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Abstract: Gradient-based methods are popularly used in training neural networks and can be
broadly categorized into first and second order methods. Second order methods have shown to have
better convergence compared to first order methods, especially in solving highly nonlinear problems.
The BFGS quasi-Newton method is the most commonly studied second order method for neural
network training. Recent methods have been shown to speed up the convergence of the BFGS method
using the Nesterov’s acclerated gradient and momentum terms. The SR1 quasi-Newton method,
though less commonly used in training neural networks, is known to have interesting properties and
provide good Hessian approximations when used with a trust-region approach. Thus, this paper aims
to investigate accelerating the Symmetric Rank-1 (SR1) quasi-Newton method with the Nesterov’s
gradient for training neural networks, and to briefly discuss its convergence. The performance of the
proposed method is evaluated on a function approximation and image classification problem.

Keywords: neural networks; quasi-Newton; symmetric rank-1; Nesterov’s accelerated gradient;
limited memory; trust-region

1. Introduction

Neural networks have shown to have great potential in several applications. Hence,
there is a great demand for large scale algorithms that can train neural networks effectively
and efficiently. Neural network training posses several challenges such as ill-conditioning,
hyperparameter tuning, exploding and vanishing gradients, saddle points, etc. Thus the
optimization algorithm plays an important role in training neural networks. Gradient-
based algorithms have been widely used in training neural networks and can be broadly
categorized into first order methods (e.g., SGD, Adam) and higher order methods (e.g.,
Newton method, quasi-Newton method), each with its own pros and cons. Much progress
has been made in the last 20 years in designing and implementing robust and efficient
methods suitable for deep learning and neural networks. While several works focus on
sophisticated update strategies for improving the performance of the optimization algo-
rithm, several works propose acceleration techniques such as incorporating momentum,
Nesterov’s acceleration or Anderson’s accleration. Furthermore, it has been shown that
second-order methods show faster convergence compared to first order methods, even
without the acceleration techniques. While most of the second-order quasi-Newton meth-
ods used in training neural networks are rank-2 update methods, rank-1 methods are not
widely used since they do not perform as well as the rank-2 update methods. In this paper,
we investigate if the Nesterov’s acceleration can be applied to the rank-1 update methods
of the quasi-Newton family to improve performance.

Algorithms 2022, 15, 6. https://doi.org/10.3390/a15010006 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15010006
https://doi.org/10.3390/a15010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7714-1659
https://orcid.org/0000-0002-9577-3721
https://orcid.org/0000-0003-3418-3178
https://orcid.org/0000-0001-7019-2712
https://doi.org/10.3390/a15010006
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15010006?type=check_update&version=2


Algorithms 2022, 15, 6 2 of 16

Related Works

First order methods are most commonly used due to their simplicity and low com-
putational complexity. Several works have been devoted to first-order methods such as
the gradient descent [1,2] and its variance-reduced forms [3–5], Nesterov’s Accelerated
Gradient Descent (NAG) [6], AdaGrad [7], RMSprop, [8] and Adam [9]. However, second
order methods have shown to have better convergence, with the only drawbacks being
high computational and storage costs. Thus, several approximations have been proposed
under Newton [10,11] and quasi-Newton [12] methods to efficiently use the second order
information while keeping the computational load minimal. Recently there has been a
surge of interest in designing efficient second order quasi-Newton variants which are better
suited for large scale problems, such as in [13–16] since in addition to better convergence,
second order methods are more suitable for parallel and distributed training. It is notable
that among the quasi-Newton methods, the Broyden-Fletcher-Goldfarb-Shanon (BFGS)
method is most widely studied for training neural networks. The Symmetric Rank-1 (SR1)
quasi-Newton method, though less commonly used in training neural networks, is known
to have interesting properties and provide good Hessian approximations when used with
a trust-region approach [17,18]. Several works in optimization [19–21] have shown SR1
quasi-Newton methods to be efficient. Recent works such as [22,23] have proposed sampled
LSR1 (limited memory) quasi-Newton updates for machine learning and describe efficient
ways for distributed training implementation. Recent studies such as [24,25] have shown
that the BFGS method can be accelerated by using Nesterov’s accelerated gradient and mo-
mentum terms. In this paper, we explore if the Nesterov’s acceleration can be applied to the
LSR1 quasi-Newton method as well. We thus propose a new limited memory Nesterov’s
acclerated symmetric rank-1 method (L-SR1-N) for training neural networks. We show that
the performance of the LSR1 quasi-Newton method can be significantly improved using
the trust-region approach and Nesterov’s acceleration.

