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Abstract: Analog circuits play an important role in modern electronic systems. Aiming to accurately
diagnose the faults of analog circuits, this paper proposes a novel variant of a convolutional neural
network, namely, a multi-scale convolutional neural network with a selective kernel (MSCNN-SK).
In MSCNN-SK, a multi-scale average difference layer is developed to compute multi-scale average
difference sequences, and then these sequences are taken as the input of the model, which enables it
to mine potential fault characteristics. In addition, a dynamic convolution kernel selection mechanism
is introduced to adaptively adjust the receptive field, so that the feature extraction ability of MSCNN-
SK is enhanced. Based on two well-known fault diagnosis circuits, comparison experiments are
conducted, and experimental results show that our proposed method achieves higher performance.

Keywords: analog circuit; fault diagnosis; convolutional neural network; feature extraction

1. Introduction

With the development of modern electronic technology, the functions of all kinds of
electronic equipment are becoming more and more powerful and complex in structure.
The reliability and stability of the analog circuit part is the key to the normal operation of
the entire electronic equipment. Diagnosis can effectively prevent serious consequences
caused by early failures. Due to the complexity of the analog circuit fault mechanism and
the diversity of failure modes, how to efficiently and accurately diagnose the fault of the
analog circuit has always been a hot area of research for experts and scholars [1,2].

The fault diagnosis method of analog circuits based on machine learning has been
widely used and researched. This method divides the fault diagnosis of analog circuits into
two stages: (1) extraction the characteristics of different types of faults in the analog circuit;
(2) establishment a model to complete fault diagnosis based on the extracted features.
Among them, the feature extraction stage is a key part in the fault diagnosis process, which
has an important influence on the fault diagnosis results. At present, there are many feature
extraction methods applied to the fault feature extraction of analog circuits, such as the
wavelet transform [3], decision tree [4], Bayesian network [5], support vector machine [6,7],
artificial neural network [8], etc. However, the diagnostic model provided by the above
method has poor nonlinear fitting ability. The parameters in the model often rely on the
experience of experts, and various sensitive fault types cannot be fully extracted, which
seriously affects the performance of fault diagnosis.

In recently years, deep learning (DL) methods have achieved great success in the
applications of speech recognition [9], natural language processing [10], and image recogni-
tion [11]. Inspired by these achievements, the DL methods have been employed for analog
circuit fault diagnosis purposes. For example, Su et al. [12] introduced the deep belief
network (DBN) to extract the deep features from the analog circuit output signals, and
then applied the support vector machine to perform fault classification. Based on DBN,
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Zhao et al. [13] developed a method to extract features adaptively from the raw time series
signals and automatically classifies the faults of analog circuit.

As a typical DL model, a convolutional neural network (CNN) has received continuous
attention from researchers. The CNN model benefits in local weight sharing and the
local receptive field, so as to effectively mine high-level feature representations from
the input [14,15]. In several recent studies, CNN-based methods were introduced for
analog circuit fault diagnosis and achieved remarkable results. Yang et al. [16] proposed a
one-dimensional convolutional neural network (1DCNN) to conduct analog circuit fault
diagnosis, which used raw signals as the input. Du et al. [17] developed a CNN-based
approach for analog circuit fault diagnosis, and the output signals in different fault states are
directly input into CNN. However, these studies still have the following two weaknesses:
(1) they directly use the raw output signals as the input of the CNN model, which can only
extract the numerical characteristics. (2) The receptive field of the CNN model is fixed,
which limits its feature extraction ability.

To address these weaknesses, this paper proposes a multi-scale convolutional neural
network with a selective kernel (MSCNN-SK). This network integrates a multi-scale average
difference layer, which could provide additional helpful information for the network by
computing multi-scale average difference sequence. Moreover, a dynamic convolution
kernel selection mechanism is introduced into the MSCNN-SK to adaptively adjust its
receptive field. Based on two commonly used fault diagnosis circuits, i.e., a Sallen-Key
band-pass filter circuit and a Four-opamp biquad high-pass filter circuit, the effectiveness
of the proposed MSCNN-SK is verified. Experimental results indicate that our MSCNN-SK
outperforms several compared fault diagnosis methods.

