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Abstract: Considering the contradiction between limited node resources and high detection costs in
mobile multimedia networks, an adaptive and lightweight abnormal node detection algorithm based
on artificial immunity and game theory is proposed in order to balance the trade-off between network
security and detection overhead. The algorithm can adapt to the highly dynamic mobile multimedia
networking environment with a large number of heterogeneous nodes and multi-source big data.
Specifically, the heterogeneous problem of nodes is solved based on the non-specificity of an immune
algorithm. A niche strategy is used to identify dangerous areas, and antibody division generates an
antibody library that can be updated online, so as to realize the dynamic detection of the abnormal
behavior of nodes. Moreover, the priority of node recovery for abnormal nodes is decided through a
game between nodes without causing excessive resource consumption for security detection. The
results of comparative experiments show that the proposed algorithm has a relatively high detection
rate and a low false-positive rate, can effectively reduce consumption time, and has good level of
adaptability under the condition of dynamic nodes.

Keywords: mobile multimedia network; node security; abnormal detection; artificial immunity;
game theory

1. Introduction

In recent years, with the development of Internet of Things (IoT) technology, IoT
devices have become the mainstream devices of network terminals. Meanwhile, due to
the surge in the volume of mobile multimedia services, multimedia data have become
one of the most important sources of data traffic in networks [1]. To deal with the large
volume of multimedia data generated by the huge amount of IoT devices in an effective
and efficient way, mobile edge computing technology is becoming increasingly popular,
which deploys computing and storage edge nodes in large numbers in order to improve
mobile application capacity and reduce the response time of devices as well as the wireless
back-trip network bandwidth pressure.

In mobile edge computing scenarios, most of the wireless or mobile networks are
open physical systems that use radio frequency technology for network connectivity and
transmission. Therefore, in addition to the security problems shared by wired networks,
wireless networks have several unique security threats. The transmission of multimedia
data in wireless networks has its inherent difficulties, such as channel quality time change,
mobile terminal heterogeneity, and limited wireless resources [2]. The emergence of edge
computing alleviates these problems in terms of resource utilization. However, the wireless
and open nature of mobile multimedia networks makes multimedia data vulnerable to
malicious attacks. An attacker can easily intercept a user’s data or directly attack the net-
work. As a result, security in mobile multimedia data transmission has received increased
attention [3].
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These threats manifest themselves in three areas [4], as shown in Figure 1, which are
also the key concerns in the design of security mechanisms for wireless or mobile networks
to support multimedia communications or other services.

(1) Physical layer. This mainly includes the threat of environment security, equipment
security, and the threat caused by the malicious damage of the attackers, such as:

• Stealing a user’s device: when a wireless card is lost or stolen, an illegal user can
breach an access point;

• Wireless interference: interference with the normal operation of the wireless
channel by transmitting a large power-to-frequency signal.

(2) Data link layer. This mainly includes spoofing based on MAC addresses, such as:

• Eavesdropping and listening: electronically eavesdropping on computer commu-
nications flowing through wireless networks;

• Spoofing attacks: redefining the MAC address of a wireless network or network
card.

(3) Network layer. This includes various attacks from the network, such as:

• Inserting an attack: impersonating a legitimate user, accessing an information
system through a wireless channel, and gaining control;

• Denial of service: an attacker maliciously occupies almost all resources of the
host or network, making them unavailable to legitimate users;

• A network takeover: an attacker takes over a wireless network or session process,
allowing all traffic to reach the attacker’s machine;

• Energy consumption: the destruction of energy-saving mechanisms, such as by
constantly sending connection requests, preventing the device from entering the
energy-saving mode.
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For wireless network security threats, mobile network servers are generally sufficient
to support the setup of security measures. However, the power and processing capac-
ity of sensor nodes located within the edge networks are typically low, leaving a small
power budget for security measures. A large number of low-cost, energy-limited nodes
deployed in uncontrollable areas and a complex, harsh application environment can lead
to a variety of failures that reduce or eliminate monitoring functions, causing economic
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loss to users, and even network paralysis [5]. Therefore, detection of abnormal nodes is
particularly important.

For convenience of expression in the subsequent sections of this article, an abnormal
node can also be called a failure node. In the field of detection of abnormal nodes research,
Kumar Niteth has proposed a distributed fault detection and recovery algorithm [6],
which can effectively detect relay node failure. In this algorithm, any failed relay node is
identified by its neighbors according to the neighborhood table associated with them. The
algorithm complexity is high. Chafiq Titouna has proposed a fault detection scheme for
the identification of faulty sensor nodes [7]. In this scheme, the coordination between the
two execution levels is not well structured and the simulation process is too idealized. Bill
et al. has suggested a wireless sensor network hardware fault detection method using a
simple Bayes framework for detecting node energy failure [8]. However, data cannot be
collected in real time when a fault occurs, nor can the fault feature be extracted in real time.
A cluster-based fault detection algorithm has been proposed by Wenbo Zhang, in which
a node confidence mechanism is introduced [9]. The disadvantage is that only dynamic
tolerance is considered, and dynamic detection is not performed.

From the perspectives of intelligence and automation, mobile multimedia network
nodes have the characteristics of real-time, dynamic, and multi-source data, and node
security must consider the dynamic changes of data in real time. In the literature mentioned
above, most of the proposed algorithms are static detection algorithms based on data. These
algorithms do not consider the difference in abnormal data characteristics caused by data
dynamics and multiple sources.

