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Abstract: Everyday there are more disasters that require Humanitarian Supply Chain (HSC) attention;
generally these problems are difficult to solve in reasonable computational time and metaheuristics
(MHs) are the indicated solution algorithms. To our knowledge, there has not been a review article on
MHs applied to HSC. In this work, 78 articles were extracted from 2016 publications using systematic
literature review methodology and were analyzed to answer two research questions: (1) How are
the HSC problems that have been solved from Metaheuristics classified? (2) What is the gap found
to accomplish future research in Metaheuristics in HSC? After classifying them into deterministic
(52.56%) and non-deterministic (47.44%) problems; post-disaster (51.28%), pre-disaster (14.10%) and
integrated (34.62%); facility location (41.03%), distribution (71.79%), inventory (11.54%) and mass
evacuation (10.26%); single (46.15%) and multiple objective functions (53.85%), single (76.92%) and
multiple (23.07%) period; and the type of Metaheuristic: Metaphor (71.79%) with genetic algorithms
and particle swarm optimization as the most used; and non-metaphor based (28.20%), in which
search algorithms are mostly used; it is concluded that, to consider the uncertainty of the real context,
future research should be done in non-deterministic and multi-period problems that integrate pre-
and post-disaster stages, that increasingly include problems such as inventory and mass evacuation
and in which new multi-objective MHs are tested.

Keywords: disasters; humanitarian supply chain; metaheuristics

1. Introduction

The Humanitarian Supply Chain (HSC hereafter) has become a major research topic
since the 2004 Indian Ocean tsunami that blocked airports in affected areas. Water, food,
clothing, medicine and basic necessities, among other things, must be supplied to victims
of both natural and man-made disasters. In addition to this, pandemics make it necessary
for medicines and vaccines to be distributed to the general population, so doing it in the
fastest way, with greater coverage to the population, and at the lowest cost, is an issue that
is attracting attention of researchers and practitioners.

Natural disasters might be earthquakes, hurricanes, floods or droughts, among other
things. As can be observed in Figure 1, even though from 2000 to 2020 the number of
disasters remained constant, from 1960 to this date they have been increasing. Moreover,
some disasters in different areas have been more significant, for example, the earthquakes
in Japan and some Latin American countries like Mexico.

Figure 2 shows the countries with the highest number of natural disasters in 2020,
with Indonesia having the most, with 29, followed by the United States with 23.
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Figure 1. The annual number of natural disaster events globally from 2000 to 2020 [1].

Figure 2. Countries with the most natural disasters in 2020 [2].

In addition to natural disasters, there are those caused by mankind (man made),
among which are chemical spills, radioactive radiation, accidents by land, air and sea
and water pollution, among others. Some examples of these disasters are: In the United
States, the Twin Towers attack on 11 September, the Pentagon attack, the nuclear station
failure in Japan (Japan’s nuclear Fukushima) and the Ukraine’s Chernobyl nuclear disaster.
Thomas and Kopczak [3] estimate that the frequency of disasters will escalate fivefold in
the next 50 years. That coupled with pandemics make it a subject worth studying from all
its perspectives, methodologies and approaches.

The other aspect that HSCs raise is the distribution of vaccines and drugs during
massive illnesses. Currently with the COVID-19 pandemic, research has turned with
greater determination towards this issue. If vaccine distribution is considered, it involves
people of all ages, sectors and countries, which makes the distribution of humanitarian
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aid and related issues in the humanitarian supply chain an issue with important future
projection.

Because this work is a review of the state of the art on metaheuristics applied to HSC,
other reviews on the subject were analyzed, from 2014 to date, assessing the approach they
used and the results they obtained. Manopiniwes and Irohora [4] review the optimization
models used in HSC. These authors found that problems related to relief distribution can
be classified into location of the facility, distribution model and inventory, finding that most
of the articles focus on the post disaster and very few do so from the stochastic perspective.

Habib et al. [5] study the mathematical contributions by classifying the HSC problem
in the location of the facilities, relief distribution and mass evacuation. Contrary to the
previous article, they observed that the investigations focus more on the pre-disaster
and during the disaster than the post-disaster, but very few articles integrate all the
phases due to their complexity, being mostly deterministic and considering unrealistic
assumptions. Behl and Dutta [6] reviewed articles published from 2011 to 2017, classifying
them in different topics: Research focused on theory, case studies, mathematical models
and properties and necessary resources of HSC. They reached the conclusion that it is
necessary to add the role of the stakeholders, and the inclusion of qualitative methods or
mixed approaches. Chiappetta et al. [7] propose a method for reviewing the literature and
systematic selection of HSC management, finding that most of the 87 articles reviewed
are theoretical; few of them discuss the location of the disaster, type of disaster or phase
and focus mainly on logistics. There are other studies such as Hu et al. [8] that focus on a
particular problem such as the optimization of emergency material delivery, concentrating
on the optimization model and the applied algorithms presenting both mathematical and
heuristic methods.

Hezam and Nayem [9] reviewed articles from 2000 to 2020, and concentrated on math-
ematical models in HSC, classifying the chain into three main problems: Facility location
problem, relief distribution and mass evacuation, in deterministic and non-deterministic
problems, also finding that the response phase (disaster) is the most addressed and the
post-disaster continues to receive the least attention. Zhang and Cui [10] direct attention
to the key decisions in the post-disaster process, focusing on three main topics—facility
location, relief material distribution and emergency vehicle routing—concluding that fu-
ture topics should focus on the storage problem. Furthermore, there is lack of research into
emergency transportation and techniques to minimize victims suffering.

After analyzing the previous review articles, to our knowledge there are no published
articles that focus on the use of metaheuristics in HSC problems, which is what is addressed
in this proposal. MHs are important solution methods in the area because these problems
are difficult to solve in reasonable computational time. Knowing the types of problems that
have been solved and the most used MHs can help researchers to notice what is missing to
do and help to solve real situations.

The article is organized as follows; in Section 2, the definition of HCS and some
of its main classifications are shown. Section 3 presents a metaheuristics definition and
their classification. In Section 4, the methodology for selecting the analyzed articles is
described. Section 5 presents the classification divided into three sections: (1) Type of
problem, phases and type of model; (2) time period, objective type and objective function;
and (3) metaheuristic classification in HSC. Finally, Section 6 presents the conclusions and
the main findings.

2. Humanitarian Supply Chain

To understand what an HSC is, different definitions can be considered: Thomas [11]
first introduced the concept of humanitarian logistics. He proposed that “humanitarian
logistics refers to the process and system of mobilizing human resources, skills and knowl-
edge to help vulnerable groups affected by natural disasters and complex emergencies”.
Sheu [12] describes emergency logistics as a process of planning, managing and controlling
the efficient flows of relief, information and services from the origin to destination to meet
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the urgent needs of affected people under emergency conditions. Wassenhove [13] defines a
disaster as a disruption that affects a system and its objectives, and considers that the priori-
ties of an HSC are (i) to be a bridge between disaster preparation and response, (ii) in which
effectiveness is crucial as well as speed of response in health, food and water distribution,
shelter and sanitation; and (iii) it is the most expensive of humanitarian aid efforts. Habib
et al. [5] claim that the HCS is “the process of evacuating people from disaster-stricken
areas to safe places and planning, implementing and controlling the efficient, cost-effective
flow of goods, meanwhile collecting related information from the point of supply to the
point of consumption for the purpose of alleviating the sufferings of vulnerable people”.