2. Background

Training in neural networks is an iterative process in which the parameters are updated
in order to minimize an objective function. Given a subset of the training dataset X ⊆ Tr
with input-output pair samples (xp, op)p∈X drawn at random from the training set Tr and
error function Ep(w; xp, op) parameterized by a vector w ∈ Rd, the objective function to be
minimized is defined as

E(w) =
1
b ∑

p∈X
Ep(w), (1)

where b = |X|, is the batch size. In full batch, X = Tr and b = n where n = |Tr|. In gradient
based methods, the objective function E(w) under consideration is minimized by the
iterative formula (2) where k ∈ N is the iteration count and vk+1 is the update vector, which
is defined for each gradient algorithm.

wk+1 = wk + vk+1, for k = 1, 2, ..., kmax ∈ N. (2)

Notations: We briefly define the notations used in this paper. In general, all vectors are
denoted by boldface lowercase characters, matrices by boldface uppercase characters and
scalars by simple lowercase characters. The scalars, vectors and matrices at each iteration
bear the corresponding iteration index k as a subscript. Below is a list of notations used.

• iteration index k ∈ N : k = 1, 2, ..., kmax ∈ N
• n is the number of total samples in Tr and is given by |Tr|.
• b is the number of samples in the minbatch X ⊂ Tr and is given by |X|.
• d is the number of parameters of the neural network.
• mL is the limited memory size.
• αk is the learning rate or step size.
• µk is the momentum coefficient, chosen in the range (0,1).
• E(w) is the error evaluated at w.
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• ∇E(w) is the gradient of the error function evaluated at w.

In the following sections, we briefly discuss the common first and second order
gradient based methods.

2.1. First-Order Gradient Descent and Nesterov’s Accelerated Gradient Descent Methods

The gradient descent (GD) method is one of the earliest and simplest gradient based
algorithms. The update vector vk+1 is given as

vk+1 = −αk∇E(wk). (3)

The learning rate αk determines the step size along the direction of the gradient
∇E(wk). The step size αk is usually fixed or set to a simple decay schedule.

The Nesterov’s Accelerated Gradient (NAG) method [6] is a modification of the
gradient descent method in which the gradient is computed at wk + µkvk instead of wk.
Thus, the update vector is given by:

vk+1 = µkvk − αk∇E(wk + µkvk), (4)

where ∇E(wk + µkvk) is the gradient at wk + µkvk and is referred to as Nesterov’s acceler-
ated gradient. The momentum coefficient µk is a hyperparameter chosen in the range (0,1).
Several adaptive momentum and restart schemes have also been proposed for the choice of
the momentum [26,27]. The algorithms of GD and NAG are as shown in Algorithm 1 and
Algorithm 2, respectively.

Algorithm 1 GD Method

Require: ε and kmax
Initialize: wk ∈ Rd .

1: k← 1
2: while ||E(wk)|| > ε and k < kmax do
3: Calculate ∇E(wk)
4: vk+1 ← −αk∇E(wk)
5: wk+1 ← wk + vk+1
6: k← k + 1
7: end while

Algorithm 2 NAG Method

Require: 0 < µk < 1, ε and kmax
Initialize: wk ∈ Rd and vk = 0.

1: k← 1
2: while ||E(wk)|| > ε and k < kmax do
3: Calculate ∇E(wk + µkvk)
4: vk+1 ← µkvk − αk∇E(wk + µkvk)
5: wk+1 ← wk + vk+1
6: k← k + 1
7: end while

2.2. Second-Order Quasi-Newton Methods

Second order methods such as the Newton’s method have better convergence than
first order methods. The update vector of second order methods take the form

vk+1 = −αkHk∇E(wk). (5)
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However, computing the inverse of the Hessian matrix Hk = B−1
k incurs a high

computational cost, especially for large-scale problems. Thus, quasi-Newton methods are
widely used where the inverse of the Hessian matrix is approximated iteratively.

2.2.1. BFGS Quasi-Newton Method

The Broyden-Fletcher-Goldfarb-Shanon (BFGS) algorithm is one of the most pop-
ular quasi-Newton methods for unconstrained optimization. The update vector of the
BFGS quasi-Newton method is given as vk+1 = αkgk, where gk = −HBFGS

k ∇E(wk) is the
search direction. The hessian matrix HBFGS

k is symmetric positive definite and is iteratively
approximated by the following BFGS rank-2 update formula [28].

HBFGS
k+1 =

(
I−

pkqT
k

qT
k pk

)
HBFGS

k

(
I−

qkpT
k

qT
k pk

)
+

pkpT
k

qT
k pk

, (6)

where I denotes the identity matrix, and

pk = wk+1 −wk and qk = ∇E(wk+1)−∇E(wk). (7)