The biological immune system has information processing mechanisms, such as
memory learning, feedback regulation, and decentralized and distributed autonomous
mechanisms. An artificial immune system established according to biological immune
theory includes methods such as immune recognition, immunology learning, immune
memory, and cloning selection. Both the biological immune system and a distributed self-
organizing wireless sensor network maintain system stability in a changing environment.
The immune system structure provides a novel solution to the problem of node security in
a mobile network.

Tiong Hoo Lim has proposed an immuno-inspired algorithm for node failure [10].
The proposed immune excitation scheme that uses a multimodal mechanism has good
reliability, but the operating environment it adapts to is specific, not universal. Salmon has
proposed collaborative monitoring and intrusion detection mechanisms inspired by the
body’s immune system [11]. It allows nodes to monitor their neighbors and collaborate to
identify intruders. The defect of this algorithm is that it does not consider the correlation
and response mechanism between nodes, which leads to a large resource occupation.
Li et al. has proposed an immune intrusion detection mechanism for a wireless sensor
network tree structure [12]. Two immunization strategies, namely unified immunization
and temporary immunization, are studied in sensor viruses. The algorithm is only effective
for a single sensor virus attack and not for most attacks. Amir Jabbari et al. have introduced
an optimized neuro-immune system to predict sensor records [13]. In this method, only the
immune theory is used to establish the network model, and no further research was done
on the abnormal detection of nodes. Author has done some previous work about abnormal
detection with immune theory, including negative selection, clone selection, vaccine and
detector’s research [14]. The contribution of this literature is the construction of an IDS
inspired by biological immune principles and functions, such as resisting viruses and their
variations in the biological immune system. The immune idea is incorporated into the
design of IDS, and an intrusion detection system that can detect novel attacks adaptively
under the premise of lower data requirements is constructed. Thus, the security of the edge
computing scenario is improved.

The above literature has introduced the principle of immunity to the intrusion de-
tection system, and used the non-specific principle of immunity to effectively solve the
dynamic change of data and multi-source problems. However, the randomness in immune



Algorithms 2021, 14, 368 4 of 21

data extraction and antibody library generation inevitably makes the data resources too
huge and reduces the real-time performance of the system.

In order to solve the above problems, this paper studies the detection of abnormal edge
nodes in a mobile multimedia networking scenario based on artificial immunity theory
and game theory. Negative selection, clonal selection, and vaccines are used to generate an
antibody library. A niche strategy is used to determine the risk area, and antibody division
prevents the algorithm from falling into local optima. The antibody library can be updated
online with abnormal data, and can dynamically detect nodes. The security of nodes in a
networked environment depends both on themselves and on other nodes. Therefore, this
paper uses the game theory method to establish the immune game model on the premise of
meeting the safety performance requirements of the system. Under the premise of known
abnormal nodes, the problem of resource optimization in the process of node detection and
recovery is studied and solved through the game between nodes. Thus, the deployment
cost of the system is reduced.

The rest of this paper is organized as follows. Section 2 presents the background of
immune game theory. Section 3 describes the basic idea of the immune game algorithm. The
game model is established based on the Nash game theory. An immune game mechanism
is proposed for detection of abnormal nodes. Section 4 provides simulation experiments.
The detection rate, false detection rate, network stability time, and reliability are compared
and studied. Section 5 draws conclusions and discusses future research directions.

2. Background of Immune Game Theory
2.1. Artificial Immune Theory

Two theories are associated with artificial immunity: self/nonself (SNS) and danger
theory (DT).

(1) SNS theory

In 1994, Forrest proposed the SNS theory [15], which strictly divides cells and molecules
in the immune body into their own cells and allogeneic cell molecules, including foreign
viruses, bacteria, and mutated cells. All cell molecules can be defined as a collection U,
consisting of a set N of viruses, bacteria, and mutated cells from the outside world, and a
set S of their own cells, satisfying

S ∩ N = ∅, S ∪ N = U (1)

In the SNS mode, antibody cells in the body judge between the cells. Once the antibody
cells judge a cell as a foreign cell, the corresponding elimination process will be carried out.
On the contrary, if all antibody cells do not match the cell, it is judged to be an autologous
cell. According to the above analysis, the SNS theory of self-body and allogeneic cells
should satisfy formula (2). Let f be a binary classification function of, and define Ab as an
antibody set gained by constantly learning access data in the mechanism of the immune
system. If u is set to a conventional value, i.e., u∈U, then

f (Ab, u) =
{

u ∈ N, when Ab matches u
u ∈ S, others

(2)

(2) DT theory

DT theory was first proposed by Matzinger in 1994 [16]. The theory holds that
the immune system produces the corresponding protective mechanism according to the
sensitivity of the danger signal. Immune response is a response to the process of cell death.
The generation and detection of danger signals are closely related to immune biochemical
reactions [17].

As shown in Figure 2 dendritic cell (DC) in the biological immune system is an antigen-
presenting cell that ingests antigens in tissues and presents antigen fragments. Immature
dendritic cells (DCs) receive both safe and dangerous signals from the environment wherein
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antigens are present. Then, it divides into mature and semi-mature cells. The proportion of
mature antigens to total antigens ultimately determines whether there is a danger.
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The DT theory states that the immune system of a living organism does not distin-
guish all antigens as either self or foreign. In contrast, the theory of immune risk states
that the immune system only responds to harmful antigens, which greatly reduces the
scale of response and makes it more practical. In addition, the immune risk theory and
the traditional artificial immunity theory can also recognize and immunize the mutated
antigens by updating the antibody library.