Among the HCS’s attributes, it is noted that these kinds of supply chains are clearly
unpredictable, turbulent and require flexibility, as well as that they are highly dynamic,
innovative and agile [13–15]; sometimes HSCs are slow to respond to the needs of affected
people [16]. In principle, locations are often unknown until demand occurs, short lead
times drastically affect inventory availability, sourcing and distribution, and it works with
very little real-time information. Consequently, making decisions is more complex than in
commercial supply chains [15]. In addition to this, HSCs have uncertainty about the scope
of the disaster, the number of victims and the number of urgent needs for rescue items [10].

There are different classifications of the supply chain. To begin with, for their attributes
in logistics, such as Dasaklis et al. [17] who classify it into four groups: Configuration of
the epidemic logistics network, collection of medical supplies, triage operations and other
approaches; more generally according to the types of problems that are solved: Facility
location and distribution model [4,5,8] and other types of problems are added such as
inventory [4] and mass evacuation [5,9].

Kovacs and Spens [15] mention that the central role in logistics responds to whether
disasters are natural or man made. In the United States comprehensive emergency manage-
ment is commonly described in terms of four programmatic phases: Mitigation, prepared-
ness, response and recovery [5,18]. It can also be classified as pre-disaster, post-disaster [5]
and the period of the disaster management system. The pre-disaster phase covers the
mitigation and preparedness phase; mitigation includes the steps to reduce vulnerability
to disaster impact; the response phase addresses immediate threats to minimize economic
and human losses, while the recovery phase supports the restoration of all the damage
caused by the disaster [5,8]. In Figure 3 the classification of the HSC is shown.

Figure 3. HSC Classification.
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It is also possible to classify them according to the formulation of the problem in
integer and mixed, linear and nonlinear, deterministic and stochastic programming, by the
objective function in single or multiple [4,5,9,10]. They can also be categorized according to
their solution method in exact, heuristic and metaheuristic methods [8], this classification
is shown in Figure 4. Since this focuses mainly on metaheuristics, the following section
defines their leading characteristics and methods.

Figure 4. Model formulation classification of HC.

3. Metaheuristics

An exact algorithm, if it exists, finds an optimal solution together with the test of
that optimality or finds that the solution is not feasible or unbounded [19]. The time in
which this solution is found must be finite and not very long. On the other hand, heuristics
are approximate solution techniques that have been used since the early 1970s, since they
began to solve problems known as NP-hard. While various methods have been explored,
the most popular is based on local search techniques, which is an iterative process that
starts from a feasible solution and in which some modifications (or movements) are made
in order to improve the initial solution. The search ends when a local optimum is found
for all transformations of the initial solution. The local search depends on the richness of
the transformations considered in each iteration. Heuristics apply to a particular problem
while metaheuristics (MHs) are more generic.

An MH is a general strategy to guide and control heuristics according to the problems
to be solved [20]. They are approximate, they focus on the search space to find a “good
enough” solution, parallel implementation is allowed, they start from a local search to
advanced search techniques, they incorporate mechanisms to avoid premature convergence
and the emerging ones use memory to preserve the search experience [21].

There are different classifications of MH. Osman [22] classifies them into local,
construction-based and population-based search; the first works by making small changes
to the solution, the second builds solutions by adding a part to an incomplete solution,
and the third combines solutions to generate a new one. Gendreau and Potvin [20] classify
them as trajectory-based and population-based metaheuristics. Fister et al. [23] divides
them into nature inspired and non-natural. The most commonly used metaheuristics for
solving problems and some of their main characteristics are described below, presented in
alphabetical order.

Ant Colony Optimization (ACO): This is a metaheuristic based on the pheromone trail
that follows the behavior of some species of ants. Ants represent stochastic construction
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procedures that build candidate solutions using artificial information from pheromones
that is based on the ants’ search experience and the availability of heuristic information. The
cycle consists of three main steps: Problem solutions based on pheromone information and
heuristic information are built, solutions are improved through local search, pheromone
traces are adapted to reflect the search experience [24].

Genetic algorithm (GA): This is popular in the search for combinatorial solutions that
are difficult to solve. It bases its operation on the evolution of the species where each
solution represents an individual of a population (chromosome). The recombination of
these individuals is what is known as crossing and a small change is made to avoid being
trapped in a local optimum or mutation; it is based on the guided search. Subsequently,
the objective function is evaluated to know which individual has greater aptitude (fitness)
and more opportunity to pass on to the next generation; tournament and elitism are used
to bring the best individuals to the next generation [25].

Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-beginning algo-
rithm for combinatorial optimization problems that consists of two phases: Construction
and local search. In construction, a feasible solution is generated whose neighborhood
is explored until a local optimum is found in the local search and the best solution is
saved. In the event that the solution found is not feasible, a repair procedure is applied.
There are different techniques to build alternative solutions: Cost disturbances, Lagrangian
constructive heuristics, local search in partially constructed solutions, filtering, among
others [26].

Iterated Local Search (ILS): This focuses on searching, but not the entire space of
candidate solutions, only on solutions that are obtained through an algorithm, typically
a local search heuristic. It is an iterative process to find solutions to complex problems,
through different disturbances [27].

Large Neighborhood Search (LNS): This algorithm and its adaptive variant (ALNS)
have been used to solve transportation and scheduling problems. By using these large
neighborhoods it is possible to have access to better candidate solutions in each iteration
and find a route more promising. In the LNS an initial solution is gradually improved,
destroying and repairing the solution. It is used for combinatorial problems where a
neighborhood or set of possible solutions is found, using an improved algorithm that
selects the best solution in the neighborhood. Adaptive allows multiple destruction and
repair methods in the same search process [28].

Scatter Search (SS): This is an evolutionary metaheuristic that explores solution spaces
through a set of reference points operating on a small set of solutions using limited ran-
domness. The benchmarks refer to good solutions to the problem and are not necessarily
restricted to the objective function. Three steps are used: To combine, to improve and to
update the solutions. These same principles are used by GRASP and Path Rethinking [26].

Simulated Annealing (SA): This is based on the analogy with the annealing of materi-
als; through the Monte Carlo approach it is achieved that the method is not trapped in a
local optimum. It is one of the simplest and best known to deal with global optimization
problems [29].

Swarm Intelligence (SI): This is a discipline that studies the collective behaviors of
natural systems, insects and animals. This concept is inspired by natural phenomena
that have the ability to solve problems that are a challenge for computational techniques.
The system or population is complex and highly organized, which results in interactions
between the individuals of the colony, as well as with the environment, following simple
rules. Biological examples are emulated, such as ants looking for their route, fish that swim
to escape predators, bees that tell their peers where food is. These include the Particle
Swarm Optimization, which is a metaheuristic inspired by the behavior of animals, insects
and humans; each individual represents a potential solution that seeks to improve their
position by taking information collected by themselves and by their neighbors. Through a
random disturbance, the position can be adjusted according to the speed of the particle [30].
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Tabu Search (TS): This is used to solve combinatorial problems, the basic principle
is to pursue the local search and if no improvement is found, avoid returning to those
solutions that have been saved in a tabulist. Glover identifies it as a metaheuristic and the
search space depends on the problem to be solved [31].