2.2.2. Nesterov’s Accelerated Quasi-Newton Method

The Nesterov’s Accelerated Quasi-Newton (NAQ) [24] method introduces Nesterov’s
acceleration to the BFGS quasi-Newton method by approximating the quadratic model of
the objective function at wk + µkvk and by incorporating Nesterov’s accelerated gradient
∇E(wk + µkvk) in its Hessian update. The update vector of NAQ can be written as:

vk+1 = µkvk + αkgk, (8)

where gk = −HNAQ
k ∇E(wk +µkvk) is the search direction and the Hessian update equation

is given as

HNAQ
k+1 =

(
I−

pkqT
k

qT
k pk

)
HNAQ

k

(
I−

qkpT
k

qT
k pk

)
+

pkpT
k

qT
k pk

, (9)

where
pk = wk+1 − (wk + µkvk) and qk = ∇E(wk+1)−∇E(wk + µkvk). (10)

(9) is derived from the secant condition qk = (HNAQ
k+1 )−1pk and the rank-2 updating

formula [24]. It is proven that the Hessian matrix HNAQ
k+1 updated by (9) is a positive definite

symmetric matrix, given HNAQ
k is initialized to identity matrix [24]. It is shown in [24] that

NAQ has similar convergence properties to that of BFGS.
The algorithms of BFGS and NAQ are as shown in Algorithm 3 and Algorithm 4,

respectively. Note that the gradient is computed twice in one iteration. This increases
the computational cost compared to the BFGS quasi-Newton method. However, due to
acceleration by the momentum and Nesterov’s gradient term, NAQ is faster in convergence
compared to BFGS. Often, as the scale of the neural network model increases, the O(d2) cost
of storing and updating the Hessian matrices HBFGS

k and HNAQ
k become expensive. Hence,

limited memory variants LBFGS and LNAQ were proposed, and the respective Hessian
matrices were updated using only the last mL curvature information pairs {pi, qi}k−mL−1

i=k−1 ,
where mL is the limited memory size and is chosen such that mL � b.
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Algorithm 3 BFGS Method

Require: ε and kmax
Initialize: wk ∈ Rd and Hk = I.

1: k← 1
2: Calculate ∇E(wk)
3: while ||E(wk)|| > ε and k < kmax do
4: gk ← −HBFGS

k ∇E(wk)
5: Determine αk by line search
6: vk+1 ← αkgk
7: wk+1 ← wk + vk+1
8: Calculate ∇E(wk+1)
9: Update HBFGS

k+1 using (6)
10: k← k + 1
11: end while

Algorithm 4 NAQ Method

Require: 0 < µk < 1, ε and kmax
Initialize: wk ∈ Rd, Hk = I and vk = 0.

1: k← 1
2: while ||E(wk)|| > ε and k < kmax do
3: Calculate ∇E(wk + µkvk)

4: gk ← −HNAQ
k ∇E(wk + µkvk)

5: Determine αk by line search
6: vk+1 ← µkvk + αkgk
7: wk+1 ← wk + vk+1
8: Calculate ∇E(wk+1)

9: Update HNAQ
k using (9)

10: k← k + 1
11: end while

2.2.3. SR1 Quasi-Newton Method

While the BFGS and NAQ methods update the Hessian using rank-2 updates, the
Symmetric Rank-1 (SR1) method performs rank-1 updates [28]. The Hessian update of the
SR1 method is given as

HSR1
k+1 = HSR1

k +
(pk −HSR1

k qk)(pk −HSR1
k qk)

T

(pk −HSR1
k qk)Tqk

, (11)

where,
pk = wk+1 −wk and qk = ∇E(wk+1)−∇E(wk). (12)

Unlike the BFGS or NAQ method, the Hessian generated by the SR1 update may not
always be positive definite. Also, the denominator can vanish or become zero. Thus, SR1
methods are not popularly used in neural network training. However, SR1 methods are
known to converge faster towards the true Hessian than the BFGS method, and have com-
putational advantages for sparse problems [17]. Furthermore, several strategies have been
introduced to overcome the drawbacks of the SR1 method, resulting in them performing
almost on par with, if not better than, the BFGS method.

Thus, in this paper, we investigate if the performance of the SR1 method can be acceler-
ated using Nesterov’s gradient. We propose a new limited memory Nesterov’s accelerated
symmetric rank-1 (L-SR1-N) method and evaluate its performance in comparison to the
conventional limited memory symmetric rank-1 (LSR1) method.
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3. Proposed Method

Second order quasi-Newton (QN) methods build an approximation of a quadratic
model recursively using the curvature information along a generated trajectory. In this
section, we first show that the Nesterov’s acceleration when applied to QN satisfies the
secant condition and then show the derivation of the proposed Nesterov Accelerated
Symmetric Rank-1 Quasi-Newton Method.