The rest of this paper is organized as follows: Section 2 briefly introduces the basic
compositions of CNN and describes two useful strategies in detail. Section 3 illustrates the
proposed MSCNN-SK. The effectiveness of the proposed method is evaluated in Section 4.
Finally, Section 5 provides conclusions and future directions.

2. Preliminary
2.1. Convolutional Neural Network

The structure of a typical CNN model mainly includes a convolutional layer, a pooling
layer, and a fully connected layer. The convolutional layer is the core of the CNN network,
and its main function is to perform a series of convolution operations on the input data
through the convolution kernel to obtain feature maps. The convolutional layer is usually
connected with the pooling layer, whose main function is to reduce the dimension of the
output feature graph of the convolutional layer. After feature extraction is performed on
the input data through convolution operation, pooling calculation is used to further select
effective features, remove redundant information, simplify the complexity of the model,
and reduce the computing resources and time required by CNN. The last part of the CNN
network is the fully connected layer. The main function of the fully connected layer is
to further extract features and output the fault diagnosis results. In the fully connected
layer, the features extracted by the convolutional layer and the pooling layer are expanded
into a one-dimensional vector and are compared with the weight coefficients of the fully
connected layer. The calculated result is multiplied then adjusted through the nonlinear
activation function.

2.2. Batch Normalization

In the process of neural network iterative experiments, the distribution of features is
constantly changing, so that the parameters in the convolutional layer must be constantly
updated to adapt to the changing distribution. Obviously, this increases the difficulty of the
test. In order to solve this problem, Google’s DeepMind team proposed batch normalization
(BN) [18]. Batch normalization technique is a trainable process, the essence of which is to
normalize the feature distribution back to the standard normal distribution. As a technique
for optimizing neural networks, the application of batch normalization can effectively
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reduce the shift of internal covariates, accelerate the convergence speed of CNN, and
shorten the training time of the network. The calculation process of batch normalization
can be expressed as follows:

µ =
1

Nbatch

Nbatch

∑
n=1

xn, σ2 =
1

Nbatch

Nbatch

∑
n=1

(xn − µ)2 (1)

x̂n =
xn − µ√

σ2 + ε
, yn = γ x̂n + β (2)

where xn represents the n-th sample in a batch of input data and Nbatch represents the batch
size. ε is a constant fixed to 1× 10−6, which is used to avoid the case that the divisor is zero.
γ and β are two learnable parameters for scaling and moving feature distributions.

2.3. Xavier Parameter Initalization Strategy

In the process of fault diagnosis using a CNN network, the initialization of network
weights has a great impact on the fault diagnosis performance. Improper initialization will
easily slow down the convergence speed of the network, or even fall into the local optimum
prematurely. The random initialization method is a widely used initialization method. This
method uses a certain fixed probability distribution to assign initial values to all learnable
parameters of the network. However, improperly set random initialization parameters can
easily affect the convergence of the network. In addition, when the number of network
layers is large, random initialization may also cause the problem of gradient dispersion.

When the network layer weights are updated through backpropagation, the calculation
of the gradient includes the product of the weights of several items from the network output
layer to the current layer. If there are many network layers and the weights of most product
items are less than 1, it will cause the gradient to decrease continuously. Therefore, the
random initialization method may cause large differences in the parameter update effects
of different network layers. The network layer parameters close to the output layer can
be better optimized, while some network structure parameters close to the input layer are
difficult to update. The Xavier initialization strategy [19] can effectively solve this problem.
The main idea of this method is to make the variance of each network layer output the
same as that of the previous layer output in forward and back propagation process, which
can alleviate the problem of gradient disappearance. When using the Xavier initialization
method, the parameters of each convolution layer should meet the uniform distribution, as
shown in Equation (3).

W ∼ U

[
−

√
6√

nk + nk+1
,

√
6√

nk + nk+1

]
, (3)

where W is the parameters of the convolution layer, and nk denotes the number of parame-
ters of the k-th convolution layer.

