. Visual Multiple-Instance Learning

Our approach to tackle the multiple-instance learning problem consists of two main
features: a tree-based visualization to encode the MIL data (including instances and bags
representations), coupled with new heuristics based on that visualization, to convert MIL
into a standard machine learning problem.

The data under analysis can be visualized in the bag space or the instance space using
MILTree. We also identify prototypes for each bag, which allows training a classifier using
those prototypes. Two methods were designed to identify prototypes: MILTree-SI and
MILTree-Med, both using the MILTree visualization proposed in this work. In this section,
after defining additional notation, we describe the MILTree layout and then the MILTree-SI
and MILTree-Med instance prototype selection methods.

4.1. Additional Notation

In addition to the notation described in Section 3.1, for each bag we designate two
special instance prototypes, denoted by BprotoProj and BprotoClass. The BprotoProj is used for
visualization purposes, denoting the instance prototype that will be used to map bags in
the MILTree’s bag space layout, while BprotoClass denotes the prototype used to create the
classification model. Initially they are the same; however in order to keep the same visual-
ization layout while updating the classification model, BprotoClass can change, but BprotoProj
does not change to preserve the MILTree layout throughout the visual mining process.

Algorithms 2021, 14, 344 6 of 28

4.2. Creating a Multiple-Instance Tree (MILTree)

The improved NJ algorithm [33] begins with a star tree formed by all m objects
on the distance matrix, represented by leaf nodes arranged in a circular configuration
and connected by branches to a single central node. Then, it iteratively finds the closest
neighboring pair among all possible pairs of nodes by the criterion of minimum evolution,
which attempts to minimize the sum of all edge lengths for all nodes of the tree. Afterwards,
the closest pair is clustered into a new internal node, and the distances from this node
to the remaining ones are computed to be used in subsequent iterations. The algorithm
stops when m− 2 virtual nodes have been inserted into the tree, i.e., when the star tree is
completely resolved into a binary tree.

Algorithm 2 illustrates the NJ tree procedure, which starts by computing the depth of
the divergence for each node, i.e., the sum of the distances from instance i to all other nodes:

ri = ∑
j 6=i

Di,j. (4)

Then, it computes a new distance matrix based on the divergence ri in order to find
the closest pair of nodes i, j:

ci,j = Di,j −
ri + rj

−2
, (5)

After finding the pair of nodes i, j, a virtual node u is created as a parent of both i and
j. The length of the edge connecting u to i is:

si,u =
Di,j

2
+

ri + rj

2(m− 2)
, (6)

and the length of the edge connecting u to j is:

sj,u = Di,j − si,u. (7)

Finally, the pair of nodes i, j is replaced by u in the matrix D, and the distances between
u and all others nodes are computed by Equation (8), where k 6= i, k 6= j and k = 1..m:

Dk,u =
Di,k + Dj,k − Di,j

2
(8)

The algorithm then iterates, finding and joining pairs of nodes until m− 2 virtual
nodes are inserted into the tree.

Algorithm 2: NJ tree Algorithm.
Input: Similarity matrix D.
Output: Phylogenetic Neighbor-Joining Tree.
v′ = m ; // Where m = D.size
while v′ > 2 do

Compute ri for i = 1..m, and find ci,j which is the closest pair of instances i, j ;
// (see Equations (4) and (5)).

Create a new virtual node u;
Compute the lengths of edges (u, i) and (u, j) ; // (see Equations (6) and
(7)).

Replace i, j by u and update the distance matrix D with the new node u ;
// (see Equation (8)).

Define u as parent of both i and j;
v′ = v′ − 1;

end

Algorithms 2021, 14, 344 7 of 28

To map multiple-instance data to a visual tree structure, the MILTree was developed
as a two-level NJ tree, with bags and instances projected in different levels. We group the
instance matrix data by the previously known bags using the instance prototypes as nodes
of the second level of the NJ. The layout of the tree projects the data into visual space.

A subset of the Corel-1000 dataset is used to illustrate the bag and instance projec-
tion levels in Figure 1. In this dataset, each image is a bag, composed of feature vectors
(instances) that are extracted from disjoint regions of the image, with an average of 4.5 in-
stances per bag. In the first-level (bag space projection) the red points represent positive
bags—100 images of the flower category—and the blue points represent negative bags—
100 images selected uniformly from the remaining categories of the dataset. When a bag
is selected, its instances are projected in the second level of the multiple-instance tree
(instance space projection).

Figure 1. Layouts of Bag and Instance Spaces for the Corel-1000 subset (with instance prototypes
highlighted) in the MILTree, with a total of 200 bags and 824 instances.

Algorithm 3 contains the complete procedure to build the MILTree, which starts by
grouping the matrix data D in bags Bi (first for loop), where i denotes the index of bags.
We iterate over the instances in the matrix D, each line Dm representing the distance from
instance m to all other instances. In each iteration, a new bag Bi is created, and all its instances
Bij are added to Bi, where j denote the index of instances belonging to some bag Bi.

Afterwards, we compute Bi,protoProj and Bi,protoClass for each Bi using either MILTree-SI
or MILTree-Med (second for loop). Remember that Bi,protoProj is used in MILTree and
Bi,protoClass in the classification process. Every Bi,protoProj is included in a set P, which will
be used later to create a bag distance matrix in the NJ tree procedure. Finally, Bi∀i are
processed by the MILTree using P, creating the bag space projection.

Instance projection: Since our MILTree has two levels, when a user interacts with a
bag i, the instances Bij will form an instance space projection Bi.tree. To create Bi.tree, the
NJ-Tree algorithm takes as input the instances of Bi and the prototype Bi,protoProj.

Algorithms 2021, 14, 344 8 of 28

Algorithm 3: MILTree Algorithm.
Input: Similarity matrix D.
Output: Multiple-Instance Tree.
// Creating bags:
for m = 0, i = 0 to m < D.size do

for j = 0 to Bi.size ∈ D do
Bij = Dm.;
Add Bij to Bi. Where Bij ∈ Dn , i = idBag, j = idInstances.;
Connect Bi as parent of instance Bij;
m = m + 1 ; // Taking the next instance

end
end
// Computing instance prototypes:
for i = 0 to B.size do

// MILTree-Med/MILTree-SI prototypes selection methods (see
Section 4.3)

Compute Bi,protoProj and Bi,protoClass using MILTree-Med or MILTree-SI.;
P = P ∪ Bi,protoProj ; // set of all projection prototypes Bi,protoProj

end
// Projecting bags in the bags space projection of MILTree:
B.tree =NJTree(Bi,P), i = 0, 1, 2, . . . , Bi.size;
Return B.tree.;

4.3. Instance Prototype Selection Methods

We propose two new prototype selection methods, MILTree-SI and MILTree-Med,
based on those proposed by [16], as described in Section 3.2. Both the SI and Med ap-
proaches compute two prototypes per bag: Bix and Biy. The first, Bix, is used both in the
visualization and to build the classification model, while Biy is an alternative prototype that
can be used to update the classification model. Computing Biy offers an option to automati-
cally change the bags’ prototypes that are poorly represented by Bix, for example, those that
are misclassified in the training set, improving the multiple-instance classification model.

In contrast with the original method [16], we assume that not only positive bags
but also negative bags could have both positive and negative instances. This is true
for more complex data such as images and text. Consider, for example, the problem of
discriminating between photos of flowers (positive) and photos of the classes person and
animals (negative) in which each image is a bag and its instances are disjoint regions of the
image. If we use the classic definition of a positive bag, all those images (bag) containing a
flower in at least one region (instance) are considered positive; to be considered negative,
the image must not contain any flower. However, in this application, we are often interested
in the main object in the scene. A photo whose main subject is an animal may contain a
region with a flower, for example, in the background or a person may carry a flower in a
photo, although the person itself is the main object. Similar examples apply to contexts
such as text, video and speech classification. Therefore, we compute both optimal positive
and negative prototypes.