Variable Neighborhood Search (VNS): This is a metaheuristic to solve combinatorial
problems whose idea consists of systematic neighborhood change in a descending phase, in
order to find an optimum and a disturbance phase to leave the corresponding valley [19].

Some recently proposed metaheuristics to address engineering problems are described
below.

Barnacles Mating Optimizer (BMO): This is based on the mating behavior of barnacles.
BMO is classified in the group of evolutionary algorithms. A barnacle’s mating group
consists of all the neighbors within reach of its penis and all its potential competitors
per mate. One of the main characteristics of barnacles is their long penises, which is
considered in the selection process, similar to GA. The reproduction process is based on
the characteristics of inheritance or genotypic frequency of the parents of barnacles when
producing the offspring. The BMO has been applied to optimal reactive power dispatch
problems achieving competitive results compared to other metaheuristics [32].

Competitive Swarm Optimizer (SCO): This is based on Particle Swarm Optimization
(PSO) and uses a competition mechanism in pairs, where the particle that loses the com-
petition will update its position by learning from the winner. CSO has shown to perform
surprisingly well on large-scale optimization problems [33].

Falcon Optimization Algorithm (FAO): This algorithm is inspired by the flight rules
that falcons follow to hunt their prey. Furthermore, the reference functions for FAO
have characteristics such as continuous, separable, differentiable, scalable, unimodal or
multimodal. The unimodal functions allow the exploitation of the optimization techniques
and the multimodal ones allow to evaluate the exploration and the avoidance of local
optimum. This algorithm has shown competitive processing time and achieves good single-
objective results when applied to shell-and-tube and plate-fin heat exchanger problems [34].

Hybrid Harris Hawks–Sine Cosine Algorithm (hHHO-SCA): This is a hybrid algo-
rithm based on the Harris Hawks optimizer and the sine–cosine algorithm, which aims
to accelerate the global search phase. This method has been successfully tested for highly
constrained, nonlinear and non-convex engineering design problems [35].

Manta Ray Foraging Optimization (MRFO): This is based on intelligent behaviors
of manta rays. This algorithm has three foraging operators, including chain foraging,
cyclone foraging and somersault foraging. MRFO mimics three stingray feeding strategies
that are mathematically modeled as a new alternative optimization approach to address
real-world engineering problems. Experimental results show that this algorithm is reliable
and effective in solving complex problems [36].

Owl Optimization Algorithm (OOA): This is a swarm intelligence-based metaheuristic.
It is inspired by owls’ decoy behavior. Owls use different strategies to avoid predator
attacks. The OOA mimics the Owl’s movement for the search process. OOA has been
applied to solve heat exchanger problems, achieving better results than other algorithms
proposed in the literature [37].

Pathfinder Algorithm (PFA): This is a swarm-based method and is proposed for
continuous optimization with different structure. The PFA method mimics the collective
movement of swarms with the use of hierarchy between the leader and other members
of the swarm. The MOPFA algorithm is designed to solve multi-objective engineering
problems [38].

Poor and Rich Optimization (PRO): This algorithm is inspired by a real social phe-
nomenon, related to human behavior in obtaining wealth and improving their economic
status. The algorithm imitates the behavior of two categories of individuals, those of the
rich class and those of the poor class; where the members of the poor group try to improve
their status and reduce the gap by learning from the rich, while the individuals of the rich
category try to increase the class gap by observing the poor and acquiring wealth. The pop-
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ulations were randomly generated. According to the experimental results, this algorithm
has shown better performance in engineering problems by finding optimal values of the
parameters compared to the results of algorithms proposed in the literature [39].

Search and rescue optimization algorithm (SAR): This is a method of solving engineering-
constrained optimization problems. This algorithm mimics scanning behavior in search and
rescue operations. In addition, to handle constraints it uses the ε-constrained method [40].

Supply–Demand-based Optimization (SDO): This is a metaheuristic swarm-based
method, inspired by supply–demand mechanism, where the principal characteristic mimics
both the demand relation of consumers and the supply relation of producers. SDO has
been proposed to address constrained engineering problems, achieving better results than
the algorithms proposed in the literature [41].

There are other recent MH proposals such as Water Waves Optimization; Clonal
Selection Algorithm; Gases Brownian Motion Optimization; Music Based Metaheuris-
tics, Harmony Search and Method of Musical Composition; Physic Based, Gravitational
Search Algorithm; Social and Sport based; Teaching Learning Based Optimization, League
Championship Algorithm; among others [21]. Additionally, there are highly complex
scenarios where pure metaheuristics do not give as good results as combining different
techniques; they hybridize, taking the best characteristics of each one, which is why they
give better results. According to Raidl et al. [42] the following can be hybridized, (a)
metaheuristics with metaheuristics, (b) metaheuristics with problem-specific algorithm
simulations, (c) metaheuristics with OR techniques, exact as dynamic programming, linear
and non-linear programming, with other heuristics such as neural networks, fuzzy logic,
statistical techniques and (d) metaheuristics with human interactions.

Moreover, there are MHs generated to solve multi-objective problems, especially those
objectives that are in conflict [21]. Non-dominated Sorting Genetic Algorithm (NSGA)
and NSGA-II incorporate standard genetic algorithms and non-dominated sorting to solve
problems with multiple objectives under different constraints. NSGA-II includes elitism,
uses diversity as a preservation mechanism and its complexity is low compared to NSGA.
Multi-Objective Particle Swarm Optimization with Crowding Distance (MOPSO) is an
MH with two different approaches; the first consists of considering each objective function
separately managed by a particle; in each one the best positions are selected, the difficult
part being guiding the particles to Pareto-optimal solutions. The second approach is
the evaluation of each particle by all objective functions based on the Pareto-optimality
concept, which produces non-dominated solutions to guide the particles. In Figure 5, the
classification of metaheuristics is shown.

The following section explains the methodology used to classify the articles.
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Figure 5. Metaheuristic classification, based on Abdel-Basset et al. [21].

4. Methodology

To achieve the review of the state of the art, the methodology of the systematic
literature review was followed. The purpose is to summarize the research carried out on a
particular topic and to find important elements that help to generate knowledge. Tranfield
et al. [43] consider four aspects, which are detailed below:

(a) Planning: At this stage, the research questions were asked to avoid ambiguous
answers. The questions generated were the following: RQ1. How are the HSC
problems that have been solved from Metaheuristics since 2016 classified? RQ2. What
is the gap found to accomplish future research in Metaheuristics in HSC?

(b) Searching: At this stage, articles were browsed in three databases—Web of Science,
Scopus and Google Scholar—using the following keywords, “optimization”, “hu-
manitarian supply chain”, “relief supply chain”, from 2016 to date. It is necessary to
mention that “metaheuristics” was not used because it considerably decreased the
number of articles found. There were 120 found in Web of Science, 289 in Scopus and
1680 in Google Scholar.