3. The Proposed Method

The 1DCNN network is used in the fault diagnosis of analog circuits. However, for
the early fault diagnosis of complex circuits, it still has shortcomings, which are specifically
characterized by the difficulty in extracting the essential characteristics of the fault, resulting
in low average fault diagnosis accuracy. In addition, in the design process of 1DCNN
network, the receptive field size of the convolution layer needs to be determined by
researchers through trial and error, which is a laborious process, but the fixed receptive
field size may not be optimal in the feature extraction process. Therefore, this paper
proposes a multi-scale order mean difference layer. By taking a multi-scale order mean
difference layer as an input, the 1DCNN network can extract the characteristics of the
average rate of change of the time domain response signal; then, the dynamic selection
mechanism of the convolution kernel is introduced, which enables the model to adaptively
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select the size of the receptive field during the feature extraction process; subsequently, the
MSCNN-SK network model was built based on the above two points.

3.1. Multi-Scale Order Mean Difference Layer

The mean difference is also called the difference quotient, for discrete functions with
equal steps y = f (x), the n(n ≥ 1) order mean difference at the node f (x)xi, xi+1, . . . , xi+n
is defined as Equation (4).

f [xi, xi+1, . . . , xi+n] =
f [xi+1, xi+2, . . . , xi+n]− f [xi, xi+1, . . . , xi+n−1]

xi+n − xi
, (4)

The mean difference data of different order can effectively characterize the average rate
of change of the circuit response signal at different scales in the time domain. The calculation
operation of the mean difference is simple, and the model complexity and calculation cost
are low. Not only that, for the actual measured circuit time domain response signal, the
mean difference data can filter out high-frequency disturbance and random noise to a
certain extent. Therefore, this paper designs a multi-scale mean difference layer as the first
layer of the convolutional neural network, and calculates the 0th order, 1st order and 2nd
order mean difference sequences to extract the average rate of change feature to facilitate
subsequent deep-level feature extraction. The 0th order, 1st order and 2nd order mean
difference sequences are shown in Table 1.

Table 1. Mean difference table.

X 0th Order Mean Difference 1st Order Mean Difference 2nd Order Mean Difference

x0 f (x0) – –
x1 f (x1) f [x0, x1] = ( f (x1)− f (x0))/(x1 − x0) –
x2 f (x2) f [x1, x2] = ( f (x2)− f (x1))/(x2 − x1) f [x0, x1, x2] = f [x1, x2]− f [x0, x1]
x3 f (x3) f [x2, x3] = ( f (x3)− f (x2))/(x3 − x2) f [x1, x2, x3] = f [x2, x3]− f [x1, x2]
...

...
...

...
xn f (xn) f [xn−1, xn] = ( f (xn)− f (xn−1))/(xn − xn−1) f [xn−2, xn−1, xn] = f [xn−1, xn]− f [xn−2, xn−1]

As shown in Table 1, the 0th mean difference is the original time domain response
signal of the circuit. In addition, it is easy to see from the table that the lengths of the
0th order, 1st order, and 2nd order mean difference are different. The length is N, and
the lengths of the 1st order and 2nd order mean difference sequences are N-1 and N-2,
respectively. In order to facilitate the design of CNN network, the length of the 1st order,
and 2nd order mean difference is the same as that of the 0th order mean difference by
means of zeroing.

3.2. Convolution Kernel Dynamic Selection Mechanism

In traditional convolutional neural networks, the receptive field of each convolutional
layer is set to the same size. However, the consensus in the neuroscience community is
that the size of the receptive field of visual cortex neurons is dynamically adjusted. In
practical applications, the size of the receptive field of the convolutional layer often needs
to be determined artificially through trial error, which requires more time and energy for
researchers. In addition, the fault features of the circuit do not have the same size, and the
fixed receptive field size is often sub-optimal in the feature extraction process. Therefore,
this paper introduces a dynamic selection mechanism of the convolution kernel [16], which
allows convolutional layer neurons to adaptively select the size of their receptive field
according to the input information. As shown in Figure 1, the dynamic selection mechanism
of the convolution kernel includes three steps: branch, fusion and selection.
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(1) Branch: given input X ∈ RH×W×C, where H, W and C denote the height, width
and channel of the input, respectively, perform three convolution conversions with
convolution kernel sizes of 3 × 3, 5 × 5 and 7 × 7, F3×3 : X → U3×3 = RH×W×C ,
F5×5 : X → U5×5 = RH×W×C , F7×7 : X → U7×7 = RH×W×C .