DT theory holds that damaged, apoptosis, and abnormal death cells caused by an
antigen attack will transmit a red flag to antigen-presenting cells (APCs), which will create
a hazardous area. At the same time, antibodies that match the danger area are activated
and cloned for secondary immunity. The immune process is shown in Figure 3.
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SNS theory divides matter into auto and foreign bodies, so abnormal detection requires
the production of antibodies that match all foreign bodies, i.e., detectors. To cover all foreign
antigens, the system requires a large number of detectors. In contrast, DT theory divides
antigen substances into harmful and harmless antigens; hence measures will only be taken
against antigens that may be dangerous to the body. For example, no response will be
produced against food that is ingested.

In view of the huge, multi-source characteristics of mobile multimedia network data,
the immune principle adopted in this paper is based on DT theory, and only the harmful
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antigens are immunized, which can effectively reduce resource consumption and save
computation time. It ensures data security and communication fluency of network nodes.

2.2. Game Theory

Game theory studies the strategy and decision-making problems of two or more
participants, emphasizing the direct interaction between the behaviors of decision subjects.

A complete game structure should contain the elements of a player, strategy set, and
payoff function or utility function [18].

(1) Player

The multiple players in the game model refer to the parties involved in the game.
It is the decision-making body of the game model and the maker of the game strategy.
The participants have independent decision-making ability and are responsible for the
corresponding consequences. P represents a set. Participants may be individuals or groups
or groups with common interests.

(2) Strategy set

The strategy collection includes strategies that decision-making individuals may adopt.
Si is the policy set of participant i. It should contain at least two policies, and must be a
practical action plan.

(3) Payoff function

Under the game set of specific rules, the expected income obtained by decision-making
individual i is represented by payment function Ui. Utility refers to the gains and losses
of participants. Decision-making individuals use different strategies to obtain different
results. The result is influenced by strategies of all decision-making individuals. Utility
functions represent the level of income of different decision-making individuals, and are
functions of the strategies of all such individuals.

The game model is established by the attack and defense of both sides, strategy set,
and utility function as

G = {N, {Si}, {Ui}}. (3)

• Nash Equilibrium [19]

A strategy by which the Nash equilibrium can be achieved is called optimal. This
occurs when no decision-making individual can increase its benefits by changing strategy.

Nash defined equilibrium [20] as follows. For a game model G =
{

N, {Ti}i∈N , {Ui}i∈N
}

,
N is a set of players, and Si is a strategy selected by the ith player with utility ith Ui. The
decision space is S = ×Si, i ∈ N, and the utility function set is U. In G, the utility of the ith
player can be represented as a function of Si: U(Si, S−i), or U(S), where, S−i is the strategy
set of players other than i in N. The strategies selected by all players form a set of strategies
S. S = [s1, s2, · · · , sN ]. When S meets the formula (4), a Nash equilibrium is obtained [21].

Ui(S) ≥ Ui(si, s−i), ∀i ∈ N, si ∈ Si (4)

In a multimedia mobile network, the operation of each node is random and mobile.
The network resources occupied by the security detection and recovery of the system
are uncertain. The most important point of node security is to ensure the safe operation
of the node. Obviously, it is not enough to be able to detect anomalies and issue safety
warnings. In order to effectively allocate network resources, a novel idea in node security
is to establish the order of node detection and operation by a game based on immune
detection.

Self-organization, dynamic topology, and limited resources are the main characteristics
of mobile multimedia network. These characteristics determine that each node has its
own decision when communicating. The network nodes are correlated. Compared with
dominant-strategy equilibrium and cooperative equilibrium, it is suitable to adopt Nash
equilibrium because of the non-cooperative and complete information relationship between
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nodes in a mobile multimedia network. Therefore, Nash equilibrium is chosen as the game
strategy in this paper. In the Nash equilibrium, each node can be regarded as a player
making game decisions by utility calculation.

3. Immune Game–Based Abnormal Node Detection Algorithm
3.1. Basic Idea

As we know, the node security of a mobile network ultimately reflects the system’s
survivability, i.e., its ability to perform critical tasks in a timely manner when certain nodes
fail or are attacked [22].

Edge nodes in mobile networks have the characteristics of dynamism, randomness,
multiple sources, and correlation. The traditional method of judging an abnormal node
often lacks real time judgement and effectiveness. An intrusion detection system can isolate
abnormal nodes, so that subsequent routes no longer pass through them. At the same time,
the use of a data security detection system needs more computing resources. Compared
with the current situation of limited node resources, the detection system is always in the
open state, which will occupy too many resources.

Based on the theory of artificial immunity, we propose an algorithm for the detection
of abnormal nodes with an adaptive function. The algorithm uses the hazard trigger
threshold to identify a hazard source, generates an antibody library using an immune
algorithm, classifies an abnormality according to the small habitat strategy, and updates
the antibody library online according to the abnormal data. The immune game model is
established, and the optimal node recovery strategy is determined under the premise of
known abnormal nodes.

The research idea of this paper is as follows: the monitoring region is divided in the
mobile multimedia network. The node senses the information in the monitoring area.
First, the node is self-immunized. In the process of immune detection, when the abnormal
threshold value is exceeded, it is preliminary determined that the node occurs abnormally.
At the same time, the node sends the abnormal information to the spatially related neighbor
nodes for further determination. When the two diagnoses are consistent, it is judged to
be an abnormal node. If no pings are received from the neighbor node, the relay node
enters the abnormal diagnosis phase. Finally, it matches results with the data database to
determine whether the abnormality has occurred. If it has occurred, the treatment of the
immune stage is carried out. If the abnormality is determined to be unknown, the abnormal
data will be processed and features will be extracted. A new abnormal detection library is
generated through the processing of the immune detection algorithm. A further update of
the existing abnormal detector is executed and secondary immunity carried out when such
an abnormality occurs again.