4.3.1. MILTree-SI

The optimal negative instance is defined as the one most distant from all the true
positive instances of B+ obtained by the original Salient Instance Selection Method: Sal(B−ij)
is computed using Equation (1), then a true negative instance is obtained for each negative
bag according to Equation (3). Equations (1) and (3) are reproduced again below for clarity:

Sal(Bij) = ∑
Bik∈Bi\{Bij}

d(Bij, Bik)

Algorithms 2021, 14, 344 9 of 28

D(Bij, B−) = min
Brt∈B−

d(Bij, Brt).

From all true negative instances, the optimal negative instance will be the one furthest
from the set B+. Afterwards, we select the optimal positive instance from B+ using a
similar procedure, but this time selecting the instance in B+ with the maximum distance to
the optimal negative instance found previously.

Finally, as we already have the optimal instances (positive and negative), we compute
the instance prototypes Bix and Biy for positive and negatives bags: Bix is the instance
with the highest salience, and Biy is the next one with major salience. Figure 2 shows the
selection of prototypes (which could be Bix or Biy) from negative bags using MILTre-SI.

Figure 2. Selection of instance prototypes on negative bags using MILTre-SI. B+
i represents positive

bags, B−i represents negative bags and d(B+
i1 , B−ij) represents the Euclidean distance between the

optimal positive and a given negative instance.

4.3.2. MILTree-Med

Clustering algorithms have been frequently used for selecting prototypes in a feature
space defined by the instances in MIL, as presented in Section 3.2.2. The original methods
create a new artificial instance that represents a bag by choosing, for instance, a cluster
centroid. MILTree-Med, unlike other methods, works in the instance space of each bag,
selecting an actual instance without creating new ones, which better complies with the
visualization scalability. Each bag is considered a cluster, and the prototype is the medoid
of the cluster. Since we want to find two prototypes, the k-Medoids algorithm is applied
with k = 2. Since all bags may contain positive and negative instances, we want to identify
potentially positive and negative clusters.

The medoids of the sub-clusters are the instance prototypes Bix and Biy. Figure 3
shows the selection of prototypes using MILTree-Med. Bag represents either a positive or
negative bag, c is the centroid of the bag, m1 and m2 are the medoids of the two sub-clusters
and d are distances between each medoid and the centroid.

4.3.3. Updating Instance Prototypes Using MILTree

To create the first MILTree layout, as well as the classifier, we set Bi,protoClass =
Bi,protoProj = Bi,x, i.e., the first instance prototype selected by either MILTree-SI or MILTree-
Med heuristics. The MILTree was developed so that the user can spot those bags that
are poorly represented by the first prototype selection. For those bags, users can then set
Bi,protoClass = Biy or manually inspect the bags to select a more representative one.

Algorithms 2021, 14, 344 10 of 28

Figure 3. Selection of instance prototype using MILTree-Med.

Two visual representations are available to the user:

1. Prototype highlighting: MILTree highlights the current prototype Bix with a darker
color and also Biy, which is the alternative prototype, with a lighter shade. Thus,
by inspecting both, the user can validate BprotoClass or update it according to their
knowledge by selecting Biy or even another instance in the instance space layout.
Figure 4 shows the instance prototypes Bix and Biy projected in the MILTree’s instance
space layout. In Figure 4a, the SI selection method is used, and in Figure 4b, the
medoids selection is used instead.

2. SVM class match tree: the InstancePrototypes ClassMatch tree uses color to contrast the
bags that were misclassified, considering a training or validation set for which the
labels are known. A similar approach has been successfully used in [21,33]. In this
approach, the instances BprotoClass are used to build an SVM classifier, and the MILTree
plots a layout we called InstancePrototypes ClassMatch tree, with colors according to
the classification result: pale green for correctly classified and red for misclassified
bags. Figure 5a displays the MILTree generated for a subset of the Corel-1000 dataset,
where red bags represent positive bags (images of horses) and blue bags represent
negative bags (random images from other categories). To find the InstancePrototypes
ClassMatch tree for this dataset, we allow users to select a training set to create an
SVM classifier. Figure 5b shows the training set that was used to create the classifier;
dark red bags are the ones used for training, while the pale blue ones are used as
validation/test. Finally, the InstancePrototypes ClassMatch tree shows the classification
results (see Figure 5c), where dark red points are misclassified bags, probably with
non-representative prototypes. Updating the prototypes will improve the model, as
indicated by the results presented later in Section 6.

(a) Salient instance selec-
tion method.

(b) Medoids instance se-
lection method.

Figure 4. Methods for selecting instance prototypes Bix and Biy. Both (a) and (b) project the same
instances from a positive bag B+

i of the MUSK1 dataset on the MILTree’s instance space layout.

Algorithms 2021, 14, 344 11 of 28

(a) (b) (c)

Figure 5. MILTree’s bag space layout for a subset of the Corel-1000 dataset (100 images of the horse
category and 100 random images selected from the remaining categories), with the projection of its
ground truth (a), selected training set (b) and InstancePrototypes ClassMatch tree (c).

5. Application of MILTree to Multiple-Instance Learning Scenarios

In this section, we present three case studies that illustrate the practical usefulness of
MILTree. The case studies were carried out on a Dell workstation Z620 equipped with an
Intel Core CPU (E5-2690, 3.40 GHz) and 16GB memory.

The first presents a binary multiple-instance image classification problem using the
Corel People dataset. The second one describes a multi-class scenario using images from
five classes of the Corel dataset. Lastly, the MIL benchmark dataset Musk1 is used in the
third case study. More information about each dataset can be found in Section 6.

5.1. Case 1: Instance Space Layout in a Binary Classification Problem

We demonstrate that an appropriate selection of instance prototypes can influence
the accuracy of the classification. We use MILTree for the layout and MILTree-Med as
instance prototype selection method, and the updates of prototypes are performed in the
Instance Space Layout. For this case, we use the Corel People binary dataset with 200 bags
(images) and 938 instances (feature vectors extracted from image regions), which includes
100 images from the class People (positive) and 100 images randomly selected from all
other classes (negative) of the Corel-1000 dataset. Figure 6a shows the projection of the
bags using MILTree: red bags represent positive bags (images of people) and blue bags
represent negative bags (images from other categories).

(a) (b) (c)

Figure 6. MILTree’s Bag Space Layout for the People Category of the Corel-1000 dataset, with the
projection of its Ground truth (a), selected training set (b) and InstancePrototypes ClassMatch tree (c).

The first step in the classification process is to select the training set: 20% of the images
are selected to train the model, while the remaining 80% is used for validation and test.
Due to the nature of the NJ algorithm, MILTree positions the bags that better characterize
the class they belong to as far as possible from the core of the tree (external points), while
the bags located in the core of the tree (internal points) have features that overlap with
other classes. This characteristic can be extremely useful in identifying a representative
sample by selecting both external and internal bags to create our training set so as to build
a classifier that is neither too restrictive nor too general. This visual selection strategy

Algorithms 2021, 14, 344 12 of 28

has been demonstrated to produce better results in standard supervised learning when
compared with random selection strategies [21]. Note that, in our representation, when the
user selects a bag she/he is actually selecting its instance prototype BprotoClass. Figure 6b
shows the selected training set for the People dataset, where red bags represent the training
set and blue bags represent the test dataset.

The selected training set is then used to create an initial classifier (in our experiments,
an SVM classifier). After applying the model over the validation set, we display the
InstancePrototypes ClassMatch tree that highlights, in a contrasting color, the misclassified
training bags, whose instance prototypes are likely to be non-representative. Figure 6c
shows the InstancePrototypes ClassMatch tree for the People dataset, highlighting in red the
misclassified points belonging to the training set. We then use the second level projection
of MILTree to explore the instance space projection of those bags, aiming to improve the
classification model.

To improve the MIL classification model, users have two options. The first option is
to automatically change the BprotoClass of all misclassified training bags identified in the
InstancePrototypes ClassMatch tree by replacing it with the alternative instance prototypes
Biy. The second option, which we show in this case study, is to visually explore the instance
space projection of all misclassified bags highlighted in the InstancePrototypes ClassMatch
tree and individually choose how to update the instance prototypes.