(2) Fusion: the convolution transformation results of the three branches are fused by
element-by-element summation U = U3×3 + U5×5 + U7×7. Then, apply global aver-
age pooling to compress the result of the fusion in the spatial dimension H ×W to

obtain global feature information S = Fgap(U) = 1
H×W

H
∑

i=1

W
∑

j=1
U(i, j). Finally, through

the fully connected layer, the global feature information S ∈ R1×1×C compressed as a
feature Z ∈ R1×1×d, the compression ratio is r = C/d. The purpose of compression is
to enhance the nonlinear representation ability of the model.

(3) Selection: use three fully connected layers to map the features Z ∈ R1×1×d, and
then three weight vectors a3×3, b5×5 and c7×7 are generated, respectively, where
a3×3, b5×5, c7×7 ∈ R1×1×C. The weight vector is calculated by Softmax to obtain
the result â3×3, b̂5×5, ĉ7×7, then add the vector â3×3, b̂5×5, ĉ7×7 to the feature matrix
U3×3, U5×5, U7×7 for weighted summation, generate the final output V = â3×3 ·U3×3 +
b̂5×5 ·U5×5 + ĉ7×7 ·U7×7. Thus, the importance of different branch information can
be adjusted to realize the selection of a more suitable receptive field.

3.3. Mechanism MSCNN-SK Network

The MSCNN-SK (Multi-Scale Convolutional Neural Network with Selective kernel)
network proposed in this paper is shown in Figure 2. It is mainly divided into a multi-scale
mean difference layer, a feature extraction layer based on the dynamic selection mechanism
of the convolution kernel, and a multi-scale information fusion layer.

The specific workflow of the MSCNN-SK network is described as follows: first, the
multi-scale mean difference layer calculates the 0th order, 1st order and 2nd order mean
difference sequences, and extracts the characteristics of the average rate of change of the
time-domain response signal; secondly, the convolutional layer with the dynamic selection
mechanism of the convolution kernel extracts fault characteristic information from the
multi-scale mean difference data; then, the extracted multi-scale features are expanded
into a one-dimensional vector and input to the two fully connected layers for information
fusion and further feature extraction; finally, the fully connected layer obtains the analog
circuit diagnosis results.
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4. Case Studies Using the Proposed System

This section uses two representative circuits (Sallen–Key band-pass filter circuit
and Four-opamp biquad high-pass filter circuit) to verify the effectiveness of the pro-
posed method.

4.1. Data Collection

The principle of the Sallen–Key bandpass filter circuit is shown in Figure 3. This circuit
includes 5 resistors, 2 capacitors and an operational amplifier. In the actual environment,
the circuit component values fluctuate to a certain extent under the interference of environ-
mental factors. Therefore, the tolerances of the resistors and capacitors in the circuit are set
to 5% and 10%, respectively. In the circuit component sensitivity test, capacitors C1 and C2
and resistors R2 and R3 have a greater impact on the circuit, so these components are used
as test components. The input of the circuit is a single pulse with a duration of 10 µs and
an amplitude of 5 V, and the time domain response signal is collected at the output of the
operational amplifier. The circuit has 9 modes, including No fault (NF) and 8 fault modes,
namely C1 ↓, C1 ↑, C2 ↓, C2 ↑, R2 ↓, R2 ↑, R3 ↓ and R3 ↑. The symbols ↓ and ↑, respectively,
indicate that the actual parameter value of the element is higher and lower than 50% of its
nominal value.
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Figure 3. Shalley–Key Bandpass Filter model.