When an abnormal node is detected, the system builds a game model and treats all
abnormal nodes as game participants. Each participant in the game is driven by their
own interests and always wants to use the optimal strategy. At the same time, there is
always inevitable competition between them. Competition and game play make these
nodes closely connected, and they contest each other as well as depend on each other. The
final result is to determine the recovery strategy of each node, so as to obtain real-time and
effective security protection.

3.2. Detailed System Model and Problem Formulation
3.2.1. Immune Detection Algorithm

For the convenience of research, this paper assumes that the distribution region of
nodes is a rectangle of size A × B. The node is composed of a sink node, an ordinary node,
and a regional node. A sink node is a global control node. It has the highest network control
and management rights and can carry on the unified management and deployment of the
common nodes and regional nodes in the network. Ordinary nodes mainly undertake the
functions of data collection, aggregation, and uploading. Regional nodes are mainly used
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to gather regional data and upload the data to the sink node through other regional nodes.
In addition, the following assumptions are made [23]:

(1) Nodes are not fluid.
(2) Regional nodes are not sparse, i.e., a regional node can cover a rectangular area, and

there is no dead-end phenomenon.
(3) The sensor identification ID is unique.
(4) Ordinary nodes in a region are similar. Ordinary nodes in different regions have some

incompatibilities, and regional nodes cannot manage ordinary nodes across regions.

According to the SNS and DT theories of the artificial immune system (AIS), the
mapping relationship between an artificial immune system and an abnormal node detection
system (NS) is shown in Table 1.

Table 1. Corresponding relationship between AIS and NS.

Artificial Immune System Abnormal Node Detection System

Artificial immunity Node security
B-cells Node

Antibody Detector
Antigen Feature information

Affinity between antibodies and antigens Threshold matched
Response Match

Antibodies are killed Lost information
Clone Duplication/mutation

Mature detectors Abnormal Node affirmed
Memory detectors Abnormal Node that often occurs

We set an n-dimensional antibody: Ab =
[

ab1 ab2 · · · abn
]
.

If there are m antibodies, then every antibody has an n-dimensional character, and the
antibody library can be shown as a matrix:

LibraryAb =

 Ab1
Ab2

...

 =

 ab11 ab12 · · · ab1n
ab21 ab22 · · · ab2n

...
...

...
...

. (5)

Similarly, for antigens,

LibraryAg =

 Ag1
Ag2

...

 =

 ag11 ag12 · · · ag1n
ag21 ag22 · · · ag2n

...
...

...
...

, (6)

where LibraryAg is a set of antigens. Ab and Ag are vector representations of antibodies and
antigens, respectively. The dimension of Ab and Ag is n.

Affinity is the degree to which antibodies bind to antigens, and it must be quantified.
We use Euclidean distance to represent affinity,

Distance =

√
n

∑
i=1

(Abi − Agi)
2. (7)

The greater the Euclidean distance the lower the affinity. We use affinity as a criterion to
judge similar antigens and identify sources of danger. As shown in Figure 4, it is assumed
that ultra-2D data are projected into two-dimensional space by nonlinear mapping of
high-dimensional images. On this basis, the antibody library model is simulated as two
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concentric circles in two-dimensional space, whose common center is that of the antibody
library, i.e., the vaccine that produces the antibody bank, expressed as

Vaccine =

[
ag11 + ag21 + · · ·+ agm1

m
· · · ag1n + ag2n + · · ·+ agmn

m

]
(8)
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The radius of the circle is based on Euclidean distance. The inner circle is the identifi-
cation area, where resulting antibodies are distributed. The outer ring is the update area,
and any antigens falling in this area, if conditions are met, will trigger the update of the
antibody library.

• Establishment of dangerous areas

According to the niching strategy of biological immunity, a node is randomly identified,
and the Euclidean distance from the characteristic vector of the state of other nodes is
calculated. We set a small habitat threshold, and if the Euclidean distance between two
nodes does not exceed the threshold, the node state is considered similar. As long as the
number of nodes in the same state exceeds half the total number of nodes, such nodes are
considered normal. The remaining nodes are identified as hazardous sources. The mapping
relation is shown in Figure 4.

• Fitness function

The fitness function between Agi and Abj is

Affi,j =
1

‖Abi − Agj‖
(i = 1, 2, · · · , N) (9)

• Niching strategy

The niching strategy is to divide individuals with the same or similar adaptability.
The vaccine selects only some excellent individuals and discards the rest, thus avoiding the
system falling into local optimality.

• Immune operation

(1) Negative selection

The system extracts self-information called self from feature information and sets
matching schemes and parameters. Information that does not match the self is collectively
called nonself. Abnormal detection is done by differentiating between self and nonself.

(2) Clone, crossover, and mutation.

In biological immunity, individuals with high adaptability will be cloned as excellent
genes involved in the identification of antigens. In artificial immunity, individuals with high
adaptability are involved in crossovers and mutations to preserve excellent genes. Intersections
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are performed between two individuals, with random intersections selected for fragment
exchange. Mutation is the reverse substitution of randomly selected gene points.