Figure 7 shows the instance space layout of each highlighted bag, here referred to as
A, B, C, D, E, F and G. Each instance space layout is a new NJ tree formed by instances that
belong to the explored bag. We show the four possible visual steps required to update the
prototypes. Note that the first, second and third steps could be executed automatically, but
by exploring it manually, the user is allowed to see and control those steps individually. For
instance, the bag C required a manual selection of the correct prototype, so a fourth step is
added. This allows users to explore and analyze the instances in the instance space layout.

Using the example shown in Figure 7, we follow the four steps. The first step presents
the initial status: the green and red points represent, respectively, the correct classified
and misclassified instances in the training set; the current instance prototypes (Bix) are
highlighted with larger circles. In the second step, the alternative prototypes Biy selected by
MILTree-Med are shown. In our example, it makes no sense to update the prototypes of D,
E, F and G because all instances were classified in the same class. However, inside bags A,
B and C, two classes are available, so users can then accept the automatic MILTree-Med
update by changing the prototype to the one with the correct classification result. In the
third step, the new instance prototypes of bags A, B and C are shown, but the alternative
prototype Biy is still misclassified in C. Due to this, a fourth step can be carried out to
manually choose a new instance prototype—in this case, a correctly classified one (green
point) that is near the previous prototype.

After updating the bags’ prototypes detected through the InstancePrototypes ClassMatch
tree, we retrain the classification model. An accuracy of 72% was achieved before the
update, and by updating only three bags, it was possible to increase it to 75%. In Figure 8a,
we show the classification results using MILTree, and its correspondent ClassMatch tree is
shown in Figure 8b. Note that the ClassMatch tree shows the bags that were misclassified in
the whole dataset, including training and validation/test sets, while the InstancePrototypes
ClassMatch tree only shows the bags that were misclassified in the training set. This case
study demonstrates the positive impact of selecting representative instances on the accuracy
of the classifier and that the visual exploration can play an important role by making this
task easier.

Algorithms 2021, 14, 344 13 of 28

’

 B C D E F G

1 Step

2 Step

3 Step

4 Step

A

A

D

C

B

F E

G

D E F G B C

Figure 7. Instance Space Layout of each bag with an unsuitable instance prototype. A, B, C, D, E, F
and G represent red bags.

(a) Classification result. (b) ClassMatch tree.

Figure 8. Classification result in the Bag Space Layout of MILTree for the People Category of the
Corel-1000 dataset using a classification model with new instance prototypes (a) and corresponding
classMatch tree (b).

5.2. Case 2: Bag Space Layout and a Multiclass Classification Problem

Here, we show the impact of adding new instances from bags that already exist in the
training set to update and improve the classification model. Thus, in the updated model,

Algorithms 2021, 14, 344 14 of 28

some bags can be represented by more than one instance prototype. To update the model,
the MILTree layout was used only in the bag space, and the MILTree-SI automatic selection
method was used to detect new prototypes. We tested our approach with the multiclass
Corel-300 dataset, containing 5 classes, 300 bags and 1293 instances. Figure 9a displays
the Corel-300 dataset in the bag space projection, where bags are points and the different
colors represent different classes.

(a) Ground truth. (b) Selected training set. (c) InstancePrototypes ClassMatch
tree.

(d) Classification result. (e) ClassMatch tree.

Figure 9. MILTree’s Bag Space Layout for the Corel-300 dataset. Visualization of the classification
process from training set selection to classification result inspection. Visualization of ground truth
of dataset (a), selected training (b), InstancePrototypes ClassMatch tree where bags with unsuitable
instance prototypes are identified (c), visualization of classification result (d) and its correspondent
ClassMatch tree (e). Note that the InstancePrototypes ClassMatch tree only shows the bags that were
misclassified in the training set, whereas the ClassMatch tree shows the bags that were misclassified
in the test data and training set. Hence, for evaluating the classification results, users should only
inspect the ClassMatch tree (e).

As in the previous case study, an initial training set was selected using MILTree
(see Figure 9b) to build an initial classifier for the Corel-300 dataset. We then show the
InstancePrototypes ClassMatch tree to identify bags that have unsuitable instance prototypes,
as shown in Figure 9c. Finally, we add all the alternative prototypes automatically detected
by the MILTree-SI selection method to the current model. Thus, the instances Biy for all red
bags (see Figure 9c) are added to the classification model.

Note again that in this case study, the new instance prototypes are added to the previ-
ously developed model. This strategy can be useful in multiclass problems because with
more classes it can be difficult to select a single instance to represent each bag. The MILTree-
SI method ranks the instances, and therefore, Bix and Biy are considered, respectively, the
best and second-best prototypes so that it is intuitive to add the second prototype to the
model. In contrast, the MILTree-Med method uses clustering in an attempt to obtain a pair
of positive and negative prototypes, so it is highly recommended to choose just one of
them because adding both instances to the model could increase the class overlap.

After updating the classifier, Figure 9d shows the classified MILTree, and Figure 9e
shows its correspondent ClassMatch tree, where green and red points represent bags
correctly classified and misclassified, respectively. The accuracy before the update was
82.6%, and after, including only eight new instances, it increased to 83.8%. It is also worth
mentioning that the achieved accuracy using a standard classification method, without our

Algorithms 2021, 14, 344 15 of 28

visual mining tool, was 78%. This demonstrates that the selection of a proper training set
and the process of updating the model using the proposed methods can help to create a
classifier with improved performance, even in multiclass scenarios.

5.3. Case 3: Adding New Bags Using the MILTree Visualization

In this case study, we illustrate how to use MILtree to identify and select both new
prototypes and new bags to update a model and improve its performance, assuming
that the initial training set is not representative enough to build a classifier with good
class discrimination capabilities. The ClassMatch tree is generated based on the initial
classification results to identify misclassified bags, and MILTree-SI is used as the instance
prototype selection method. Similar to the second case study, we will only make use of the
bag space layout of MILTree. We tested our system using the Musk1 benchmark dataset
consisting of 92 bags and 476 instances. Figure 10a shows the projection of the Musk1
dataset in the bag space layout of MILTree, in which blue bags represent negative bags and
red bags represent positive bags.

First, an initial training set was selected using MILTree (see Figure 10b) to build the
first classifier, and then the InstancePrototypes ClassMatch tree is generated to highlight the
misclassified bags on the training set, as shown in Figure 10c. Just like the second case
study, the alternative instance prototypes Biy of all red bags (misclassified bags) are added
to the initial model. In addition, we use the ClassMatch tree to show the classifier results
in the validation set to identify possible new bags that can be used to update the model
as well. This is an interesting strategy because the validation set contains bags that were
unseen in the training stage. Figure 10d presents the ClassMatch tree obtained with the first
classification result for the Musk1 dataset.

Users can employ different strategies to keep updating the classification model using
our layout by searching for representative bags in branches with high error rates and
including those new bags in the training set. Instead of randomly selecting those bags, the
visualization helps the user to identify subspaces, or regions of the feature space, that are
poorly represented in the training set by looking at the tree branches with a high error rate,
such as those annotated with ellipses in Figure 10d.

The user can then assess results with the confusion matrix of the validation set. In our
example, around half the negative bags (blue) were confused as positive (red), as shown
in Figure 11. The layout shows a concentration of those errors in branches belonging to
the same class and located in different regions of the tree; in other words, they are not
neighbors in the tree projection, as shown in Figure 10e. This may indicate that this class
covers a wide range of features and may contain subclasses.

After inspecting and analyzing the ClassMatch tree layout, the user selects new bags
and updates the initial model. Figure 10f highlights the two bags that were included in the
model building process. Figure 10g shows the classified MILTree of the Musk1 test dataset,
and Figure 10h presents its correspondent ClassMatch tree after the last model update. The
accuracy on the Musk1 test dataset using the initial model was 73.9%; after updating it
using new instance prototypes, we achieved 75.2%; and finally, after a second update using
new bags, we obtained a 83.2% accuracy. This demonstrates once again that visual mining
selection strategies are helpful in the MIL scenario.

To evaluate the performance of the proposed methods when compared to state-of-the-art
MIL methods, Section 6 presents quantitative experiments performed over different datasets.

Algorithms 2021, 14, 344 16 of 28

(a) Ground truth. (b) Selected training set. (c) InstancePrototypes ClassMatch
tree.