(c) Screening: In this phase, the inclusion and exclusion criteria were established. Inclu-
sion: Articles that used as a metaheuristic for the HSC solution were selected, all were
peer-reviewed research articles from 2016 to date. Exclusion: Articles that do not use
a metaheuristic for the solution and refer to the administration of HSC are excluded
from this research. Duplicate articles, those that are conference articles and review
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articles were not considered for classification. After reading the articles, 80 articles
were selected.

(d) Extraction: In this phase, the selected articles were read and analyzed to classify them
according to the characteristics of the HSC that are detailed in the next section.

5. Classification

This section presents the articles analyzed in order to answer the research questions.

5.1. Type of Problem

Facility location: This refers to determining where shelters, medical centers, ware-
houses and/or distribution centers for emergency materials should be located [10]. It also
deals with the problem of using existing ones. This problem is vital because it can mitigate
human pain [9] when meeting the demand at the minimum cost at the maximum level of
service [5]. Among the articles found in the review, Shavarani [44] finds the best location of
the refuge and drone centers using the multilevel Facility Layout Problem, using the closest
neighborhood method. In 2021 Shavarani et al. [45] had already solved the problem using
NSGA-II. Madani [46] proposes a network with multiple links that considers the location
of hospitals, warehouses and hybrid centers, using the NSGA-II with Simulated Annealing
and with Variable Neighborhood Search. In Khorsi et al. [47], a location and routing prob-
lem is presented to deliver goods to victims considering uncertainty in demand; it is used
with a multi-objective grouping algorithm to find Pareto-optimal solutions.

Distribution: This problem refers to the design of the network and its location, the type
of transport and its capacity, deciding whether the fleet is homogeneous or not, last-mile
operations and what refers to the transportation of elements in HSC [9]. Distribution can
also include transporting injured people to hospitals. Razavi [48] presents a distribution
model for blood transfusion using a multi-objective mathematical model and solving
through a genetic algorithm. Davoodi and Goli [49] minimize the arrival time of aid
vehicles to disaster areas using hybrid bender decomposition and variable neighborhood
search. Boonmee et al. [50] present a post-disaster waste management model, including
a recycling decision model. A mixed integer programming model is presented that is
solved with Particle Swarm Optimization and Differential Evolution. Ghaffarri et al. [51]
present a network for the distribution of medical items that includes local providers and
regional distribution centers and points of demand; the situation is modeled using mixed-
integer programming that is solved with Particle Swarm Optimization. In the problem
of Beiki et al. [52] a logistic problem of multiple vehicles is shown considering levels of
satisfaction and environmental conditions; for optimization a Genetic Algorithm is used.
Macias et al. [53] solve a problem of Unmanned Aerial Vehicles to be used in the HSC,
a novel multi-stage model is designed and a routing algorithm that is solved through
Large Neighborhood Search. Other distribution works are Mamashli et al. [54], Talebi and
Salari [55] and Molladavoodi et al. [56].

Inventory: Some authors include in the facility location problem the integration
of inventories in the aid distribution from the distribution centers to the warehouses
considering the shortages and the penalty in the total cost. Rezaei et al. [57] develop
a bio-objective optimization model to operate a supply chain of car fuel in earthquake
areas. The objective function includes the unmet demand penalty and inventory cost
that is solved with the Grasshopper Optimization Algorithm. Hajipour et al. [58] present
a distribution plan and inventory during a disaster scenario through a nonlinear bio-
objective mathematical model that is solved through Multi-Objective Vibration Damping
Optimization (MOVDO) and NSGA-II.

Mass evacuation: This problem deals different decisions: Where the evacuation points
are concentrated, selection of evacuation transport, route capacity, traffic management,
considering whether the transport will be public or private, in addition to deciding whether
to evacuate without evacuation notice or to have a period of between 24 to 72 h [5,9]. Molina
et al. [59] consider the Multi-Objective Trained Vehicle Routing Problem for the evacuation
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of people affected in the disaster; the Multiple Start Algorithm with Smart Neighborhood
Selection is used. Mollah et al. [60] work on the evacuation of people during a flood; two
algorithms are proposed, one of integer mixed programming and a genetic algorithm.
Jha et al. [61] presents a disaster evacuation chain with two echelons—evacuation fields
and affected—modeling the problem through mixed integer programming that is solved
through NSGA-II. In [45] the transfer of affected people is considered using forward and
backward multi-objective and is resolved with NSGA-II.

5.2. Model Type and Phases

Deterministic: In deterministic problems, the input parameters are known and con-
stant over time [9]. In the articles found for the classification 41 of 78 are deterministic. As
an example, the following works are analyzed. Decerle et al. [62] present the routing and
programming of caregivers to the patient’s home using the ant colony algorithm. Frifrita
et al. [63] also consider a problem of assigning caregivers to patients using synchronization
and time window restrictions, the General Variable Neighborhood Search is used to solve.
Sujaree and Sammattapong [64] use the hybrid artificial chemical reaction algorithm to find
the routes and deliver vaccines. Noham and Tzur [65] design a resource distribution net-
work in the event of a disaster; a mathematical model is incorporated and solved through
Tabu Search.

Non-Deterministic: In this type of approach, the parameters are uncertain and can
be modeled through a probability distribution (stochastic models) [9] or through discrete
scenarios in intervals (fuzzy logic). In the classification of articles, 37 out of 70 are presented
in this modality. In the work of Huang and Song [66] the emergency logistics and the
routing problem are considered, where the demands of the affected areas and the travel
times are expert estimations, for which variables with uncertainty are considered, and are
solved with a cellular genetic algorithm. Babaei and Shahanaghi [67] plan a flow of relief
items under uncertain conditions such as demand using fuzzy logic and solving through
NSGA-II. Bozorgi-Amiri et al. [68] present a plan to provide critical items to affected
people considering a stochastic programming model that integrates pre- and post-disaster
decisions and is resolved through Multi-Objective Particle Swarm Optimization (MOPSO).

Pre-disaster: As already mentioned, this stage includes the mitigation and preparation
stages; in this phase the necessary measures are taken to reduce the severity of the problem,
a strategic approach is used to choose relief or distribution centers, people are evacuated
to a safe place [5]. Of the articles found for the classification, only 14.10% did so in the
pre-disaster stage. Adarang et al. [69] consider a problem of location and routing to provide
medical services in order to plan and manage transportation under uncertainty, using the
shuffled frog jump algorithm and the NSGA-II. In the work of Akdogan et al. [70], the
location of emergency vehicles is studied through a queueing model, a mathematical model
is used to minimize response time and a Genetic Algorithm is also used. Shavarani [44]
used the NSGA-II to address a facility location problem to minimize the total relief items
supply chain cost; the model type is non-deterministic. Mardaninejad and Nastaram [71]
studied a facility location problem through a deterministic model to minimize the distance
and fixed cost of equipping a temporary accommodation center; they address a study case
and used SA, PSO, ICA, ACO, ABC, FA and LAFA algorithms. Nayeri et al. [72] considers
a mass evacuation problem through a multi-objective deterministic model to minimize the
completion time of relief operation, using GA and PSO algorithms. On the other hand,
Hasani and Mokhtari [73] proposed a multi-objective non-deterministic model to study a
facility location and inventory problems through NSGA-II and PSO algorithms to minimize
total coverage by the relief network, minimize total cost and minimize the maximum risk
of total demand nodes.