• Basic idea of the algorithm

The feature information of nodes is extracted as the measured data, and random
binary data are taken as the initial population to conduct antibody training. According
to the set threshold value and fitness function, a self-nonself operation is carried out to
calculate individual fitness. According to the fitness, the corresponding string is selected
for immune operation to obtain the antibody library. Antibodies in the antibody library
generate vaccines through niche strategies. The vaccine responds directly to the failure
node in the subsequent test. The antibody library is constantly updated in the detection
process, and the vaccine is generated and replaced to form a dynamic detection mechanism.

• Basic steps and flowchart of the algorithm

The flowchart of the abnormal detection algorithm based on immunity is shown in
Figure 5.
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Step 1: Initialization parameters
This includes node data extraction and binary encoding. In the mobile network, the

node detection area is selected. The node characteristic information can be obtained from
the node key file. After the information is obtained, the data must be binary encoded.

Step 2: Obtain the initial population
A randomly coded antibody library is established. The fitness function is imputed.

Negative selection and clone selection are used to respond to node characteristic data. Thus,
the initial population is obtained.
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Step 3: Establishment of antibody library
The individual fitness is calculated, the antibody obtained by matching with the

threshold, and the qualified antibody library generated. The niche strategy starts at any
time in the antibody library to eliminate antibodies that are too similar. The antibody
library is updated dynamically.

Step 4: Vaccine mechanism
Detected antibodies that exceed the vaccine threshold are added to the antibody library

as vaccines.
Step 5: Matching detection
Antibodies in the antibody library will start detection as required, calculate the Eu-

clidean distance dij of the state feature vector between nodes i and j, and mark node i to
trigger a danger signal. All nodes are marked whose distance from the node i state eigen-
vector exceeds the threshold value to trigger a danger signal. Upon successful detection,
the abnormal node is reported.

3.2.2. Node Game Model

The node game is to solve the priority problem of node detection and recovery based
on global considerations between abnormal nodes.

When an exception occurs on a node, it can be understood in two cases. One is that
the node itself is destroyed, and the other is the node is disturbed, spoofed, or attacked.
Whatever the case, once the node occurs abnormal, the node energy will be consumed.
These abnormal nodes will affect the normal operation of the mobile network and cause
the breakdown of the communication between adjacent nodes.

Therefore, the game uses the energy consumption of nodes as the utility index. Because
the system uses artificial immune theory for abnormal detection, it is assumed that all
nodes in the network structure have deployed corresponding abnormal detection agents. In
the game model, there are two participants, the sensor node S (θs) and abnormal detection
agent R (θR). The goal of the game translates to the abnormal detection agent providing the
optimal strategy when deciding whether to adopt a defense or recovery strategy.

When the transmission bandwidth is B, the node energy consumption is satisfied:

EEtr(B, l) = BEEno + BlxEEli, (10)

where EEno indicates that the node’s internal circuit consumes power. EEli represents
the amplified power of the antenna to the current signal. l is the transmission distance
correction coefficient. For a node in the region, let lN be the stable transmission distance.
That is, if the actual transmission distance ld is less than or equal to lN, the data transmission
within this range is considered stable, and the energy consumption of node transmission is
the same. If ld is greater than lN, l = ld/lN. In formula (10), x represents the transport model
index. When the transport model exponent between nodes is 2, a direct link between the
two is no longer established [20].

x =


0 when ld ≤ lN
1 when ld > lN
2 when ld � lN

(11)

According to the above assumptions, ordinary nodes in the region are similar. These
ordinary and regional nodes are in a highly correlated state. As a result, the zone node can
combine the upload bandwidth of k normal nodes in region B1, B2, . . . , Bk into the zone
bandwidth BBlo and upload data. The energy consumption generated by the zone node,
EElo(BBlo, k), is

EElo(BBlo, k) = BBloEElo, (12)

where EElo is the power consumption of the circuit inside the regional node.
The number of zones is N and the correction coefficient of transmission radius of

regional nodes is d. Let dN be the stable transmission distance. That is, if the actual
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transmission radius dd is less than or equal to dN, the data transmission within this range is
considered stable, and the energy consumption of node transmission is the same. If dd is
greater than dN, d = dd/dN. Taking one region and counting the number of normal nodes,
we can see that the region contains k ordinary nodes. Owing to the high correlation of
nodes within the region, the upload bandwidth of normal nodes is the fixed value BBle.
Regional nodes must aggregate data and transmit it to the sink node, so the overall energy
consumption of the region’s ordinary nodes is

EEall(BBle, d, k) = kBBleEEno + kBBledxEEli. (13)

where x means the same thing as Formula (11).
Considering the short topological distance between the region node and normal nodes,

the energy consumption model mainly uses the zone transmission mode.
Since the final network data must be transferred to the sink node, the node must be

selected in segments. The regional and sink nodes select the optimal number of partitions
and initialize the link data by routing the table. In order to reduce energy consumption
caused by various data packets sent by nodes during network initialization, device switch-
ing of the regional node is carried out only when the remaining energy of regional nodes is
lower than the threshold. We use this as a preparation for node recovery [24].