(d) ClassMatch tree of initial classi-
fication result.

(e) Misclassified bags selected in the
Ground truth.

(f) Selection of new bags located in
the branches where bags were mis-
classified.

(g) Classification result using up-
dated model with new instance pro-
totypes and new bags.

(h) ClassMatch tree of final classifi-
cation result.

Figure 10. Visualization of the classification process for the Musk1 dataset.

Figure 11. Confusion matrix for the Musk1 dataset for classification results after using the initial
classification model. Blue color represents the negative class, and the red color represents the
positive class.

Algorithms 2021, 14, 344 17 of 28

6. Experiments and Results

This section presents the experiments carried out to compare the proposed methods
with MIL methods available for each dataset. We evaluate the average precision, average
recall and average accuracy of both MILTree-Med and MILTree-SI using the MILTree layout
for five MIL benchmark datasets, Corel-1000 and Corel-2000 image classification datasets,
as well as the Biocreative text classification dataset. Furthermore, we perform experiments
on a large-scale dataset and in a multiclass problem, both not addressed in previous works.
The proposed methodology called MILSIPTree is used to carry out the complete multiple-
instance classification process. Note that MILSIPTree is supported by both MILTree-Med
and MILTree-SI instance prototype selection methods and the MILTree layout as well.

The source code of the proposed methods and the multi-instance datasets are publicly
available to allow reproducibility. The LIBSVM package was applied to train all SVMs
using settings that are comparable with the results obtained by the competing methods.
For the Musk1 and Musk2 datasets, we have employed the classifier nu-SVC (Nu-Support
Vector Classification), with a Nu value equal to 0.6. For the images datasets (Elephant, Fox,
Tiger, Corel-1000 and Corel-2000) and text dataset (Biocreative), we used the classifier
C-SVC (C-Support Vector Classification), with a Cost value equal to 1. No kernel was used
because we intended to show how the proposed methods help obtaining a feature space
with linearly separable classes, which require less effort on designing the classifier.

6.1. Benchmark Datasets

Five standard MIL benchmarks were used: The Musk1 and Musk2 datasets [3], as
well as Elephant, Fox and Tiger image datasets [11]. Those have been widely used in
multiple-instance learning studies.

Musk1 and Musk2 are real-world benchmark datasets available at the UCI machine
learning repository [36]. The Musk data were generated in the research of drug activity
prediction, in which a drug molecule is represented by a bag, and the different structural
conformations of this molecule are considered as instances. Musk1 contains 47 positive
bags and 45 negative bags, and the number of instances contained in each bag ranges
from 2 to 40. Musk2 contains 39 positive bags and 63 negative bags, and the number of
instances contained in each bag ranges from 1 to 1044. Each instance is represented by
166 continuous attributes. Table 1 shows the detailed information on the Musk datasets.

The image datasets named Elephant, Fox and Tiger were built with the goal of discrim-
inating images containing elephants, foxes and tigers from those that do not, respectively.
In this case, bags are considered images, and instances are considered regions of interest
within the images. More details about these datasets are given in Table 2.

We split each dataset into 30% training and 70% testing data. Our methods allow
the training set to be small because they provide smart ways to select it so that it is
representative enough. The model update was similar to the case studies 1 and 2: the initial
model is updated by either changing the prototypes using MILTree-Med or including new
prototypes using MILTree-SI.

Table 3 compares the results achieved by MILTree-SI and MILTree-Med in detail.
Additionally, in Table 4, we compare MILTree-SI and MILTree-Med with the accuracy
reported by nine MIL algorithms from the literature: Four baseline methods such as
EM-DD [23], DD-SVM [37], mi-SVM[11] and MI-SVM[11], and five methods that use
instance selection such as MILES [15], MILIS [2], MILD-B [38] as well as the most recent
state-of-the-art results from MILSIS [16] and MILDE [4]. The best accuracies are shown
in bold.

The actual number of bags used to update the initial model was between three and
eight. These bags were selected through the visual analysis of the data and by choos-
ing alternative prototypes that were automatically detected by using either SI or Med
approaches. The results show that the proposed MILTree-SI and MILTree-Med methods
are very competitive, especially MILTree-Med, achieving an overall average performance
of 82.8%.

Algorithms 2021, 14, 344 18 of 28

Table 1. Musk datasets and the average number of instances per bag(Inst/Bag) for each dataset.

Bags Instances

Dataset Total Pos./Neg. Total Min/Max Dim

Musk1 92 47/45 476 2/40 166
Musk2 102 39/63 6598 1/1044 166

Table 2. Image datasets and the average number of instances per bag(Inst/Bag) for each dataset.

Bags Instances

Dataset Total Pos./Neg. Total Avg. Inst./Bag Dim

Elephant 200 100/100 1391 6.96 230
Fox 200 100/100 1220 6.10 230

Tiger 200 100/100 1320 6.60 230

Table 3. Results of classification using MILTree-Med and MILTree-SI on the benchmark datasets.

MILTree-Med MILTree-SI

Dataset Accur Prec Recall F1 Accur Prec Recall F1

Musk1 83.2 83.23 81.7 0.82 83.2 82.4 81.7 0.82
Musk2 91.8 91.4 91.4 0.91 85.4 84.4 84.3 0.84

Elephant 83.1 81.7 81.6 0.82 81.4 79.4 79.4 0.79
Fox 72.7 68.3 68.3 0.68 72.7 68.3 68.3 0.68

Tiger 83.0 82.0 81.4 0.82 82.9 83.4 81.4 0.82
Bold values indicate the method that obtains the highest accuracy for each dataset.

Table 4. Comparison between MILTree-SI / MILTree-Med and related methods from the literature on
the benchmark datasets.

Method Musk1 Musk2 Elephant Fox Tiger Avg.

MILTree-Med 83.2 91.8 83.1 72.7 83.0 82.8
MILTree-SI 82.3 85.4 81.4 72.7 82.9 81.1

EM-DD 84.8 84.9 78.3 56.1 72.1 75.2
MI-SVM 77.9 84.3 73.1 58.8 66.6 72.1
mi-SVM 87.4 83.6 80 57.9 78.9 77.6
DD-SVM 85.8 91.3 83.5 56.6 77.2 79.0
MILD-B 88.3 86.8 82.9 55.0 75.8 77.8
MILIS 88.6 91.1 - - - -
MILES 86.3 87.7 84.1 63.0 80.7 80.4
MILSIS 90.1 85.6 81.8 66.4 80.0 80.9
MILDE 87.1 91.0 85 66.5 83.0 82.5

Bold values indicate the method that obtains the best performance for each dataset.

6.2. Image Classification

We used the Corel-1000 image dataset to evaluate the performance of MILTree-Med
and MILTree-SI using the MILTree layout for analyzing multi-instance data. It con-
tains 10 subcategories representing distinct topics of interest. Each subcategory contains
100 images.

Since the original Corel dataset was not designed for multi-instance learning, we
adopt the same approach of [15,37] to segment each image into several regions. The second
column of Tables 5 and 6 presents the average number of instances per bag for each category.
We then choose one category as the positive class and select 100 images uniformly from
the remaining categories to create the negative class as is performed in [11]. The same
process is followed for each category, totaling 10 subsets of categories. In this section, each
subdataset is split into 20% training and 80% testing data.

Algorithms 2021, 14, 344 19 of 28

The classification accuracy, precision and recall rates for both experiments are reported
in Tables 5 and 6. In both tables, Proto represents the number of instance prototypes
that were updated in the bag or instance space layouts. AddBags represents the number
of bags that were included in the training data from the bag space layout. AddProto
represents the number of new instances Biy included from the bags belonging to training
data, which represents the MILTree-SI approach. Recall this was designed to identify
additional prototypes to be included in the current model to reinforce the representation of
misclassified bags.

Table 5. Classification results using MILTree-Med on the Corel Dataset.