Post-Disaster: This includes the recovery phase. Once the damage is calculated,
the related transportation is repaired and relief items are generally distributed from a
distribution center to the affected areas; it also considers calculations such as the number of
people affected, how many distribution centers or shelters must be installed and how many



Algorithms 2021, 14, 364 12 of 33

items must be delivered. In Wu et al. [74] goods are distributed in an emergency supply
chain, the problem is known as routing of trained vehicles considering fair distribution; to
solve the problem, a hybrid algorithm of Ant Colony and Variable Neighborhood Search
Algorithm is proposed. Vahdani et al. [75] propose a multi-objective nonlinear integer
model to locate distribution centers and carry out aid to damaged areas through vehicle
routing, using NSGA-II and MOPSO. Goodarzian et al. [76] propose a model of production,
distribution, inventory and location in a sustainable supply chain; three metaheuristics are
tested: Ant colony, fish swarm and firefly algorithm. Wang et al. [77] propose a model of
assistance and food delivery teams through demand points, using an integer programming
algorithm and two hybrid metaheuristics. Caballero Morales et al. [78] propose an MH
based on K-means clustering and a micro genetic algorithm to estimate a search interval for
help centers; they also use GRASP to establish 260 help centers in 3837 at-risk communities
in Veracruz, Mexico. Mardaninejad and Nastaram [71], by transferring earthquake victims
to safe places and medical centers by selecting candidate locations, formulate the optimal
accommodation to perform using GAMS and seven metaheuristics such as Simulated
Annealing and Ant Colony, among others.

There are other approaches that handle the pre-disaster and post-disaster phases in an
integrated manner. For instance, Tavaana et al. [79] propose a network that considers the
location of warehouses managing the inventory of perishable products in the pre-disaster
phase and the routing of vehicles in the post-disaster phase; NSGA-II with and without
reference point are used to solve this mixed-integer programming problem. Mohammadi
et al. [80] develop a response plan to provide items to affected people, a stochastic multi-
objective model is proposed that integrates pre and post-disaster decisions, and MOPSO is
used to solve it. Shi et al. [81] study the vehicle routing scheduling problem for home health
care companies; uncertainty in demand is considered as a fuzzy variable and a hybrid
genetic algorithm with stochastic simulation is proposed. Su et al. [82] with the problem
of how to place emergency resource agencies in multiple ways to attend to incidents
and reduce economic losses, present a restricted programming model and a differential
evolution heuristic based on a search algorithm is developed. Sharma et al. [83] propose
the integration of different techniques to locate blood banks in conditions during and
post-disaster; the distance between hospitals is minimized and Tabu Search is used to
calculate the optimal number of centers.

In Figure 6 the classification and the number of articles found in each of the areas
are shown. This figure illustrates more jobs in the post-disaster area and integrated post
and pre-disaster. The most commonly addressed problems are deterministic due to the
complexity of non-deterministic models; however, the advantage of the latter is to consider
the inherent randomness complexity of the real cases. The jobs that appear the most are
those related to solving distribution problems, followed by the facility location problem
(or a combination of both); there is still a smaller number that is related to inventories and
mass evacuation; with this Research Question 1 (RQ1) is resolved.
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Figure 6. Classification of problem type, model type and phase of a disaster.

5.3. Time Period, Objective Type and Objective Function

Objective function: Concerning the objective function it can consider costs, time or
distance [8]; it depends on the problem to be solved; both the time and the distance are
important to give a quick response to the victims. Another goal is to satisfy as many people
as possible and to ensure fairness. The objectives of maximizing and minimizing that were
found in the reviewed articles are listed below.

Minimize:

• Cost or distance, refers to using vehicles to bring aid to disaster areas [55,59,75,84,85].
• Costs of help center locations [55,78].
• Customer waiting times taking fairness into account [74,86].
• Cost of transporting the population out of danger zones [60].
• Penalty costs for unsatisfied demand [57,87–90].
• The infection possibility [91].
• The level of discontent of facing injustice [48].
• The financial effects and variable costs [50].
• The number of injured people who have not been attended to [52].
• Environmental aspects when relief items are carried [54].
• Completion times [72,92].

Maximize:

• Total care coverage [48,80,93].
• Average response for time-care [91,93].
• The profit [50].
• System reliability [46].
• The death toll [94].
• The number of undamaged items received in warehouses [58].

Additionally, from the reviewed papers, 44 are bi- or multi-objective and 36 have
a single objective (RQ1). Regarding bi-objective and multi-objective, Rezaei et al. [57]
proposed a bi-objective deterministic model to address the inventory problem in the post-
disaster phase for designing a fuel supply chain network. They used MOEA, NSGA-II and
MOPSO algorithms to minimize the penalties due to both delayed and unsatisfied fuel
demands and the difference between the satisfied demand in different earthquake-affected
areas. Abazari et al. [84] addressed facility location, distribution and inventory problems
in the integrated phase of disaster for distributing relief items with uncertain parameters.
They proposed a multi-objective non-deterministic model to minimize distance travelled
by relief items, the travelling time from facility to demand location and the total quantity
of perished items. To solve the proposed model, they used a Grasshopper Optimization
Algorithm (GOA). Jiang et al. [91] formulated an optimization model on fresh agri-product
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emergency supply to study the response time, infection risk and transportation resources.
They proposed a multi-objective deterministic model to study a distribution problem
in the post-disaster phase to minimize average response time, the infectious possibility
and transportation resource utilization. An improved genetic algorithm based on solution
features (IGA-SF) was used to solve the model. On the other hand, Sadeghi et al. [95] solved
a distribution problem through a single-objective deterministic model in the integrated
phase of a disaster to maximize the demand coverage and reduce the rescue time, using
the simulated annealing (SA) algorithm to solve the model. Ransikarbum and Mason [96]
formulated a single-objective deterministic model in the post-disaster phase to address a
distribution problem to minimize the total cost of distribution using the NSGA-II algorithm.

Regarding the period, 19 are multi-period and 61 are single period; this may derive
from the complexity of solving a multiple period problem (RQ1). Some of the articles
reviewed are as follows. Babaei and Shahanaghi [67] presented a multi-objective non-
deterministic model with a single phase; facility location and mass evacuation problems
were studied; they analyzed a multi-level location–allocation routing emergency problem
in uncertain conditions to cover all demands existing in the network. Vahdani et al. [75]
propose a multi-objective, multi-period, multi-commodity model; facility location and dis-
tribution problems were addressed in the post-disaster phase to minimize travel time and
total cost and increase the reliability of routes; to solve the problem, NSGA-II and MOPSO
algorithms were used. In the paper of Qi and Hu [97] emergency cold chain logistics
scheduling is considered, including the loss of the vehicle, refrigeration consumption and
damage of goods over time; a multi-period deterministic model to minimize the total cost
of distribution was proposed; to solve the problem, ant colony system (ACS) and Pareto
local search (PLS) algorithms were implemented; they found that ACS and PLS algorithms
have strong applicability. On the other hand, the paper of Wu et al. [74] proposes an
ant colony optimization-variable neighborhood search (ACO-VNS) algorithm to study a
distribution problem through a single-phase non-deterministic model to minimize waiting
time of customers taking peer-induced fairness into account; they found that hybrid algo-
rithm achieves better performance in a short time. Zahedi et al. [98] address a distribution
problem through a single-phase, multi-objective, non-deterministic model to minimize
the starting time of the suspected case with the lowest priority by each ambulance and
penalty time of visitation and the critical response time. Simulated annealing (SA), Social
Engineering Optimization (SEO) and Particle Swarm Optimization (PSO) algorithms were
used to solve the problem; they addressed a real case and implemented their proposal,
achieving a decrease in infections.