Game considerations between participants S and R: node S can be normal or abnormal,
represented by θs = 0 and θs = 1, respectively. When θs = 0, the action of R is as(θs = 0),
and when θs = 1, it is as(θs = 1). As =

{
as
∣∣ Abnormal, Normal

}
an action set of

S. Abnormal indicates that the node is abnormal and may affect other nodes. Normal
means that the node is able to communicate normally. Detect shows that the system is
detecting abnormalities. Idle indicates that the system is idle and can be used for recovery.
AR =

{
aR
∣∣ Detect, Idle

}
is an action set of R. P is the probability of node failure, and

1-p is the probability that the node is healthy.
Let G represent the benefits of nodes, using node energy consumption E as a cost.

When the abnormal node is confirmed, the node yield is GA and the node energy con-
sumption is EA. When a node selects a normal action, the node packet can be forwarded
smoothly. In this way, the node will benefit GC from the mobile network with a good
communication guarantee, and the node energy consumption will be EC. The abnormal
node selects the normal action, i.e., waiting for recovery and earning GB. However, in the
cooperative process, receiving and forwarding packets consumes the energy of the sensor
node, defined as EB. When the abnormal detection agent selects the object action, it gains
GD because it successfully detects the failed node, and the abnormal detection agent must
pay the corresponding cost for the energy consumption, expressed as ED. The detection
and false-positive rates also exist in the abnormal detection agent, and are represented
by α and β, respectively. A false positive is a normal node identified as failed in normal
communication, which will cause loss to the abnormal detection agent LF. Matrices (I) and
(II) are the node utility matrices, which express the utility benefit of the node. Matrix (I) is
the utility benefit of the failed node, and Matrix (II) is the loss of the node.

US, UR Detect Idle
Abnormal
Normal

[
(1− α)GA − αGD − EA GA − EA

GC − EC GC − EC

]
(Matrix I)

US, UR Detect Idle
Abnormal
Normal

[
αGD − (1− α)GA − ED −GA

−β·LF − ED 0

]
(Matrix II)

The abnormal behavior is always selected when a node belongs to a failed node. The
normal behavior is always selected when it belongs to a normal node. Therefore, for the
abnormal detection agent, the expected benefits of choosing detect and idle are, respectively,

EuR(Detect) = p·(αGD − (1− α)·GA − ED) + (1− p)·(−β·LF − ED) (14)
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EuR(Idle) = −p·GA + (1− p)·0 = −p·GA. (15)

The expected benefits of fault and cooperation for the failure node θs = 1 are, respectively,

EuS(Abnormal) = δk·p·(θs = 1|(1− α)·GA − αGD − EA) + (1− δk)·p·(θs = 1|GA − EA) (16)

EuS(Normal) = δk·p·(θs = 1|(GC − EC)) + (1− δk)·(1− p· (θs = 1|(GC − EC + λGc∅)), (17)

where δk is the probability that the normal detection agent R will take action ∅. The user
can reduce the proportion of losses by detecting the abnormal node and recovering it. The
weight of the environment is λ. It is used when the number of node failures exceeds the
threshold.

3.2.3. Method of Immune Game

The nodes of the mobile network will see a series of actions during their work, which
form the monitoring data sent to the abnormal detection agent R. Abnormal detection is
carried out by the artificial immune method, which determines whether the monitoring
data are normal or abnormal. The abnormal detection agent obtains the corresponding
game parameters from the storage data area and initializes the game model, which will
receive output data from the abnormal detection and utility matrix set by the manager
based on empirical settings. We can determine the probability that the abnormal detection
agent will select the actions detect and idle by the value of δk. R calculates p and stores it in
the storage data area for the next phase.

In the second stage, the game strategies adopted by all nodes involved in the network
form a strategy set. When the utility of a node is greater than or equal to the utility of the
policy set, the Nash equilibrium condition is satisfied. At this point, the node makes the
optimal decision. The game process of nodes is shown in Figure 6.
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4. Performance Evaluation
4.1. Evaluation Methods

In order to verify and evaluate the feasibility and effectiveness of the immune game
detection algorithm proposed in this paper, a simulation experiment was carried out. There
are two aspects to the experiment.

(1) Hybrid attack verification. Through comparison experiments on the proposed algo-
rithm, extended dynamics, and LISYS (an artificial immune system model proposed
by Homfeyr and Forrest (1999)) based on the AIS model, the detection rate and false
detection rate of the proposed algorithm were verified.
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(2) The node stability and reliability were verified, and through the comparison experi-
ment of the immune-game model and Extended-DynamiCS, the immune-game model
was found to maintain better network stability and reliability.

4.2. Simulation Background

To ensure the reliability of the experiment, the selection of experimental data is based
on the principle of authority and diversity. The KDD-CUP99 dataset was selected for both
the test set and training set. There are about 4.9 million records in this dataset, and all
attack types are divided into 39 attack types in four major categories. Considering that the
algorithm in this paper carries out abnormal detection of node behavior, the test data in the
experiment contain attack types that only appear in the test set, but these attack types do
not appear in the training set. The training set contains one normal identification type and
22 attack types. The dataset also provides a 10% size subset for training and testing. The
data library of simulation experiment in this paper comes from these two subsets. Their
sample distribution is shown in Table 2.

Table 2. Partial samples in 10% KDDCup99 dataset.