Nesterov Accelerated Symmetric Rank-1 Quasi-Newton Method

Suppose that E : Rd → R is continuosly differentiable and that d ∈ Rd, then from
Taylor series, the quadratic model of the objective function at an iterate wk is given as

E(wk + d) ≈ mk(d) ≈ E(wk) +∇E(wk)
Td +

1
2

dT∇2E(wk)d. (13)

In order to find the minimizer dk, we equate ∇mk(d) = 0 and thus have

dk = −∇2E(wk)
−1∇E(wk) = −B−1

k ∇E(wk) . (14)

The new iterate wk+1 is given as,

wk+1 = wk − αkB−1
k ∇E(wk), (15)

and the quadratic model at the new iterate is given as

E(wk+1 + d) ≈ mk+1(d) ≈ E(wk+1) +∇E(wk+1)
Td +

1
2

dTBk+1d , (16)

where αk is the step length and B−1
k = Hk and its consecutive updates B−1

k+1 = Hk+1
are symmetric positive definite matrices satisfying the secant condition. The Nesterov’s
acceleration approximates the quadratic model at wk + µkvk instead of the iterate at wk.
Here vk = wk −wk−1 and µk is the momentum coefficient in the range (0, 1). Thus we
have the new iterate wk+1 given as,

wk+1 = wk + µkvk − αkB−1
k ∇E(wk + µkvk), (17)

= wk + µkvk + αkdk. (18)

In order to show that the Nesterov accelerated updates also satisfy the secant condition,
we require that the gradient of mk+1 should match the gradient of the objective function at
the last two iterates (wk + µkvk) and wk+1. In other words, we impose the following two
requirements on Bk+1,

∇mk+1|d=0 = ∇E(wk+1 + d)|d=0 = ∇E(wk+1), (19)

∇mk+1|d=−αkdk
= ∇E(wk+1 + d)|d=−αkdk

= ∇E(wk+1 − αkdk) = ∇E(wk + µkvk). (20)

From (16),
∇mk+1(d) = ∇E(wk+1) + Bk+1d. (21)

Substituting d = 0 in (21), the condition in (19) is satisfied. From (20) and substituting
d = −αkdk in (21), we have

∇E(wk + µkvk) = ∇E(wk+1)− αkBk+1dk. (22)

Substituting for αkdk from (18) in (22), we get

∇E(wk + µkvk) = ∇E(wk+1)− Bk+1(wk+1 − (wk + µkvk)). (23)
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On rearranging the terms, we have the secant condition

yk = Bk+1sk, (24)

where,

yk = ∇E(wk+1)−∇E(wk + µkvk) and sk = wk+1 − (wk + µkvk) = αkdk. (25)

We have thus shown that the Nesterov accelerated QN update satisfies the secant
condition. The update equation of Bk+1 for SR1-N can be derived similarly to that of the
classic SR1 update [28]. The secant condition requires Bk to be updated with a symmetric
matrix such that Bk+1 is also symmetric and satisfies the secant condition. The update
of Bk+1 is defined using a symmetric-rank-1 matrix formed by an arbitrary vector uuT is
given as

Bk+1 = Bk + σuuT , (26)

where σ and u are chosen such that they satisfy the secant condtion in (24). Substituting
(26) in (24), we get

yk = Bksk + (σuTsk)u. (27)

Since (σuTsk) is a scalar, we can deduce u a scalar multiple of yk − Bksk and thus have

(yk − Bksk) = σδ2[sT
k (yk − Bksk)](yk − Bksk), (28)

where
σ = sign[sT

k (yk − Bksk)] and δ = ±|[sT
k (yk − Bksk)]|1/2 . (29)

Thus the proposed Nesterov accelerated symmetric rank-1(L-SR1-N) update is given as

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)

T

(yk − Bksk)Tsk
. (30)

Note that the Hessian update is performed only if the below condition in (31) is
satisfied, otherwise Bk+1 = Bk.

|sT
k (yk − Bksk)| ≥ ρ ||sk|| ||yk − Bksk|| . (31)

By applying the Sherman-Morrison-Woodbury Formula [28], we can find B−1
k+1 = Hk+1

as

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)Tyk
, (32)

where,

yk = ∇E(wk+1)−∇E(wk + µkvk) and sk = wk+1 − (wk + µkvk) = αkdk. (33)

The proposed algorithm is as shown in Algorithm 5. We implement the proposed
method in its limited memory form, where the Hessian is updated using the recent mL
curvature information pairs satisfying (31). Here mL denotes the limited memory size and
is chosen such that mL � b. The proposed method uses the trust-region approach where
the subproblem is solved using the CG-Steihaug method [28] as shown in Algorithm 6.
Also note that the proposed L-SR1-N has two gradient computations per iteration. The
Nesterov’s gradient ∇E(wk + µkvk) can be approximated [25,29] as a linear combination
of past gradients as shown below.