5.4. Metaheuristics Classification in Humanitarian Supply Chains

Regarding metaphor-based Metaheuristics classification, 56 publications were found
for HSC problems. Of which, 44 belong to metaheuristics from the area of biology, 12 to
the area of physics and one to the area of social and sport. The most used were Genetic
Algorithm (GA), Particle Swarm Optimization (PSO) and Simulated Annealing (SA) with
9, 12 and 12 applications, respectively. Regarding the GA metaheuristic, the problems
studied were facility location (3), distribution (3) and mass evacuation (2). The problems
addressed with the PSO algorithm were facility location (3), distribution (9), inventory (1)
and mass evacuation (1). Likewise, the problems addressed with the SA algorithm were
facility location (7), distribution (8) and mass evacuation (2), see Figure 7.
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Figure 7. Metaphor-based metaheuristics.

On the other hand, with reference to the Non-Metaphor-based Metaheuristics clas-
sification, 22 articles were found; the most used metaheuristics were Search Algorithm
(SA) with 12 applications and Greedy Randomized Adaptive Search (GRASP) with three
applications. The problems addressed with SA were facility location (7), distribution (8),
and mass evacuation (1). With GRASP, four distribution problems were addressed, see
Figure 8.

Figure 8. Non metaphor-based Metaheuristics.

Regarding the multi-objective metaheuristics, 30 works were reviewed; the most
used were Non-dominated Sorting Genetic Algorithm-II (NSGA-II) with 15 applications
and Multi-Objective Particle Swarm Optimization (MOPSO) with five. The problems
addressed with NSGA-II were facility location (9), distribution (6), inventory (3) and
mass evacuation (1). Furthermore, the problems addressed with MOPSO were facility
location (3), distribution (4) and inventory (1). Finally, in the matter of hybridization of
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metaheuristics, 12 applications were found; however, no predominant one was found; the
problems addressed were distribution (9) and mass evacuation (1); for further reference see
Figure 9.

Figure 9. Multi-objective and Hybridization of Metaheuristics.

In Table 1 all the analyzed papers are classified.
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Table 1. Paper analysis, * means that the article meets this characteristic.

Authors

Phase of Disaster Model Type Problem Type

Metahe-
uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated

Deter-
mini-
stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Tavanaa et al.
[79] * * * * *

NSGA-II,
RPBNSGA-

II
* *

(1) (−) Total cost of
procurement and

preparation
pre-disaster phases, (2)

(−) the total relief
operational cost on

post-disaster, (3) (−)
the total operational

relief time on
post-disaster.

*

Molina et al.
[59] * * * MSINS * *

(1) (−) The number of
vehicles, (2) (−) total
traveling cost, (3) (−)
the maximum latency.

*

Babaei and
Shahanaghi

[99]
* * * * SA * *

(1) (−) Total cost of
establishing the

emergency location,
(2) (−) the cost of

constructing the path,
(3) the number of

required ambulances
in each scenario.

*

Wu et al. [74] * * * ACO-VNS * *

(−) The sum of
customers waiting
times taking peer

induced fairness into
account.

*

Vahdani et al.
[75] * * * * NSGA-II

MOPSO * *

(−) The travel time
and total cost and

increases reliability of
the routes

*

Mollah et al.
[60] * * * * GA * *

(−) Total cost for
transporting

population and
relief-kits and penalty
cost associated with
one un-evacuated

in-need population.

*
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Table 1. Cont.

Authors

Phase of Disaster Model Type Problem Type

Metahe-
uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated

Deter-
mini-
stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Rezaei et al.
[57] * * *

MOEAs,
NSGA-II,
MOPSO

* *

(1) (−) The penalties
due to both delayed
and unsatisfied fuel
demands, (2) (−) the

difference between the
satisfied demand in

different
earthquake-affected

areas.

*

Abazari et al.
[84] * * * * * GOA * *

(1) (−) Distance
traveled by relief
items, (2) (−) RC

establishing cost, (3)
(−) the maximum

traveling time from
facility to demand

location, (4) (−) the
total quantity of
perished items.

*

Mohammadi
et al. [80] * * * * MOPSO,

PSO * *

(1) (−) Total expected
demand coverage, (2)
(−) the total expected

cost, (3) (−) the
difference in the
satisfaction rates
between nodes.

*

Jiang, Bian
and Liu [91] * * * IGA-SF * *

(1) Average response
time, (2) the infectious

possibility, (3) the
transportation

resource utilization

*

Goodarzian
et al. [76]. * * * * * ACO, FSA,

FA * *

(1) (+) Social factors,
(2) (−) the cost of
establishing DCs,

inventory holding,
transportation cost,
production cost, (3)
(−) the maximum
unmet demand.

*
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Table 1. Cont.

Authors

Phase of Disaster Model Type Problem Type

Metahe-
uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated

Deter-
mini-
stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Wang et al.
[77] * * * ABC * *

(−) Total service
completion time

among all demand
points.

*

Jha, Acharya,
and Tiwari

[61]
* * * * NSGA-III * *

(1) (−) The cost of
set-up, procurement,

transportation
between supplier and
relief camps, (2) (−)

gap between demand
and supply of the

relief chain.

*

Noham and
Tzur [65] * * * * TS * *

(+) The ratio of units
distributed to their

delivery time.
* *

Razavi et al.
[48] * * * GA * *

(1) (−) The cost of the
blood supply chain, (2)

(−) the maximum
degree of discontent

with unfairness
among affected areas,
(3) (+) coverage of the
demand of blood in

field hospitals.

*

Davoodi and
Goli, [49] * * * * VSN * *

(−) The maximum
interval times of
vehicles to depot

R + 1.

*

Shavarani [44] * * * NSGA-II * *
(−) The total travel
distance to meet the

demand on each point.
*

Boonme et al.
[50] * * * PSO, DE * *

(1) (−) The financial
effects of the fixed and
variable costs, (2) (+)
revenue from sellable

waste.

*
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Table 1. Cont.

Authors

Phase of Disaster Model Type Problem Type

Metahe-
uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated

Deter-
mini-
stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Ghaffari et al.
[51] * * * PSO * *

(−) Total weighted
completion times of
services at hospitals.

*

Eskandari-
Khanghahi
et al. [100]

* * * * SA * *

(1) (−) The total
environmental

impacts, (2) (+) The
social impacts, (3) (−)
the total variable and

fixed cost in the
network.

*

Beiki et al.
[52] * * * NSGA-II,

MOPSO * *

(1) (−) The maximum
number of the

unserved injured
people, (2) (−) the

sum of cost.