Measures

Category ID Inst/Bag Accur Prec Recall F1 Proto AddBags

Category0 4.84 75.96 72.68 72.67 0.73 7 0
Category1 3.54 79.07 78.74 76.74 0.78 3 2
Category2 3.1 78.97 79.16 76.67 0.78 6 3
Category3 7.59 91.25 90.89 90.85 0.91 4 0
Category4 2.00 78.4 79.68 75.95 0.78 4 0
Category5 3.02 81.91 83.21 80.26 0.82 4 1
Category6 4.46 89.09 88.68 88.49 0.88 1 0
Category7 3.89 84.23 83.62 82.91 0.83 6 2
Category8 3.38 81.19 79.46 79.25 0.79 1 1
Category9 7.24 81.26 81.26 79.39 0.8 1 0

Table 6. Classification results using MILTree-SI on the Corel Dataset.

Measures

Category ID Inst/Bag Accur Prec Recall F1 Proto AddProto AddBags

Category0 4.84 68.14 62.24 62.11 0.62 0 11 2
Category1 3.54 75.82 74.94 72.67 0.74 3 0 0
Category2 3.1 76.47 73.33 73.33 0.73 3 0 2
Category3 7.59 72.88 68.94 68.63 0.69 0 12 0
Category4 2.00 83.65 84.99 82.28 0.84 4 0 1
Category5 3.02 80.86 80.84 78.95 0.8 0 14 0
Category6 4.46 89.09 88.58 88.46 0.89 1 0 1
Category7 3.89 80.03 78.28 77.85 0.78 0 6 0
Category8 3.38 75.21 71.7 71.7 0.72 0 0 2
Category9 7.24 75.74 72.39 72.39 0.72 0 6 0

Table 7 presents the accuracy of different methods from the literature, including EM-
DD [23], mi-SVM [11], MI-SVM [11], DD-SVM [37] and SMILES [14]. We can see that
our MILTree-SI and MILTree-Med methods achieve high classification accuracy on the
sub-datasets. In particular, MILTree-Med outperforms all the others in all but three datasets.
The competing methods EMDD, MI-SVM and DD-SVM selects only one instance as a
prototype, which is often not sufficient. Moreover, our method was able to be competitive
when compared with mi-SVM and SMILES, even though both use all instances from each
bag to build the classifier.

6.3. Multiple-Instance Multiclass Datasets

In this section, we turn our attention to the performance of MILTree-Med and MILTree-
SI using the MILTree layout for solving multiclass classification problems. The baseline
methods, such as EM-DD, mi-SVM, MI-SVM and DD-SVM, were originally proposed for
binary class classification. Our MILTree layout and MILTree-Med and MILTree-SI methods
also support multiclass datasets. We extend MILTree-Med and MILTree-SI for multiclass by
performing one-against-all by decomposing the problem into a number of binary classifiers
that are created to separate each class from the remaining ones.

Algorithms 2021, 14, 344 20 of 28

Table 7. Comparison between MILTree-SI/MILTree-Med and related methods from the literature on
the Corel Dataset.

Datasets EMDD mi-SVM MI-SVM DD-SVM SMILES MILTree-SI MILTree-Med

Cat0 68.7 71.1 69.6 70.9 72.4 68.1 76.0
Cat1 56.7 58.7 56.4 58.5 62.7 75.8 79.1
Cat2 65.1 67.9 66.9 68.6 69.6 76.5 79.0
Cat3 85.1 88.6 84.9 85.2 90.1 72.9 91.3
Cat4 96.2 94.8 95.3 96.9 96.6 83.7 78.4
Cat5 74.2 80.4 74.4 78.2 80.5 80.9 81.9
Cat6 77.9 82.5 82.7 77.9 83.3 89.1 89.1
Cat7 91.4 93.4 92.1 94.4 94.7 80.3 84.2
Cat8 70.9 72.5 67.2 71.8 73.8 75.2 81.2
Cat9 80.2 84.6 83.4 84.7 84.9 75.8 81.3

Bold values indicate the method that obtains the best performance in each dataset.

We used the Corel-2000 dataset with 2000 images, 20 classes and 100 images per class.
Details about segmentation and feature extraction were mentioned in Section 6.2. Two
experiments were carried out: one using the first 10 categories in the dataset (Corel-1000),
and a second one using the complete dataset with all 20 categories (Corel-2000). Figure 12
shows images randomly sampled from the 20 categories.

Figure 12. Images randomly sampled from 20 categories of the COREL dataset and the corresponding
segmentation results. Segmented regions are shown in their representative colors.

Table 8 presents the classification accuracy rates, including the results of DD-SVM,
MILES and MILIS, as reported by the original papers, and the results of MI-SVM and
mi-SVM, as reported in [2]. From Table 8, we can see that MILTree-Med and MILTree-SI
outperform competing methods due to the efficient bag selection strategy used for training
and the efficient instance prototype selection performed inside each bag.

Algorithms 2021, 14, 344 21 of 28

Table 8. Comparison between MILTree-SI / MILTree-Med and related methods from the literature on
the 1000-Corel and 2000-Corel Datasets.

Method 1000-Corel 2000-Corel

MILTree-Med 93.1 93.9
MILTree-SI 90.3 93.9

MI-SVM 75.1 54.6
mi-SVM 76.4 53.7
DD-SVM 81.5 67.5

MILIS 83.8 70.1
MILES 82.3 68.7
MILDE - 74.8

Bold values indicate the method that obtains the best performance in each dataset.

6.4. Scalability Analysis on a MIL Text Classification

In MIL text classification, each document is represented as a bag and the document
paragraphs as instances. The Biocreative dataset used in this experiment has 1623 doc-
uments (papers) extracted from biomedical journals, belonging to three text categories:
Components, Processes and Functions, all referring to Gene Ontologies (GOs) [7]. It con-
tains 34,569 instances, posing a challenge to conventional visualizations. Table 9 details
this dataset. Each text document in the collection has a Protein identification, an associated
article ID in PUBMED and a description text.

Table 9. Biocreative dataset. Total number of bags and instances for each category.

Dataset Bags Instances Dimensions

Components 423 9104 200
Functions 443 9387 200
Processes 757 25,181 200

Total 1623 34,569 600

We split the dataset in about 10% training and 90% testing data. After selecting the
training set with MILTree and using the proposed prototype selection methods, all training
bags were correctly classified, which means that all instances chosen as instance prototypes
by MILTree-SI and MILTree-Med selection methods were representative.

To compare our methods with other state-of-the-art methods, we employed the Weka
machine learning package (http://www.cs.waikato.ac.nz/ml/weka) (accessed on 20 Au-
gust 2021). There are no previous results for this dataset employing the aforementioned
methods, such as MILES, SMILES and others, for the three categories of Biocreative dataset.
Previous work only shows results for one category, such as [39], that presents result only for
the “Process” category. For this reason, we compare our methods with multi-instance meth-
ods available in Weka, such as DD, EM-DD, MI-SVM, MIWrapper [40], TLDSimple [41]
and MIBoost [42]. Table 10 shows the results, where both MILtree-Med and MILTree-SI
methods supported by the MILTree layout obtained higher accuracy.

The results can be explained by the visual discrimination of the categories “Compo-
nents”, “Processes” and “Functions” in the bag space projection of MILTree (see Figure 13a),
which provides a clear guideline for users when identifying representative bags for the
training set. This corroborates previous results that favor the strategy of selecting samples
from both the internal and external parts of the MILTree. In Figure 13b, we show the
training sample selected following the established guidelines.

http://www.cs.waikato.ac.nz/ml/weka

Algorithms 2021, 14, 344 22 of 28

Table 10. Comparison of classification accuracy between MILTree-SI/MILTree-Med and baseline
methods on the Biocreative dataset.

Method Biocreative

MILTree-Med 99.1
MILTree-SI 96.3

MI-SVM 90.9
EM-DD 91.0

DD 90.9
MIWrapper 90.5
TLDSimple 85.0

MIBoost 90.5
Bold value indicates the method that obtains the best performance.

6.5. MILTree Layout Bag Positioning

This experiment aims at evaluating how the bag positions in the MILTree layout are
related to good candidates for training set selection. As mentioned in Section 5.1, the
MILTree projects a bag belonging to a given class as an external point of the tree if it is
furthest from the remaining classes. At the core of the MILTree (internal points) will be the
bags that are closest to other classes, as well as the ones that overlap in feature space.