∇E(wk + µkvk) ≈ (1 + µk)∇E(wk)− µk∇E(wk−1). (34)

Thus we have the momentum accelerated symmetric rank-1 (L-MoSR1) method by
approximating the Nesterov’s gradient in L-SR1-N.
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Algorithm 5 Proposed Algorithm

1: while ||∇E(wk)|| > ε and k < kmax do
2: Determine µk
3: Compute ∇E(wk + µkvk)
4: Find sk by CG-Steihaug subproblem solver in Algorithm (6)
5: Compute ρk =

E(wk+µkvk)−E(wk+µkvk+sk)
mk(0)−mk(sk)

6: if ρk ≥ η then
7: Set vk+1 = µkvk + sk, wk+1 = wk + vk+1
8: else
9: Set vk+1 = vk, wk+1 = wk, reset µk

10: end if
11: ∆k+1 = adjustTR(∆k, ρk)
12: Compute yk = ∇E(wk+1)−∇E(wk + µkvk) + ζsk
13: Update (Sk, Yk) buffer with (sk, yk ) if (31) is satisfied
14: end while

Algorithm 6 CG-Steihaug

Require: Gradient ∇E(wk + µkvk), tolerance εk > 0, and trust-region radius ∆k.
Initialize: Set z0 = 0, r0 = ∇E(wk + µkvk), d0 = −r0 = −∇E(wk + µkvk)

1: if then||r0|| < εk
2: return sk = z0 = 0
3: end if
4: for i = 0, 1, 2, ... do
5: if dT

i Bkdi ≤ 0 then
6: Find τ such that sk = zi + τdi minimizes (41) and satisfies ||sk|| = ∆k
7: return sk
8: end if
9: Set αi =

rT
i ri

dT
i Bkdi

10: Set zi+1 = zi + αidi
11: if ||zi+1|| ≥ ∆k then
12: Find τ ≥ 0 such that sk = zi + τdi satisfies ||sk|| = ∆k
13: return sk
14: end if
15: Set ri+1 = ri + αiBkdi
16: if ||ri+1|| < εk then
17: return sk = zi+1
18: end if
19: Set βi+1 =

rT
i ri+1
rT

i ri

20: Set di+1 = −ri+1 + βi+1di
21: end for

4. Convergence Analysis

In this section we discuss the convergence proof of the proposed Nesterov accelerated
Symmetric Rank-1 (L-SR1-N) algorithm in its limited memory form. As mentioned earlier,
the Nesterov’s acceleration approximates the quadratic model at wk + µkvk instead of the
iterate at wk. For ease of representation, we write wk + µkvk = ŵk ∀ k = 1, 2, ..., kmax ∈ N.
In the limited memory scheme, the Hessian matrix can be implicitly constructed using the
recent mL number of curvature information pairs {si, yi}k−mL−1

i=k−1 . At a given iteration k, we
define matrices Sk and Yk of dimensions d×mL as

Sk = [sk−1, sk−2, ..., sk−mL−1] and Yk = [yk−1, yk−2, ..., yk−mL−1], (35)
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where the curvature pairs {si, yi}k−mL−1
i=k−1 are each vectors of dimensions d× 1. The Hessian

approximation in (30) can be expressed in its compact representation form [30] as

Bk = B0 + (Yk − B0Sk)(Lk + Dk + LT
k − ST

k B0Sk)
−1(Yk − B0Sk), (36)

where B0 is the initial d× d Hessian matrix, Lk is a mL ×mL lower triangular matrix and
Dk is a mL ×mL diagonal matrix as given below,

B0 = γkI,

(Lk)i,j =

{
sT

i yj if i > j,
0 otherwise,

Dk = diag [ST
k Yk]. (37)

Let Ω be the level set such that Ω = {w ∈ Rd : E(w) ≤ E(w0)} and {sk} ∀ k =
1, 2, ..., kmax ∈ N, denote the sequence generated by the explicit trust-region algorithm
where ∆k be the trust-region radius of the successful update step. We choose γk = 0. Since
the curvature information pairs (sk, yk) given by (33) are stored in Sk and Yk only if they
satisfy the condition in (31), the matrix Mk = (Lk + Dk + LT

k − ST
k B0Sk) is invertible and

positive semi-definite.

Assumption 1. The sequence of iterates wk and ŵk ∀ k = 1, 2, ..., kmax ∈ N remains in the closed
and bounded set Ω on which the objective function is twice continuously differentiable and has
Lipschitz continuous gradient, i.e., there exists a constant L > 0 such that

||∇E(wk+1)−∇E(ŵk)|| ≤ L||wk+1 − ŵk|| ∀ wk+1, ŵk ∈ Rd. (38)

Assumption 2. The Hessian matrix is bounded and well-defined, i.e., there exists constants ρ and
M, such that

ρ ≤ ||Bk|| ≤ M ∀ k = 1, 2, ..., kmax ∈ N. (39)

and for each iteration k

|sT
k (yk − Bksk)| ≥ ρ ||sk|| ||yk − Bksk||. (40)

Assumption 3. Let Bk be any n× n symmetric matrix and sk be an optimal solution to the trust
region subproblem,

min
d

mk(d) = E(ŵk) + dT∇E(ŵk) +
1
2

dTBkd, (41)

where ŵk + d lies in the trust region. Then for all k ≥ 0,

∣∣∇E(ŵk)
Tsk +

1
2

sT
k Bksk

∣∣ ≥ 1
2

∣∣∣∣∇E(ŵk)
∣∣∣∣ min

{
∆k,
||∇E(ŵk)||
||Bk||

}
. (42)