Figure 4 shows a set of time-domain response signals for each failure mode of the
circuit under pulse input. It is easy to see from the figure that the difference in the time
domain response signal is mainly in the first 75 µs. After that, the difference is negligible.
Therefore, the sampling range of the original time domain response signal is set to 0–75 µs,
the sampling interval is set to 0.5 µs, and 150 sampling points can be obtained for each time
domain response signal. In this case, 2000 Monte Carlo analysis was performed for each
failure mode; that is, there are 2000 samples for each failure mode. Shallen–key band-pass
filter circuit fault code, fault mode, component nominal value and fault value are recorded
in Table 2.
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Table 2. Failure mode of the Shallen–Key bandpass filter circuit.

Fault Code Mode Nominal Value Tolerance Band Fault Value

S0 No fault - - -
S1 C1 ↓ 5 nF 10% 2.5 nF
S2 C1 ↑ 5 nF 10% 7.5 nF
S3 C2↓ 5 nF 10% 2.5 nF
S4 C2 ↑ 5 nF 10% 7.5 nF
S5 R2↓ 3 kΩ 5% 1.5 kΩ
S6 R2 ↑ 3 kΩ 5% 4.5 kΩ
S7 R3↓ 2 kΩ 5% 1.0 kΩ
S8 R3 ↑ 2 kΩ 5% 3.0 kΩ
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The Four-opamp double second-order high-pass filter circuit is shown in Figure 5. This
circuit is composed of ten resistors, two capacitors and four operational amplifiers, which
is more complex. As with the previous circuit, the tolerances of resistance and capacitance
are 5% and 10%, respectively. The input of the circuit is a single pulse with a duration of
10 µs and an amplitude of 5 V. The time domain response signal is collected at the output
of the operational amplifier U4. In the sensitivity test, capacitors C1 and C2 and resistors
R1, R2, R3, and R4 have a greater impact on the circuit, so these components are used as
test ones. Thirteen modes are set in the circuit, including No fault (NF) and 12 fault modes,
namely C1 ↓, C1 ↑, C2 ↓, C2 ↑, R1 ↓, R1 ↑, R2 ↓, R2 ↑, R3 ↓, R3 ↑, R4 ↓ and R4 ↑. The symbol
↑means that the actual parameter value of the component is higher than 50% of its nominal
value; in the same way, ↓means lower than 50% of its nominal value.
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Figure 5. Four-opamp biquad high-pass filter circuit.

Figure 6 shows a set of time-domain response signals for each mode of the circuit
under the pulse input of the operational amplifier U4. The signal is significantly different in
the first 300 µs. Therefore, the sampling range of the time domain response signal is set to
0–300 µs, the sampling interval is 1 µs, and each time domain response signal generates a
sample with 300 sampling points. In this circuit, 2000 Monte Carlo analyses are performed
for each failure mode, and the entire data set has 13 failure modes, containing a total of
26,000 samples. The fault code, fault mode, component nominal value and fault value of
the Four-opamp double second-order high-pass filter circuit are recorded in Table 3.
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Table 3. Failure mode of the Four-opamp biquad high-pass filter circuit.

Fault Code Mode Nominal Value Tolerance Band Fault Value

S0 No fault - - -
S1 C1 ↓ 5 nF 10% 2.5 nF
S2 C1 ↑ 5 nF 10% 7.5 nF
S3 C2 ↓ 5 nF 10% 2.5 nF
S4 C2 ↑ 5 nF 10% 7.5 nF
S5 R1 ↓ 6.2 kΩ 5% 3.1 kΩ
S6 R1 ↑ 6.2 kΩ 5% 9.3 kΩ
S7 R2 ↓ 6.2 kΩ 5% 3.1 kΩ
S8 R2 ↑ 6.2 kΩ 5% 9.3 kΩ
S9 R3 ↓ 6.2 kΩ 5% 3.1 kΩ
S10 R3 ↑ 6.2 kΩ 5% 9.3 kΩ
S11 R4 ↓ 1.6 kΩ 5% 0.8 kΩ
S12 R4 ↑ 1.6 kΩ 5% 2.4 kΩ