We followed a similar methodology to investigate the impact of bag positioning on
the classification results. Three training sets are used in this analysis; the first training set is
composed only of external instances, the second training set is composed only of internal
instances and the third training set is composed of a combination of the first and second
training sets.

(a) (b)

Figure 13. Bag space projection of MILTree for the Biocreative dataset using MILTree-SI, with the
projection of its ground truth (a) and the selected training data (red bags) (b).

The Corel’s Cat3 and Cat6 subdatasets and MILTree-Med were used for this exper-
iment. For Cat3, a total of 47 training bags are selected as training examples, while the
remaining 153 bags are used as test set. For the Cat6, 44 training bags were selected for
training, while the remaining 156 bags are used as the test set. Table 11 shows the results of
each multi-instance classification for both collections. When using just external points, the
model is often unable to represent boundary elements, resulting in a classifier that does
not take into account the overlap degree between the classes. Using only internal bags, we
add this information in the training set, but by combining external and internal bags, we
have a sample containing both the more class-distinct elements and the ones belonging to
the decision boundary region, resulting in a more accurate classifier.

Algorithms 2021, 14, 344 23 of 28

Table 11. Results of multi-instance classification using three types of training set.

Cat3

External Internal Combined
Bags Bags Bags

Matching Bags 104 (68%) 134 (73.1%) 137 (89.5%)
Non-Matching Bags 49(32%) 19 (26.9%) 16 (10.5%)

Accuracy 72.16% 88.31% 90.06%
Precision 71.21% 87.74% 89.58%

Recall 67.97% 87.58% 89.54%

Cat6

External Internal Combined
Bags Bags Bags

Matching Bags 134 (85.9%) 114 (73.1%) 139 (89.1%)
Non-Matching Bags 22(14.1%) 42 (26.9%) 17 (10.9%)

Accuracy 86.82% 76.28% 89.66%
Precision 85.93% 73.07% 89.28%

Recall 85.9% 73.08% 89.1%

7. User Study

In this section, we present a user study to evaluate the usability of the MILTree
layout for multiple-instance learning problems. We conducted the user study with five
participants, three male and two female, who were all undergraduate or graduate students.
The age of the participants ranged from 20 to 33. All participants, except one who received
additional guidance, had previous knowledge about supervised learning and classification
models. All users performed the same task, which was to build a multiple-instance model
for the Corel-300 dataset (see Section 5.2 for details).

We prepared two 10-minute long videos to instruct how to use MILTree for multiple-
instance classification where we used datasets other than Corel-300 as examples. All
participants watched the training videos prior to starting the study. We also introduced
MILTree to all participants and showed how they could use it. All participants used
MILTree-SI as the instance prototype selection method and were instructed to use around
20% of the data to train the model, while the remaining 80% would be used for validation
and testing.

After finishing the task, each participant was asked to answer a multiple choice ques-
tionnaire, with the questions shown in Table 12, and to justify the grade in a few sentences.

Table 12. The questionnaire used in the evaluation.

No. Questions

1 Is it possible to clearly identify the classes using MILTree?
2 Does the browsing through MILTree (Bags and Instances projection space) conduce the

user to better understand the structure of multiple-instance data?
3 Is the Prototypes ClassMatch tree useful for identifying misclassified bags?
4 Is the ClassMatch tree useful for discovering new bags that help to improve or update

the model?
5 Do you feel that MILTree provides useful support in the multiple-instance classification process?

For each question the answers 0, 1, 2, 3 and 4 were available, where 0 is the worst
score and 4 is the best score. The grades had the following meanings: 0—No; 1—Little;
2—Fair; 3—Good; 4—Excellent.

Table 13 presents the means of the grades given to the questions. These results indicate
that MILTree provides effective support to MIL by the subjects in the case study.

Algorithms 2021, 14, 344 24 of 28

Table 13. Means of the results obtained in the evaluation using the questionnaire for multi-instance
classification of Corel-300 dataset.

Questions Grade

Question 1 3.2
Question 2 2.8
Question 3 3
Question 4 2.4
Question 5 3

All participants agreed that MILTree provided a good understanding of the multiple-
instance data structure and supported them in the classification task. They had some
comments as follows: “Identifying the classes within dataset is very simple because, generally,
instances of the same class are closer”; “In two simple steps it is possible to identify and update
misclassified bags using Prototypes-ClassMatch tree”; “ClassMatch tree is useful because we can
identify new bags that could be more representative for each class”.

About MILTree as a tool for multi-instance classification, the majority of participants
said that it is easy to use, leaving comments such as: “It is a very useful tool for some tasks
with multiple-instance data, such as selection of training data, classification and updating of the
training data. In these tasks, the tool is easy to use, differently of some other approaches that not use
visualization of multi-instance data”.

On the less positive side, two participants recommended that the browsing through
of MILTree should be improved, leaving comments such as: “In some functionalities, you
have to do many clicks to see the results. In some cases it is difficult to see what data (training data
or misclassified bags) is being visualized”; “Provides additional information, maybe as a tooltip,
indicating more information about instances in the instances projection space like type, instance’s
preview, etc. It would be excellent”.

All participants successfully finished the user study within approximately 35 min.
The majority of participants updated the prototypes of misclassified bags using the bags
projection space. Only one explicitly used the instance space for this purpose.

The final accuracy achieved by the participants on the Corel-300 dataset is presented in
Table 14. As we can see, the average is 86.16%, which is comparable to the 83.8% achieved
in Section 5.2. This is because most participants selected a similar training set, learning
from the instructions that it was possible to obtain good classification models by choosing
bags located both on leaves and the core of the tree (see Section 6.5).

Table 14. Results of multi-instance classification obtained by each participants on Corel-300 dataset.

Participants

Task User1 User2 User3 User4 User5 Average

Corel-300 85.87 87.28 85.47 87.42 84.75 86.16

8. Statistical Analysis

The statistical analysis was carried out using the main MIL benchmark datasets: Corel-
1000, Corel-2000, Musk1, Musk2, Elephant, Fox and Tiger. The statistical non-parametric
test proposed by [43] was used to compare the results across the most relevant competing
methods, which produces a ranking, as shown in Table 15, a contrast estimation table
between the methods, as shown in Table 16, and post hoc tests as shown in Table 17, in
order to verify which methods are significantly different from the best method, i.e., the
top-ranked one.

Our MILTree-Med was considered by the Friedman test to be the first in the ranking
(see Table 15) with p ≤ 0.01; this is confirmed by the contrast estimation table, showing
that it has higher (positive) average accuracy when compared with all other methods
(see Table 16). According to the Holm’s post hoc procedure (see Table 17), the MILTree-

Algorithms 2021, 14, 344 25 of 28

Med accuracy is significantly better than MI-SVM, EMDD, mi-SVM and DD-SVM, but
it is not different when compared with MILES, MILDE and MILTree-SI. Li’s post hoc
procedure found that only MILDE is comparable with our MILTree-Med approach, while
the remaining ones present statistically lower accuracies (see Table 17). These results
corroborate our findings, encouraging the use of visual tools to support different MIL tasks.

Table 15. Average rankings. Friedman statistic 23.5 according to χ-square with 7 degrees of freedom;
p = 0.0014.

Method Ranking

MILTree-Med 2.3571
MILDE 3.0714
MILES 3.4285

MILTree-SI 3.5714
DD-SVM 4.5714
mi-SVM 5.5714
EMDD 6.2142

MI-SVM 7.2142

Table 16. Contrast Estimation between the methods on each row with respect to the methods on each
column, considering different datasets. Positive values indicate that the method in the row presented
higher average accuracy than the method in the column. The proposed methods are MILTree-Med
(MT-Med) and MILTree-SI (MT-SI).