This assumption ensures that the subproblem solved by trust-region results in a
sufficiently optimal solution at every iteration. The proof for this assumption can be shown
similar to the trust-region proof by Powell.
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Lemma 1. If assumptions A1 to A3 hold, and sk be an optimal solution to the trust region
subproblem given in (41), and if the initial γk is bounded (i.e., 0 ≤ γk ≤ γ̄k), then for all k ≥ 0, the
Hessian update given by Algorithm 5 and (26) is bounded.

Proof. We begin with the proof for the general case [31], where the Hessian is bounded by

||B(j)
k || ≤

(
1 +

1
ρ

)j
γk +

[(
1 +

1
ρ

)j
− 1

]
M. (43)

The proof for (43) is given by mathematical induction. Let mL be the limited memory
size and (sk,j, yk,j) be the curvature information pairs given by (33) at the kth iteration for
j = 1, 2, ..., mL. For j = 0, we can see that (43) holds true. Let us assume that (43) holds true
for some j > 0. Thus for j + 1 we have

B(j+1)
k = B(j)

k +

(
yk,j+1 − B(j)

k sk,j+1
)(

yk,j+1 − B(j)
k sk,j+1

)T(
yk,j+1 − B(j)

k sk,j+1
)Tsk,j+1

(44)

∣∣∣∣B(j+1)
k

∣∣∣∣ ≤ ∣∣∣∣B(j)
k

∣∣∣∣+ ∣∣∣∣∣
∣∣∣∣∣
(
yk,j+1 − B(j)

k sk,j+1
)(

yk,j+1 − B(j)
k sk,j+1

)T(
yk,j+1 − B(j)

k sk,j+1
)Tsk,j+1

∣∣∣∣∣
∣∣∣∣∣ (45)

≤
∣∣∣∣B(j)

k

∣∣∣∣+ ∣∣∣∣(yk,j+1 − B(j)
k sk,j+1

)(
yk,j+1 − B(j)

k sk,j+1
)T∣∣∣∣

ρ
∣∣∣∣(yk,j+1 − B(j)

k sk,j+1
)∣∣∣∣ ∣∣∣∣sk,j+1

∣∣∣∣ (46)

≤
∣∣∣∣B(j)

k

∣∣∣∣+ ∣∣∣∣(yk,j+1 − B(j)
k sk,j+1

)∣∣∣∣
ρ
∣∣∣∣sk,j+1

∣∣∣∣ (47)

≤
∣∣∣∣B(j)

k

∣∣∣∣+ ∣∣∣∣yk,j+1
∣∣∣∣

ρ
∣∣∣∣sk,j+1

∣∣∣∣ +
∣∣∣∣B(j)

k sk,j+1
∣∣∣∣

ρ
∣∣∣∣sk,j+1

∣∣∣∣ (48)

≤
∣∣∣∣B(j)

k

∣∣∣∣+ ∣∣∣∣yk,j+1
∣∣∣∣

ρ
∣∣∣∣sk,j+1

∣∣∣∣ +
∣∣∣∣B(j)

k

∣∣∣∣
ρ

(49)

≤
(

1 +
1
ρ

)∣∣∣∣B(j)
k

∣∣∣∣+ M
ρ

(50)

≤
(

1 +
1
ρ

)[(
1 +

1
ρ

)j
γk +

[(
1 +

1
ρ

)j
− 1
]

M

]
+

M
ρ

(51)

∣∣∣∣B(j+1)
k

∣∣∣∣ ≤ (1 +
1
ρ

)j+1
γk +

[(
1 +

1
ρ

)j+1
− 1

]
M (52)

Since we use the limited memory scheme, Bk+1 = B(mL)
k , where mL is the limited

memory size. Therefore, the Hessian approximation at the kth iteration satisfies

∣∣∣∣Bk+1
∣∣∣∣ ≤ (1 +

1
ρ

)mL
γk +

[(
1 +

1
ρ

)mL
− 1

]
M (53)

We choose γk = 0 as it removes the choice of the hyperparameter for the initial
Hessian B(0)

k = γkI and also ensures that the subproblem solver CG algorithm (Algorithm 6)
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terminates in at most mL iterations [22]. Thus the Hessian approximation at the kth iteration
satisfies (54) and is still bounded.

∣∣∣∣Bk+1
∣∣∣∣ ≤ [(1 +

1
ρ

)mL
− 1

]
M (54)

This completes the inductive proof.