4.2. Experimental Comparison and Result Analysis

In order to verify the effectiveness of the proposed MSCNN-SK network, this section
conducts fault diagnosis comparative experiments based on the data sets simulated by
the two benchmark test circuits built earlier. In the experiment, four typical DL networks
were used for comparison, namely: Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM) and Back Propagation Neural Network (BPNN). The RNN and LSTM
network consists of two hidden layers, with 128 hidden units. The BPNN network has 3
hidden layers. The 1DCNN network includes 3 layers of convolutional layers, 3 layers of
pooling layers, and the size and number of convolution kernels are set to 1 × 3 and 32,
respectively. The MSCNN-SK network has three branches corresponding to the 0th order,
1st order, and 2nd order mean difference sequences, and the network structure of each
branch is the same. Note that we determine the parameters of the network according to
popular recommendations [20,21] as well as trial and error.

Take the first branch as an example, the parameters of the convolutional layer and
pooling layer of the initial part of the network are 1 × 1 × 32 and 1 × 5, respectively. In the
convolution module based on the dynamic selection mechanism of the convolution kernel,
the three convolution layer parameters are 1 × 3 × 32, 1 × 5 × 32, and 1 × 7 × 32, that is,
the size of the convolution kernel is 1 × 3, 1 × 5 and 1 × 7, and the compression ratio is set
to 16. In addition, all test models are independently tested 10 times to reduce the influence
of random errors. All the DL networks are implemented by the Pytorch library. During the
network training phase, the cross-entropy function is adopted as the loss function, and the
Adam optimizer is used with a learning rate fixed to 0.001 and a batch size of 64. It should
be mentioned that all the hyper parameters are determined by trial and error.

The size of the Shalley-Key Bandpass Filter fault diagnosis dataset is 18,000 × 150,
and the input size of each network is 1 × 150. A total of 70% of the data are taken as
the training set while the other 30% data are used as the testing set. Table 4 lists the
maximum, minimum, average and standard deviation results of all test networks in the
Sallen–Key band-pass filter circuit fault diagnosis. As shown in Table 4, the average fault
diagnosis accuracy rate of 1DCNN and MSCNN-SK networks has reached 100%, while the
average fault diagnosis accuracy rate of BPNN, RNN and LSTM networks is also close to
100%. As mentioned above, the Sallen–Key bandpass filter circuit has fewer components
and a relatively simple structure. The tested deep learning methods can achieve high
diagnostic accuracy.
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Table 4. Shallen–Key band-pass filter circuit fault diagnosis comparative experiment.

Norm BPNN RNN LSTM 1DCNN MSCNN-SK

Maximum 100.00 99.91 100.00 100.00 100.00
Minimum 99.98 99.85 99.87 100.00 100.00
Average 99.99 99.87 99.93 100.00 100.00

SD 0.01 0.02 0.06 0.00 0.00

As aforementioned, the Four-opamp double second-order high-pass filter circuit fault
diagnosis dataset has 26,000 samples, and each sample size, i.e., the input size of each
network, is 1 × 300. We also take 70% of data as the training set and the test data as the
testing set. Table 5 shows the comparison results of Four-opamp double second-order
high-pass filter circuit fault diagnosis. It is easy to see from the table that the average fault
diagnosis accuracy of the RNN network is 92.13%, which is much lower than the other four
models. This is because the RNN network is prone to gradient dispersion and gradient
explosion. The average fault diagnosis results obtained by BPNN, LSTM and 1DCNN are
close to about 99%, while the performance of the LSTM network is slightly better than that
of the BPNN and 1DCNN networks. The diagnostic accuracy achieved by MSCNN-SK
is higher than the other four network models, reaching 99.87%. At the same time, the
standard deviation is also the smallest among the five test methods. This shows that the
MSCNN-SK network can effectively extract the essential characteristics of the fault. A good
fault diagnosis effect can also be achieved in complex circuit fault diagnosis.

Table 5. Four-opamp double second-order high-pass filter circuit fault diagnosis comparative experiment.