MT-Med MT-SI MI-SVM mi-SVM EMDD DD-SVM MILES MILDE

MT-Med 0.000 1.112 12.94 8.693 12.05 5.450 4.530 2.825

MT-SI −1.112 0.000 11.83 7.580 10.94 4.338 3.418 1.713

MI-SVM −12.94 −11.83 0.000 −4.250 −0.895 −7.492 −8.412 −10.12

mi-SVM −8.693 −7.580 4.250 0.000 3.355 −3.242 −4.163 −5.867

EMDD −12.05 −10.94 0.895 −3.355 0.000 −6.597 −7.518 −9.222

DD-SVM −5.450 −4.338 7.492 3.242 6.597 0.000 −0.920 −2.625

MILES −4.530 −3.418 8.412 4.163 7.518 0.920 0.000 −1.705

MILDE −2.825 −1.713 10.12 5.867 9.222 2.625 1.705 0.000

Table 17. Holm’s and Li’s test results for α = 0.05 (Friedman). Holm’s procedure rejects those
hypotheses for p ≤ 0.01; Li’s procedure rejects those hypotheses for p ≤ 0.022.

i Method Holm Li

7 MI-SVM 0.001 0.022
6 EMDD 0.001 0.022
5 mi-SVM 0.001 0.022
4 DD-SVM 0.010 0.022
3 MILTree-SI 0.354 0.022
2 MILES 0.413 0.022
1 MILDE 0.585 0.050

Bold values indicate the methods that present statistically lower accuracies when compared to MILTree-Med.

9. Conclusions

In this paper, we propose MILTree for visual data mining in multiple-instance learning
scenarios using an intuitive two-level tree structure that resembles MIL data models. While
visually supporting data understanding, our approach also handles multiclass problems:
the MILTree-SI selection method aims to uncover the most representative instances in both
positive and negative bags, where negative bags could also have positive instances; the
MILTree-Med method uses a clustering algorithm to partition unlabeled instances in search
of positive and negative clusters to identify adequate instance prototypes.

Algorithms 2021, 14, 344 26 of 28

Besides producing comparable or better accuracy with respect to state-of-the-art
methods, our MILTree-based techniques allow the user to take part in every step of the
multiple-instance classification process, such as data exploration, sampling for training,
model updating (both automatic and manual) and validating the classification model.

The method has been tested on datasets of various sizes, and users have found positive
aspects of the approach, as well as limitations, mainly related to interactive functions in the
current prototype system.

Our methods and techniques combined are, to the best of our knowledge, the first
complete set of visual tools to support MIL learning.

Because we deal with data that are organized in multiple levels (bag and instance
levels in the case of MIL), future work can explore related tasks, such as hierarchical
clustering or learning from label proportions [44,45], in which the data are organized in
groups that can be viewed as bags, and only the proportion of each class in each bag is
known. An alternative high precision way of organizing the samples in bags might be to
use multidimensional projections. While we would lose the hierarchical organization, there
might be benefits in the precision of the display. This is a venue worth pursuing. A visual
alternative for very large datasets is also an expected development from this work.

Author Contributions: Conceptualization, methodology, formal analysis and writing: S.C., M.P. and
R.M.; software and adaptation of visualization, S.C.; supervision and project administration, M.P.
and R.M.; funding acquisition, R.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by FAPESP grant 2013/25055-2 and CNPq grant 134238/2013-
3. M.A.Ponti was funded in part by FAPESP (grant #2019/07316-0) and the CNPq fellowship
304266/2020-5. R. Minghim was funded in part by the CNPq fellowship 307411/2016-8.

Data Availability Statement: The source code, data and/or other artifacts have been made available
at https://github.com/soniacq/MILTree.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Mello, R.F.; Ponti, M.A. Machine Learning: A Practical Approach on the Statistical Learning Theory; Springer: Berlin/Heidelberg,

Germany, 2018.
2. Fu, Z.; Robles-Kelly, A.; Zhou, J. MILIS: Multiple Instance Learning with Instance Selection. IEEE Trans. Pattern Anal. Mach. Intell.

2011, 33, 958–977. [CrossRef]
3. Dietterich, T.G.; Lathrop, R.H.; Lozano-Perez, T.; Pharmaceutical, A. Solving the Multiple-Instance Problem with Axis-Parallel

Rectangles. Artif. Intell. 1997, 89, 31–71. [CrossRef]
4. Amores, J. MILDE: Multiple instance learning by discriminative embedding. Knowl. Inf. Syst. 2015, 42, 381–407. [CrossRef]
5. Astorino, A.; Fuduli, A.; Veltri, P.; Vocaturo, E. Melanoma detection by means of multiple instance learning. Interdiscip. Sci.

Comput. Life Sci. 2020, 12, 24–31. [CrossRef]
6. Xiong, D.; Zhang, Z.; Wang, T.; Wang, X. A comparative study of multiple instance learning methods for cancer detection using

T-cell receptor sequences. Comput. Struct. Biotechnol. J. 2021, 19, 3255–3268. [CrossRef]
7. Ray, S.; Craven, M. Supervised versus multiple instance learning: An empirical comparison. In Proceedings of the 22nd International

Conference on Machine Learning; ACM: New York, NY, USA, 2005; pp. 697–704. [CrossRef]
8. Reynolds, D.A.; Quatieri, T.F.; Dunn, R.B. Speaker verification using Adapted Gaussian mixture models. Digit. Signal Process.

2000, 10, 19–41. [CrossRef]
9. Zafra, A.; Gibaja, E.; Ventura, S. Multiple Instance Learning with MultiObjective Genetic Programming for Web Mining. In

Proceedings of the HIS’08, Eighth International Conference on Hybrid Intelligent Systems, Barcelona, Spain, 10–12 September
2008; pp. 513–518. [CrossRef]

10. Carbonneau, M.A.; Cheplygina, V.; Granger, E.; Gagnon, G. Multiple instance learning: A survey of problem characteristics and
applications. Pattern Recognit. 2018, 77, 329–353. [CrossRef]

11. Andrews, S.; Tsochantaridis, I.; Hofmann, T. Support vector machines for multiple-instance learning. In Advances in Neural
Information Processing Systems 15; MIT Press: Cambridge, MA, USA, 2003; pp. 561–568.

12. Fu, Z.; Robles-Kelly, A. An instance selection approach to Multiple instance Learning. In Proceedings of the 2009 IEEE Conference
on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 911–918. [CrossRef]

https://github.com/soniacq/MILTree
http://doi.org/10.1109/TPAMI.2010.155
http://dx.doi.org/10.1016/S0004-3702(96)00034-3
http://dx.doi.org/10.1007/s10115-013-0711-1
http://dx.doi.org/10.1007/s12539-019-00341-y
http://dx.doi.org/10.1016/j.csbj.2021.05.038
http://dx.doi.org/10.1145/1102351.1102439
http://dx.doi.org/10.1006/dspr.1999.0361
http://dx.doi.org/10.1109/HIS.2008.120
http://dx.doi.org/10.1016/j.patcog.2017.10.009
http://dx.doi.org/10.1109/CVPR.2009.5206655

Algorithms 2021, 14, 344 27 of 28

13. Shen, C.; Jiao, J.; Yang, Y.; Wang, B. Multi-instance multi-label learning for automatic tag recommendation. In Proceedings of the
2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 4910–4914.
[CrossRef]

14. Xiao, Y.; Liu, B.; Hao, Z.; Cao, L. A Similarity-Based Classification Framework For Multiple-Instance Learning. IEEE Trans. Cybern.
2014, 44, 500–515. [CrossRef]

15. Chen, Y.; Bi, J.; Wang, J. MILES: Multiple-Instance Learning via Embedded Instance Selection. Pattern Anal. Mach. Intell. 2006,
28, 1931–1947. [CrossRef] [PubMed]

16. Yuan, L.; Liu, S.; Huang, Q.; Liu, J.; Tang, X. Salient Instance Selection for Multiple-Instance Learning. In Neural Information
Processing; Huang, T.; Zeng, Z.; Li, C.; Leung, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7665, pp. 58–67.
[CrossRef]

17. Ponti, M.A.; da Costa, G.B.P.; Santos, F.P.; Silveira, K.U. Supervised and unsupervised relevance sampling in handcrafted and
deep learning features obtained from image collections. Appl. Soft Comput. 2019, 80, 414–424. [CrossRef]

18. Keim, D.; Kriegel, H.P. Visualization techniques for mining large databases: A comparison. IEEE Trans. Knowl. Data Eng. 1996,
8, 923–938. [CrossRef]