Theorem 1. Given a level set Ω = {w ∈ Rd : E(w) ≤ E(w0)} that is bounded, let {wk} be the
sequence of iterates generated by Algorithm 5. If assumptions (A1) to (A3) holds true, then we have,

lim
k→∞
||∇E(wk)|| = 0. (55)

Proof. From the derivation of the proposed L-SR1-N algorithm, it is shown that the Nes-
terov’s acceleration to quasi-Newton method satisfies the secant condition. The proposed
algorithm ensures the definiteness of the Hessian update as the curvature pairs used in the
Hessian update satisfies (31) for all k. The sequence of updates are generated by solving
using the trust region method where sk is the optimal solution to the subproblem in (41).
From Theorem 2.2 in [32], it can be shown that the updates made by the trust region method
converges to a stationary point. Since Bk is shown to be bounded (Lemma 1), it follows
from that theorem that as k→ ∞, wk converges to a point such that ||∇E(wk)|| = 0.

5. Simulation Results

We evaluate the performance of the proposed Nesterov accelerated symmetric rank-1
quasi-Newton (L-SR1-N) method in its limited memory form in comparison to conventional
first order methods and second order methods. We illustrate the performances in both
full batch and stochastic/mini-batch setting. The hyperparameters are set to their default
values. The momentum coefficient µk is set to 0.9 in NAG and 0.85 in oLNAQ [33]. For
L-NAQ [34], L-MoQ [35], and the proposed methods, the momentum coefficient µk is set
adaptively. The adaptive µk is obtained from the following equations, where θk = 1 and
η = 10−6.

µk = θk(1− θk)/(θ
2
k + θk+1), (56)

θ2
k+1 = (1− θk+1)θ

2
k + ηθk+1. (57)

5.1. Results of the Levy Function Approximation Problem

Consider the following Levy function approximation problem to be modeled by a
neural network.

f (x1 . . . xp) =
π

p

{ p−1

∑
i=1

[(xi − 1)2(1 + 10 sin2(πxi+1))]

+ 10 sin2(πx1) + (xp − 1)2
}

, xi ∈ [−4, 4], ∀i. (58)

The performance of the proposed L-SR1-N and L-MoSR1 is evaluated on the Levy
function (58) where p = 5. Therefore the inputs to the neural network is {x1, x2, ..., x5}.
We use a single hidden layer with 50 hidden neurons. The neural network architecture
is thus 5 − 50 − 1. We terminate the training at kmax = 10,000, and set ε = 10−6 and
mL = 10. Sigmoid and linear activation functions are used for the hidden and output
layers, respectively. Mean squared error function is used. The number of parameters is
d = 351. Note that we use full batch for the training in this example and the number of
training samples is n = 5000. Figure 1 shows the average results of 30 independent trials.
The results confirm that the proposed L-SR1-N and L-MoSR1 have better performance
compared to the first order methods as well as the conventional LSR1 and rank-2 LBFGS
quasi-Newton method. Furthermore, it can be observed that incorporating the Nesterov’s
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gradient in LSR1 has significantly improved the performance, bringing it almost equivalent
to the rank-2 Nesterov accelerated L-NAQ and momentum accelerated L-MoQ methods.
Thus we can confirm that the limited memory symmetric rank-1 quasi-Newton method can
be significantly accelerated using the Nesterov’s gradient. From the iterations vs. training
error plot, we can observe that the L-SR1-N and L-MoSR1 are almost similar in performance.
This verifies that the approximation applied to L-SR1-N in L-MoSR1 is valid, and has an
advantage in terms of computation wall time. This can be observed in the time vs. training
error plot, where the L-MoSR1 method converges much faster compared to the other first
and second order methods under comparison.

Figure 1. Average results on levy function approximation problem with mL = 10 (full batch).

5.2. Results of MNIST Image Classification Problem

In large scale optimization problems, owing to the massive amount of data and
large number of parameters of the neural network model, training the neural network
using full batch is not feasible. Hence a stochastic approach is more desirable where the
neural networks are trained using a relatively small subset of the training data, thereby
significantly reducing the computational and memory requirements. However, getting
second order methods to work in a stochastic setting is a challenging task. A common
problem in stochastic/mini-batch training is the sampling noise that arises due to the
gradients being estimated on different mini-batch samples at each iteration. In this section,
we evaluate the performance of the proposed L-SR1-N and L-MoSR1 methods in the
stochastic/mini-batch setting. We use the MNIST handwritten digit image classification
problem for the evaluation. The MNIST dataset consists of 50,000 train and 10,000 test
samples of 28× 28 pixel images of handwritten digits from 0 to 9 that needs to be classified.
We evaluate the performance of this image classification task on a simple fully connected
neural network and LeNet-5 architectures. In a stochastic setting, the conventional LBFGS
method is known to be affected by sampling noise and to alleviate this issue, [16] proposed
the oLBFGS method that computes two gradients per iteration. We thus compare the
performance of our proposed method against both the naive stochastic LBFGS (denoted
here as oLBFGS-1) and the oLBFGS proposed in [16].
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5.2.1. Results of MNIST on Fully Connected Neural Networks