Label Attack Type Attack Code Attack Name Size of
Training Set

Size of
Testing Set

0 NOM-AL 0 / 97,278 60,593
1 PRO-BING / 4107 4166

1 Ipsweep 1247 306
2 mscan - 1053
3 nmap 231 84
4 Portsweep 1040 354
5 saint - 736
6 satan 1589 1633

2 DOS / 391,458 229,853
7 Apache2 - 794
8 back 2203 1098
9 land 21 9

10 mailbomb - 5000
11 neptune 107,201 58,001
12 pod 264 87
13 Processtable - 759
14 smurf 280,790 164,091
15 teardrop 979 12
16 UDPstorm - 2

4.3. Experimental Environment and Parameter Settings

To evaluate the algorithm’s performance, the NS2 simulation environment was se-
lected, the computer operating system was Win 10, the CPU’s main frequency was 5.5 GHz,
and there were 16 GB of memory. The mobile network simulation scene was set to a square
area of 100 m × 100 m, and 20 mobile nodes were randomly set within the region. The
motion of a node was based on the random waypoint motion model [25], with a maximum
motion speed of 10 m/s. Each node had a communication radius of 30 m. Experimental
simulation parameters are shown in Table 3. The values of the immune game model are
shown in Table 4.

Table 3. Parameter set of experiment.

Item Value Item Value

network simulation area 100 m × 100 m size of data packet 150 bytes
Initial energy of nodes 50 J transmission rate 500 Kbps

Node distribution random site communication mode TDMA
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Table 4. Values of immune game model parameters.

Parameter Type Parameters Value

Immune parameter
L (Size of a single detector) 64 bit

r (Threshold of matches) 16 bit
m (Number of alphabet symbols) 4

P (Number of detectors) 200
Game parameter A (Probability that node will be infected and detected) 0.8

β (Probability that node is not infected but is detected) 0.08
Pr (Probability that user will check alarm node) 0.8

∅ (User detects failed node and recovers, allowing user to
reduce percentage of losses) 0.5

GA (Benefits that can be gained when user
detects an attack). 250

GC (Benefits of normal node communication.) 100
GD (Average return per test) 200

ED (Average cost per test) 10
D (Node attack was not detected and user lost.) 1000

LF (Normal node was mistakenly alarmed and user lost) 15
λ (Environmental weight; starts when number of node

failures exceeds threshold) 0.8

δk (Probability that abnormal detection agent chooses to
perform detection action) 0.8

4.4. Experimental Results

The data in Table 2 must be converted to binary form. We take 64 characters as the
antibody length, which makes it easy for the program to extract self and nonself. This
standardized data format is shown in Figure 7.
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The detection rate is
TP =

T_count
Attack_count

(18)

where T_count is the number of abnormal nodes detected, and Attack_count is the number
of system attack records entered.

The abnormal-detection rate is

FP =
F_count

Normal_count
(19)
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where F_count is the number of normal nodes which are considered as abnormal, Nor-
mal_count is the number of nodes that have legitimate behavior.

So, TP indicates true positive and FP means false positive.
The simulation experiment had training and test parts. The training part selects several

records that can fully reflect various attack types from 10% of the training subset of the
KDD-CUP99 dataset. They are processed and loaded into the system. The system is trained
to produce an initial set of self. In the test part, several records were selected from the
test subset of the KDD-CUP99 dataset to fully reflect the various attack types, and attack
behavior was reproduced through the network reissue tool, so as to verify the detection
and error-detection rates.

The immune-game algorithm, Extended-DynamiCS, and LISYS based on the AIS
model were experimentally compared, with detection and abnormal-detection rates as
shown in Figure 8. The detection rate and false detection rate of the proposed algorithm are
significantly better than those of the other two algorithms. This is due to the adoption of
vaccine and niching strategy in the immune detection part of the algorithm in this paper.
Vaccines have made testing more efficient. Niching strategy increases the detection coverage,
and thus further improves the detection efficiency and reduces the false detection rate.
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Figure 9 shows the stabilization time of the network under different numbers of nodes.
The proposed algorithm considers not only the energy consumption of nodes but the
influence of links on node security.
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The other two algorithms take insufficient account of the link factors and do not
optimize the initial process of the network region. Therefore, their network operation
stability is lower than that of the algorithm presented in this paper.

Figure 9 also shows that the stabilization time decreases with more nodes. This
is because the greater the amount of nodes, the more network resources are used. An
increase in the coupling between nodes causes the system to sacrifice the stability time
while coordinating between nodes.

To test the effect of the algorithm’s game mechanism on detection, the reliability of the
network under the long-term operation of different algorithms is shown in Figure 10. The
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reliability of the algorithm is related to the failure rate of the attacked sensor node, number
of sensor nodes in a cluster, number of cluster heads passing on a route, and number of
routes available for the entire network. Therefore, the numbers of nodes and routes were
unchanged in experiments, ensuring that each algorithm was tested on the same type and
number of attacks. The experimental results of reliability were obtained as the time of
normal sending and receiving of network data.
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In the experiment, the network is defined as an undirected simple network topology
diagram. Graph G consists of a set of points V(G) and an edge set E(G), G = (V, E). The
reliability of the network is R(G,Φ,ψ), where G = (V, E), Φ and ψ represent the probability
of failure of all nodes and edges in the graph, respectively, and the value range is [0, 1].
Thus, the reliability of the network R(G,Φ,ψ) is generally defined as the probability that
graph G remains connected under the possible abnormal of points and edges.

Owing to the algorithm comparison experiment, the reliability is quantified by the
network reliability running time in this paper. According to the literature [26,27], this paper
adopts MTTF of the mean fault-free time of nodes to calculate the reliability of the network.
For simplicity, it is assumed that the failure rate λ is a constant during the whole period of
system operation, and that each cluster of the network contains m nodes. That is,

λ =
1

MTTF
(20)

Then, the reliability of a node is defined as

Ri(t) = exp(−λt) (21)

Due to the fact that the probability of abnormal occurrence of each node is independent,
a cluster will lose its ability to work normally only when all the candidate cluster heads are
abnormal and cause faults. Therefore, the reliability of a cluster can be obtained.