*

Macias et al.
[53] * * * LNS * *

(+) The state of charge
by the end of the

flaying.
*

Zahedi et al.
[98] * * * SA, SEO,

PSO * *

(1) (−) The starting
time of visiting the
suspected case with
lowest priority by

each ambulance and
penalty time of

visitation, (2) (−) the
critical response time.

*

Mamashli
et al. [54] * * * HBMCGP-

UF * *

(1) (−) Total time
traveled of vehicles,

(2) (−) the total
environmental

impacts of the system,
(3) (−) the total

demand’s loss of all
crisis points.

*
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Table 1. Cont.

Authors

Phase of Disaster Model Type Problem Type

Metahe-
uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated

Deter-
mini-
stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Madani et al.
[46] * * * * * NSGA-II,

SA, VNS * *

(1) (+) the system
reliability, (2) (−) the
total cost of the relief

logistic system.

*

Khorsi et al.
[47] * * * MOGF3EA * *

(1) (−) The arrival
times of vehicles at the
demand nodes during

the planning, (2) (+)
the reliability of the

routes.

*

Talebian
Sharif and
Salari [55]

* * * GRASP * *
(−) The routing cost
plus the allocation

cost.
*

Molladavoodi
et al. [56] * * * GA * *

(1) (−) The total cost,
(2) (−) the maximum
unfulfilled demand.

*

Akdoğan,
et al. [70] * * * GA * *

(−) The frequency
weighted mean

response time of the
system.

*

Vahdani et al.
[75] * * * * NSGA-II,

MOPSO * *

(1) (−) The maximum
vehicle route traveling
time, (2) (−) the total

cost.

*

Huang and
Song, [66] * * * CGA * *

(−) The total arrival
time of the needed

material.
*

Babaei and
Shahanaghi

[67]
* * * NSGA-II * *

(1) (−) The lost or
logistics cost, (2) (+)
demand satisfaction,

(3) (+) the budget and
the amount of demand

response.

*
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Table 1. Cont.

Authors

Phase of Disaster Model Type Problem Type

Metahe-
uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated

Deter-
mini-
stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Fathollahi-
Fard et al.

[101]
* * *

MICA,
MWWO,
MSSA,
HWSA,
HSIA

* *
(1) (−) The cost of

Hospital services and
transportation.

* *

Kim et al.
[102] * * * AC * *

(1) (−) The weighted
sum of total damages,

(2) (−) competition
time

*

Sujaree and
Samattapa-

pong,
[64]

* * * HACROA * * (−) Distance *

Shi et al. [81] * * * HGA * * (−) Transportation
cost *

Frifita et al.
[63] * * * VNS * *

(1) (+) The number of
visits assigned to each

route, (2) (−) the
traveling time.

*

Decerle et al.
[62] * * * HM-ACA * * (−) The time needed

to perform the care. *

Fathollahi-
Fard
[103]

* * * * SA * *

(1) (−) The total cost
of opening pharmacies

and laboratories, (2)
(−) environmental
impact and green

emissions.

*

Saeidian et al.
[104] * * * GA, BA * *

(−) The sum of all
distances between

centers and parcels.
* *

Cao et al.
[105] * * * GA * *

(1) (+) The lowest VPS
(victims’ perceived
satisfaction) for all

RDPs (relief demand
points), (2) (−) the

largest deviation on
perceived satisfaction

*
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Table 1. Cont.
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Phase of Disaster Model Type Problem Type

Metahe-
uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated

Deter-
mini-
stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Qi and Hu
[97] * * * ACS, PLS * * (−) Total cost of

distribution *

Su et al. [82] * * * SA * *

(−) Total travel time of
disaster response

coalitions and the total
cost of the allocated
emergency resources

*

Zhang and
Xiong, [106] * * * IACO * *

(1) (+) Demand
satisfaction, (2) (−)
total cost of grain

distribution, (3) (−)
distribution time

*

Sharma et al.
[83] * * * * TS * *

(−) Distance between
hospitals and

temporary blood
centers

*

Adarang et al.
[69] * * * SFLA

NSGA-II * *

(1) (−) Relief time, (2)
(−) the total cost

including location
costs and the cost of

route coverage by the
vehicles

*

Agarwal, Kant
& Shankar

[107]
* * * * * PSA, GA * *

(1) (−) Total cost of
facility establishment

and drone
procurement, (2) (−)
The total number of

uncovered customers

*

Shavarani
et al. [45] * * * NSGA-II,

NSGA-III * *
(−) The total relief
items supply chain

cost
*

Sadeghi
moghadam

and
Ghasemian
sahebi [89]

* * * SA * *
(+) The demand

coverage and reduce
the rescue time

*
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uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated
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stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Javadian et al.
[108] * * * * NSGA-II,

NRGA * *

(1) (−) The total
operating cost of
selected CWs and

LDCs and inventory
cost, (2) (−) the

maximum travel time
between each pair

CW/LDC and
demand point for the

item

*

Mosallanezhad
et al. [87] * * *

MOKA,
MOSA,

NSGA-II,
MOKASA

* *

(1) (−) Cost of the
Personal Protection
Equipment Supply

Chain
(2) (−) The amount of
unsatisfied demands

*

Buzón-
Cantera et al.

[90]
* * * SA * * (−) The penalty due to

delays *

Korkou et al.
[109] * * * DE, eDE,

PSO, AP * *
(−) The shortages of

different relief
products

*

Ferrer et al.
[110] * * *

RCA,
ESCA,

GRASP
* * (−) Total cost *

Hajipour et al.
[58] * * * * MOVDO * *

(1) (−) The chain’s
total cost

(2) (−) The number of
undamaged items

received by
warehouses

*

Ramezanian
et al. [88] * * * MUCSOA * *

(1) (−) The total fuzzy
transportation and
inventory holding

cost, (2) (−)
unsatisfied demand,
(3) (+) the minimum
estimated demand

ratios.

*
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Determi-
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Single Multi Single Bi/
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Objective Function
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(the Number
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Consecutive of the
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Data
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Sadeghi et al.
[89] * * * NSGA-II * *

(1) (−) The total cost
of supplies shortage,

(2) (−) the total cost of
delivering supplies

and the cost of
constructing the

distribution center, (3)
(−) the total response

time

*

Caballero-
Morales et al.

[78]
* * *

KCM,
GRASP-
CKMC

* *
(−) Total distance

from each cluster to
each assigned point

*

Ransikarbum
and Mason

[96]
* * * HNSGA-II * * (−) Total cost of

distribution *

Tofighi et al.
[111] * * * * * DE * * (−) Total operation

cost of selected CWs *

Mardaninejad
and Nastaran

[71]
* * *

SA, PSO,
ICA, ACO,
ABC, FA,

LAFA

* *

(−) The distance and
fixed cost of equipping

a temporary
accommodation center

*

Forughi et al.
[112] * * * LP-GA * *

(1) (−) Total cost, (2)
(+) each facility’s

weighted resilience
levels

*

Golabi et al.
[85] * * * GA, MA,

SA * * (−) The aggregate
traveling time *

Nayeri et al.
[72] * * * * * SA, PSO,

SA-PSO * *

(1) (−) the sum of the
weighted completion

time of the relief
operation

*

Dávila de
León et al.