We first consider a simple fully connected neural network with two hidden layers
with 100 and 50 hidden neurons respectively. Thus, the neural network architecture used
is 784− 100− 50− 10. The hidden layers use the ReLU activation function and the loss
function used is the softmax cross-entropy loss function. Figure 2 shows the performance
comparison with a batch size b = 128 and limited memory size of mL = 8. It can be
observed that the second order quasi-Newton methods show fast convergence compared
to first order methods in the first 500 iterations. From the results we can see that even
though the stochastic L-SR1-N (oL-SR1-N) and stochastic MoSR1 (oL-MoSR1) does not
perform the best on the small network, it has significantly improved the performance of the
stochastic LSR1 (oLSR1) method, and performs better than the oLBFGS-1 method. Since
our aim is to investigate the effectiveness of the Nesterov’s acceleration on SR1, we focus
on the performance comparison of oLBFGS-1, oLSR1 and the proposed oL-SR1-N and
oL-MoSR1 methods. As seen from Figure 2, oLBFGS-1, oLSR1 does not further improve
the test accuracy or test loss after 1000 iterations. However, incorporating Nesterov’s
acceleration significantly improved the performance compared to the conventional oL-SR1
and oLBFGS-1, thus confirming the effectiveness of Nesterov’s acceleration on LSR1 in the
stochastic setting.

Figure 2. Results of MNIST on fully connected neural network with b = 128 and mL = 8.

5.2.2. Results of MNIST on LeNet-5 Architecture

Next, we evaluate the performance of the proposed methods on a bigger network
with convolutional layers. The LeNet-5 architecture consists of two sets of convolutional
and average pooling layers, followed by a flattening convolutional layer, then two fully-
connected layers and finally a softmax classifier. The number of parameters is d = 61,706.
Figure 3 shows the performance comparison when trained with a batch size of b = 256
and limited memory mL = 8. From the results, we can observe that oLNAQ performs the
best. However, the proposed oL-SR1-N method performs better compared to both the first
order SGD, NAG, Adam and second order oLSR1, oLBFGS-1 and oLBFGS methods. It can
be confirmed that incorporating the Nesterov’s gradient can accelerate and significantly
improve the performance of the conventional LSR1 method, even in the stochastic setting.
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Figure 3. Results of MNIST on LeNet-5 architecture with b = 256 and mL = 8.

6. Conclusions and Future Works

Acceleration techniques such as the Nesterov’s acceleration have shown to speed
up convergence as in the cases of NAG accelerating GD and NAQ accelerating the BFGS
methods. Second order methods are said to achieve better convergence compared to first
order methods and are more suitable for parallel and distributed implementations. While
the BFGS quasi-Newton method is the most extensively studied method in the context of
deep learning and neural networks, there are other methods in the quasi-Newton family,
such as the Symmetric Rank-1 (SR1), which are shown to be effective in optimization
but not extensively studied in the context of neural networks. SR1 methods converge
towards the true Hessian faster than BFGS and have computational advantages for sparse
or partially separable problems [17]. Thus, investigating acceleration techniques on the
SR1 method is significant. The Nesterov’s acceleration is shown to accelerate convergence
as seen in the case of NAQ, improving the performance of BFGS. We investigate whether
the Nesterov’s acceleration can improve the performance of other quasi-Newton methods
such as SR1 and compare the performance among second-order Nesterov’s accelerated
variants. To this end, we have introduced a new limited memory Nesterov accelerated
symmetric rank-1 (L-SR1-N) method for training neural networks. We compared the results
with LNAQ to give a sense of comparison of how the Nesterov’s acceleration affects the
two methods of the quasi-Newton family, namely BFGS and SR1. The results confirm that
the performance of the LSR1 method can be significantly improved in both the full batch
and the stochastic settings by introducing Nesterov’s accelerated gradient. Furthermore,
it can be observed that the proposed L-SR1-N method is competitive with LNAQ and is
substantially better than the first order methods and second order LSR1 and LBFGS method.
It is shown both theoretically and empirically that the proposed L-SR1-N converges to a
stationary point. From the results, it can also be noted that, unlike in the full batch example,
the performance of oL-SR1-N and oL-MoSR1 do not correlate well in the stochastic setting.
This can be regarded as due to the sampling noise, similar to that of oLBFGS-1 and oLBFGS.
In the stochastic setting, the curvature information vector yk of oL-MoSR1 is approximated
based on the gradients computed on different mini-batch samples. This could introduce
sampling noise and hence result in oL-MoSR1 not being a close approximation of the
stochastic oL-SR1-N method. Future works could involve solving the sampling noise
problem with multi-batch strategies such as in [36], and further improving the performance
of L-SR1-N. Furthermore, a detailed study on larger networks and problems with different
hyperparameter settings could test the limits of the proposed method.
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