19. Xu, Y.; Hong, W.; Chen, N.; Li, X.; Liu, W.; Zhang, T. Parallel Filter: A Visual Classifier Based on Parallel Coordinates and
Multivariate Data Analysis. In Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence; Huang,
D.S., Heutte, L., Loog, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4682, pp. 1172–1183. [CrossRef]

20. Zhang, K.B.; Orgun, M.; Shankaran, R.; Zhang, D. Interactive Visual Classification of Multivariate Data. In Proceedings of the
Eleventh International Conference on Machine Learning and Applications (ICMLA 2012), Boca Raton, FL, USA, 12–15 December
2012; Volume 2, pp. 246–251. [CrossRef]

21. Paiva, J.; Schwartz, W.; Pedrini, H.; Minghim, R. An Approach to Supporting Incremental Visual Data Classification. IEEE Trans.
Vis. Comput. Graph. 2015, 21, 4–17. [CrossRef]

22. Cuadros, A.M.; Paulovich, F.V.; Minghim, R.; Telles, G.P. Point Placement by Phylogenetic Trees and its Application to Visual
Analysis of Document Collections. In Proceedings of the 2007 IEEE Symposium on Visual Analytics Science and Technology,
Sacramento, CA, USA, 30 October–1 November 2007; pp. 99–106.

23. Zhang, Q.; Goldman, S.A. EM-DD: An Improved Multiple-Instance Learning Technique. In Advances in Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 2001; pp. 1073–1080.

24. Campello, R.J.; Moulavi, D.; Zimek, A.; Sander, J. Hierarchical density estimates for data clustering, visualization, and outlier
detection. ACM Trans. Knowl. Discov. Data 2015, 10, 5. [CrossRef]

25. Ponti, M.; Nazaré, T.S.; Thumé, G.S. Image quantization as a dimensionality reduction procedure in color and texture feature
extraction. Neurocomputing 2016, 173, 385–396. [CrossRef]

26. Yu, Z.; Wang, Z.; Chen, L.; Guo, B.; Li, W. Featuring, Detecting, and Visualizing Human Sentiment in Chinese Micro-Blog. ACM
Trans. Knowl. Discov. Data 2016, 10, 48. [CrossRef]

27. Tejada, E.; Minghim, R.; Nonato, L.G. On improved projection techniques to support visual exploration of multidimensional data
sets. Inf. Vis. 2003, 2, 218–231. [CrossRef]

28. Ward, M.; Rundensteiner, E. Exploration of Dimensionality Reduction for Text Visualization. In Proceedings of the Coordinated
and Multiple Views in Exploratory Visualization (CMV’05), London, UK, 5 July 2005; pp. 63–74.

29. Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2002.
30. Cox, T.; Cox, M. Multidimensional Scaling. In Monographs on Statistics and Applied Probability; Chapman & Hall/CRC: Boca Raton,

FL, USA, 2001.
31. Paulovich, F. Mapeamento de dados multi-dimensionais integrando mineração e visualização. PhD Thesis, Universidade de São

Paulo, São Paulo, Butanta, 2008.
32. Joia, P.; Paulovich, F.; Coimbra, D.; Cuminato, J.; Nonato, L. Local Affine Multidimensional Projection. IEEE Trans. Vis. Comput.

Graph. 2011, 17, 2563–2571. [CrossRef] [PubMed]
33. Paiva, J.; Florian, L.; Pedrini, H.; Telles, G.; Minghim, R. Improved Similarity Trees and their Application to Visual Data

Classification. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2459–2468. [CrossRef] [PubMed]
34. Zhang, M.L.; Zhou, Z.H. Multi-instance clustering with applications to multi-instance prediction. Appl. Intell. 2009, 31, 47–68.

[CrossRef]
35. Zhou, Z.H.; Zhang, M.L. Multi-instance multilabel learning with application to scene classification. In Advances in Neural

Information Processing Systems 19; Springer: Berlin/Heidelberg, Germany, 2007.
36. Lichman, M. UCI Machine Learning Repository. 2013. Available online: https://archive.ics.uci.edu/ml/index.php (accessed on

20 October 2021)
37. Chen, Y.; Wang, J.Z. Image Categorization by Learning and Reasoning with Regions. J. Mach. Learn. Res. 2004, 5, 913–939.
38. Li, W.J.; Yeung, D.Y. MILD: Multiple-Instance Learning via Disambiguation. IEEE Trans. Knowl. Data Eng. 2010, 22, 76–89.

[CrossRef]
39. Wei, X.S.; Wu, J.; Zhou, Z.H. Scalable Multi-instance Learning. In Proceedings of the 2014 IEEE International Conference on Data

Mining, Shenzhen, China, 14–17 December 2014; pp. 1037–1042. [CrossRef]
40. Frank, E.T.; Xu, X. Applying Propositional Learning Algorithms to Multi-Instance Data; Technical Report; University of Waikato:

Hamilton, NZ, USA, 2003.

http://dx.doi.org/10.1109/ICSMC.2009.5346261
http://dx.doi.org/10.1109/TCYB.2013.2257749
http://dx.doi.org/10.1109/TPAMI.2006.248
http://www.ncbi.nlm.nih.gov/pubmed/17108368
http://dx.doi.org/10.1007/978-3-642-34487-9_8
http://dx.doi.org/10.1016/j.asoc.2019.04.013
http://dx.doi.org/10.1109/69.553159
http://dx.doi.org/10.1007/978-3-540-74205-0_121
http://dx.doi.org/10.1109/ICMLA.2012.197
http://dx.doi.org/10.1109/TVCG.2014.2331979
http://dx.doi.org/10.1145/2733381
http://dx.doi.org/10.1016/j.neucom.2015.04.114
http://dx.doi.org/10.1145/2821513
http://dx.doi.org/10.1057/palgrave.ivs.9500054
http://dx.doi.org/10.1109/TVCG.2011.220
http://www.ncbi.nlm.nih.gov/pubmed/22034378
http://dx.doi.org/10.1109/TVCG.2011.212
http://www.ncbi.nlm.nih.gov/pubmed/22034367
http://dx.doi.org/10.1007/s10489-007-0111-x
https://archive.ics.uci.edu/ml/index.php
http://dx.doi.org/10.1109/TKDE.2009.58
http://dx.doi.org/10.1109/ICDM.2014.16

Algorithms 2021, 14, 344 28 of 28

41. Xu, X. Statistical Learning in Multiple Instance Problems. Master’s Thesis, The University of Waikato, Hamilton, New Zealand,
June 2003.

42. Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In Proceedings of the Thirteenth International Conference
on Machine Learning (ICML 1996), Bari, Italy, 3–6 July 1996; pp. 148–156.

43. García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044–2064.
[CrossRef]

44. Yu, F.X.; Choromanski, K.; Kumar, S.; Jebara, T.; Chang, S.F. On Learning from Label Proportions. arXiv 2014, arXiv:1402.5902.
45. Stolpe, M.; Morik, K. Learning from label proportions by optimizing cluster model selection. In Machine Learning and Knowledge

Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2011; pp. 349–364.

http://dx.doi.org/10.1016/j.ins.2009.12.010

	Introduction
	Related Work
	Background and Related Concepts
	Multiple Instance Learning
	Instance Prototype Selection
	Salient Instance Selection Strategy
	Medoids Instance Selection Strategy

	Visual Multiple-Instance Learning
	Additional Notation
	Creating a Multiple-Instance Tree (MILTree)
	Instance Prototype Selection Methods
	MILTree-SI
	MILTree-Med
	Updating Instance Prototypes Using MILTree

	Application of MILTree to Multiple-Instance Learning Scenarios
	Case 1: Instance Space Layout in a Binary Classification Problem
	Case 2: Bag Space Layout and a Multiclass Classification Problem
	Case 3: Adding New Bags Using the MILTree Visualization

	Experiments and Results
	Benchmark Datasets
	Image Classification
	Multiple-Instance Multiclass Datasets
	Scalability Analysis on a MIL Text Classification
	MILTree Layout Bag Positioning

	User Study
	Statistical Analysis
	Conclusions
	References