[93]
* * * SA, GRA * *

(−) The time required
to provide

humanitarian aid
*
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Table 1. Cont.

Authors

Phase of Disaster Model Type Problem Type

Metahe-
uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated

Deter-
mini-
stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Hasani and
Mokhtari [73] * * * * NSGA-II,

PSO * *

(1) (+) The total
coverage by the relief
network, (2) (−) the
total cost, (3) (−) the

maximum risk of total
demand nodes

*

Zhu et al.
[113] * * * ACO * *

(1) (−) The
transportation cost, (2)

(−) the absolute
deprivation cost, (3)

(−) relative
deprivation cost

*

Danesh et al.
[114] * * * GOA * *

(1) (+) The total value
made by evaluating

the sites and roads, (2)
(+) the minimum

cover of sites, (3) (+)
the minimum cover of

roads

*

Hoseininezhad
et al. [115] * * * NSGA II * *

(1) (−) The
transportation cost of
injured people, (2) (+)
the impact of factor k

on the location of relief
chain h, (3)(−) the

time of transferring
injured people, (4) (−)

the deviation of the
capacity

*

Edrisi et al.
[94] * * * PSO * * (−) death toll *

Torabi et al.
[116] * * * DE * * (−) total cost *
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Table 1. Cont.

Authors

Phase of Disaster Model Type Problem Type
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uristic

Algorithm

Time Period Objective Type Results

Pre-
Disaster

Post-
Disaster Integrated

Deter-
mini-
stic

Non-
Determi-

nistic

Facility
Location

Distri-
bution Inventory

Mass
Evacua-

tion
Single Multi Single Bi/

Multi

Objective Function
Minimize (−)
Maximize (+)
(the Number
Indicates the

Consecutive of the
Objectives)

Random
Data

Case
Study

Ghasemi et al.
[117] * * * * NSGA II * *

(1) (−) The number of
injured people who a
not serviced, (2) (−)

the cost of relief
supplies

*

Hu et al. [118] * * * PSO * *

(1) (+) The overall
utility the relief

resources to achieve
the efficiency purpose,

(2) (+) the minimal
satisfaction rate

*

Nayeri et al.
[119] * * * GA, PSO * *

(1) (−) the sum of the
weighted completion

time of the relief
operation, (2) (−) the
sum of deprivation

times

*

Wang et al.
[120] * * * MOCGA * *

(1) (−) Disaster losses,
(2) (−) transportation

risks
*

Xu et al. [121] * * * PSO * * (−) Cost of rescue plan *

Sabouhi and
Bozorgi-Amiri

[86]
* * * MA * *

(−) The total waiting
time of evacuees and

delivery time of
supplies

*

Wex et al. [92] * * * GRASP * * (−) The sum of
completion times *
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6. Main Findings and Conclusions

In a world where there are more natural and man-made disasters, and massive diseases
that require the attention of HSC, it is necessary to consider what types of problems
are being addressed, their classification and the types of metaheuristics used to solve
them. In this work, 80 articles were selected considering the systematic literature review
methodology, aiming to answer two research questions: RQ1 How are the HSC problems
that have been solved from metaheuristics since 2015 classified? and RQ2 What is the gap
found to accomplish future research in metaheuristics in HSC?

After reviewing all the selected articles, it was found that the deterministic and non-
deterministic problems are well balanced with 52.56% of the deterministic in contrast
to 47.44% of the non-deterministic. The highest number of addressed problems were
regarding distribution with 71.79%, followed by facility location with 41.03%, it should
be noted that there are research papers that consider both problems together. In contrast,
the least resolved problems are inventory with 11.54% and Mass Evacuation with 10.26%.
In the analysis, it is also concluded that the post-disaster phase is the most considered
one with 51.28% followed by the one that integrates both phases, pre- and post-disaster
with 34.62%, and the pre-disaster phase with 14.10% (RQ1). In this regard, there are areas
of opportunity to address the problem of inventory and mass evacuation considering
the pre-disaster or both integrated phases. Consequently, the most convenient thing is
considering problems in a non-deterministic way to deal with the uncertainty that exists in
the current context (RQ2).

In the case of single or multiple objectives, they are balanced, with 53.85% being multi-
ple objectives, while 46.15% of the problems are single. Regarding the period, single-period
problems are further solved, with 76.92% against 23.07% of multiple-period problems
(RQ1). This may be due to the complexity that multi-period problems represent, however,
solving problems with multiple periods would allow that the proposed models are closer
to reality (RQ2).

As to MHs, it was found that 71.79% were based on metaphor; of these 23.07% of the
total articles are evolutionary, the most common being Genetic Algorithms. In the Swarm
Intelligence area, there is 30.76% of the total work, with Particle Swarm Optimization being
the one that is the most extensively occupied. Based on physics there are 15.38% of articles
with Simulated Annealing. From those not based on metaphors, there are a total of 28.20%,
the most widely used being the search algorithm with 15.38%. Of the MHS that solve
multiple objectives, there are 38.46% of the articles in which the NSGA-II predominates
with 15 solved papers. Using hybrid algorithms there is 15.38% (RQ2).

After analyzing the articles, what they have in common is the modeling of the objective
function and some solution methods; in contrast, they adapt the restrictions to the type of
problem to be solved. When reviewing deeply, some articles that have been written by the
same author have adapted his original proposal to solve other more extensive problems or
with other products and movements in HSC.

The future research could be in two approaches; (1) Test the new MHs that are
mentioned in Section 3 in already structured problems concerning the four main problems—
facility location, distribution, inventory, mass evacuation—and do serious statistical anal-
ysis to see which one converges faster to the solution. When authors are applying new
MHs to solve problems related to HSC, researchers should statistically compare different
MHs to decide which one is the best for the problem that they are trying to solve. Some
works present the comparison of different solution methods through statistic techniques,
for example, Page trend test for convergence analysis [122] or Carrasco et al. [123] who
survey current trends in statistical analysis proposals for the comparison of computational
intelligence algorithms.

(2) Use the proposed modeling to solve real cases, not only at the proposal level of the
modeling or testing the MHs, but also to impact the community. When faced with this type
of problem such as the distribution of vaccines, which has a global scale, it will be necessary
to make use of multi-objective problems, which are solved in several phases, or even
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generate diverse solutions with high performance such as Quality-Diversity optimization.
What is observed in the articles is that the cases are made to test one model or different
MHs, but they do not apply to real problems that are highly complex.

Considering the complexity of the multi-period and multi-objective models that
must be solved in real HSC situations, multi-objective MHs such as the NSGA-II play an
extremely important role, which is why they will continue to be used to solve increasingly
complex problems. There is a very important area of opportunity in solving these problems
related to HSC using new proposals of multi-objective MHs; seemingly, they could also be
hybridized with other heuristics and MHs to generate convergence for good solutions in a
reasonable computational time (RQ2).

In summary, we point out that providing the relevance and complexity of these
types of problems, future research in HSC should be done in non-deterministic and multi-
period problems, which integrate pre- and post-disaster stages, and that gradually include
problems such as inventory and mass evacuation and in which new multi-objective MHs
(RQ1 and RQ2) are tested.
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