Norm BPNN RNN LSTM 1DCNN MSCNN-SK

Maximum 99.15 96.46 99.21 99.09 99.92
Minimum 98.91 88.17 98.95 98.95 99.80
Average 99.04 92.13 99.09 99.03 99.87

SD 0.08 2.03 0.08 0.04 0.03

4.3. Feature Visualization Analysis

The t-SNE technology is a non-linear unsupervised dimensionality reduction method
commonly used in the field of deep learning. This method can visualize high-dimensional
features in a two-dimensional space to intuitively judge whether the high-dimensional
features are discriminative [17,18]. This section uses t-SNE technology to visualize the
original fault data of the two benchmark test circuits and the high-dimensional features
extracted from the last layer of the BPNN, RNN, LSTM, 1DCNN and MSCNN-SK models
in two dimensions.

The original data of the Sallen–Key band-pass filter circuit and the features ex-
tracted from each model are visualized in two dimensions and shown in Figure 7. From
Figure 7a–d, in the two-dimensional scattered point distribution of the original fault data
and the features extracted by networks such as BPNN, RNN and LSTM, there are a small
number of overlapping sample points in the fault modes S2 and S8, and the remaining
fault mode sample points are completely separated. Figure 7e,f, respectively show the two-
dimensional visualization results of the features extracted by the 1DCNN and MSCNN-SK
networks. It can be clearly seen from the figure that the sample points of each failure
mode have been completely separated, and the two-dimensional scattered points have
independent distribution areas. In addition, the two-dimensional scattered points of each
failure mode in Figure 7f are more closely distributed.
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Figure 7. Two-dimensional scatter distribution of original data and features extracted from each net-
work model in the Shallen–Key bandpass filter circuit formed by T-SNE method. (a) Circuit fault data.
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The original and characteristic two-dimensional visualization effect of the Four-opamp
biquad high-pass filter is shown in Figure 8. It can be seen from Figure 8a that the sample
distribution of each failure mode of the original data is relatively close, and there is a
large amount of overlap. Figure 8b,c are two-dimensional scatter plots of the features
extracted by the BPNN network and the RNN network. There are still some overlapping
sample points in some failure modes in the figure. The two-dimensional scatter diagram of
features extracted from LSTM network and CNN network is shown in Figure 8d,e. Most
two-dimensional scatter points of fault modes have been completely separated, and the
number of overlapping sample points is relatively small, but the distribution range of most
fault mode samples is relatively scattered. Figure 8f draws a scatter diagram of the features
extracted by the MSCNN-SK network. It can be seen that the two-dimensional scatter
points of the same failure mode are concentrated, and there are almost no overlapping
sample points, which is easy to distinguish.
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Based on the two-dimensional visualization comparison results of Figures 7 and 8,
it can be concluded that the MSCNN-SK network proposed in this paper can effectively
extract the deep fault features of analog circuits. The extracted features have a high
degree of discrimination and concentrated distribution, which is beneficial to further
fault classification.

5. Conclusions

Aiming at the problem that the 1DCNN network performs poorly in the fault diagnosis
of complex analog circuits, this paper proposes the MSCNN-SK network. On the basis of the
1DCNN network, this network adds a multi-scale average deviation layer to calculate the
0th-order, 1st-order and 2nd-order average deviation sequences, extracts the average rate
of change characteristics of the circuit’s time domain response signal, and introduces the
dynamic convolution kernel selection mechanism that enables the network to adaptively
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select a suitable size convolution kernel during the feature extraction process without
manual intervention.

Through the simulation experiments of two benchmark test circuits, the fault diagnosis
comparison experiment was first carried out. Networks such as BPNN, RNN, LSTM and
1DCNN were selected as the comparison methods. The results show that the MSCNN-
SK network can identify the fault of the Shallen–Key band-pass filter circuit 100%. In
the more complex Four-opamp double second-order high-pass filter circuit, the average
fault diagnosis accuracy rate has reached 99.87%. At the same time, after using t-SNE
technology to visualize the features extracted by each model in two dimensions, the features
extracted by the MSCNN-SK network have the highest separation. In the two-dimensional
visual comparison of the features extracted by each model, the features extracted by the
MSCNN-SK network are also the most discriminative.

The proposed MSCNN-SK network can be directly used for other fault classification
cases. In future work, we will apply the proposed MSCNN-SK network to more analog
circuit fault diagnosis to further evaluate its generalization ability.
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