Rci(t) = 1−
m

∏
i=1

(1− Ri(t)) = 1− (1− exp(−λt))m (22)
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Since the failure of any cluster on a route will lead to the failure of the whole route,
the reliability of a route can be obtained.

RRi(t) =
n

∏
i=1

Rci(t) =
(
1− (1− exp(−λt))m)n (23)

where n indicates the number of clusters through which a route passes. Assuming that any
route to transmit data passes through the same number of clusters, the reliability of the
entire network is

R(t) = 1−
l

∏
i=1

(1− RRi(t)) = 1−
((

1− (1− exp(−λt))m)n
)l

(24)

where l represents the number of all available routes from the source node to the base
station in the entire network.

In the experimental scheme, the number of nodes and routes is kept unchanged. It is
important to ensure that the network is given the same type and number of attacks during
each algorithm test. The experimental results of reliability are obtained by the normal
transmission and reception time of network data.

It can be seen from the figure that the network reliability of the application of the
immune-game algorithm was significantly higher than that of the other algorithms.

5. Conclusions

We addressed the problem of node data security in a mobile multimedia network,
and used an immune method to solve the problem of abnormal detection when nodes are
attacked. Game theory was used to optimally allocate mobile user resources.

Artificial immune theory uses random coding to generate the initial detector. Non-
specific immunity is obtained by negative selection. The risk theory of artificial immunity
provides for crossover, variation, and vaccine immune responses. This theory allows for
specific immunity. An immune algorithm is used to detect abnormal nodes and to then
establish an abnormal detection system for nodes. Obviously, a better theoretical basis is
presented. Simulation results showed that the immune algorithm can effectively solve the
problem of abnormal detection in node security.

Regarding diagnosis, the performance of the algorithm depends on the node’s recog-
nition of abnormal data. A certain consumption threshold is set in both time and energy
in the diagnosis of the node itself and spatially related neighboring nodes. Through the
dual mechanism of self-diagnosis and neighbor node diagnosis, as well as the middle
node’s diagnosis, the transient abnormal action of nodes are excluded. The accuracy of
diagnosis can be effectively improved and the workload is somewhat reduced in the stage
of immune computing.

The ability to restore a system to a known good state after it has been damaged is more
important than making it immune to all attacks. Resilient systems can recover quickly and
confidently. As a task-based network, it not only requires data transmission but data fusion
and task cooperative control. Node security ensures the confidentiality of task execution,
the reliability of data generation, and the security of data transmission. Therefore, detection
and recovery of abnormal nodes after diagnosis are important research topics.

Due to the fact that a mobile multimedia transmission network has a large number
of nodes, to repair all failed nodes in time is bound to lead to system communication
difficulties. Game theory studies the strategy and decision-making problems of two or
more participants, and can provide novel ideas for the study of network security. A mobile
wireless network is characterized by self-organization, the lack of a control center, and
dynamic topology. These characteristics determine that each node makes its own decision
when communicating. When making a decision, a node may act selfishly and seek a
decision beneficial only to itself, or even act maliciously and choose to degrade network
performance. Through the game, an abnormal detection system can determine when to
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start detection, and the priority of node repair can be determined to ensure reliable system
operation.

In this paper, the status of an abnormal node in the network is determined by calculat-
ing its revenue and payment. The game method is based on a Nash equilibrium, and the
idea of a dynamic evolutionary game is added. This is because the nodes in the network
as participants, have limited cognitive levels, and a limited ability to collect and process
information and to reason. The decision-making behavior of participants will be affected
by the group environment, and they can only make strategic choices through learning
and imitation. Because of bounded rationality, participants in the evolutionary game will
not immediately obtain the optimal strategy, and must perform self-adaptive adjustments
under the influence of the environment, through continuous learning and trial and error, to
find the optimal strategy. Hence, the equilibrium is not the result of a choice, and is only
reached by dynamic adjustment and adaptation, and even if the equilibrium is reached,
deviations may occur under the premise of environmental changes.

The algorithm in this article provides initial values for the parameters δk (probability of
the abnormal detection agent choosing to perform the detection action) and ∅ (proportion
of loss that the user can reduce when the user detects the failed node and recovers). Then,
environmental factors were considered as variables. They adjust as the energy of the nodes
changes. In the simulation experiment, weight fine-tuning was added according to the
number of node failures. In the experiment, the weight is set by itself and improves the
performance of the algorithm to some extent. In future, more methods can be studied to
further improve the performance of the algorithm.

The proposed algorithm synthesizes both immune and game mechanisms. Immunization
is used for abnormal detection. The essence of the game is to coordinate the work of the
system, increase its stability, and reduce time consumption. But the stability of the system
increases, as does the complexity of the algorithm. As a result, the response time of the system
is not improved. Therefore, the game problem of the algorithm requires further study.

The simulation experiment adopted in this paper obtains the abnormal nodes through
network attack. The premise of the experiment is that the node is normal before being
attacked. Therefore, the feature extraction of normal behavior is not disturbed by the
algorithm. This is an ideal state. In addition, the data collected by the nodes in the mobile
network have the characteristics of spatial and temporal correlation. A node’s working
behavior has great uncertainty. Therefore, the anti-jamming performance of the algorithm
requires further consideration.
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