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Abstract: Complex networks usually consist of dense-connected cliques, which are defined as
communities. A community structure is a reflection of the local characteristics existing in the network
topology, this makes community detection become an important research field to reveal the internal
structural characteristics of networks. In this article, an information-based community detection
approach MINC-NRL is proposed, which can be applied to both overlapping and non-overlapping
community detection. MINC-NRL introduces network representation learning (NRL) to represent the
target network as vectors, then generates a community evolution process based on these vectors to
reduce the search space, and finally, finds the best community partition in this process using mutual
information between network and communities (MINC). Experiments on real-world and synthetic
data sets verifies the effectiveness of the approach in community detection, both on non-overlapping
and overlapping tasks.

Keywords: community detection; mutual information; network representation learning

1. Introduction

Complex networks are a kind of graph-structured data which abstractly represents the
real-world systems and structures. Nodes and edges of a network respectively represent
elements and relationships of a system to show its topological characteristics. It has been
shown that there are clusters of nodes that can be regarded as an independent whole
according to some precisely defined and quantifiable attributes generally exist in many
networks. Typically, the density of edges between nodes in a cluster. A group of nodes can
be defined as a community if it has a higher density of internal edges than the average edge
density of the whole network. Detecting communities in complex networks plays a vital
role in understanding the structure and functions of the entire network system and can help
us analyze and predict the interactions between the elements of it. Many researchers have
focused on methods that can efficiently detect community structure in complex networks.

Traditional community detection algorithms often use modularity [1] to measure
the strength and weakness of a community partition of a network; then, by using some
process, such as the top-down split GN algorithm [2] and LFM algorithm [3], the maxi-
mum or extreme value of community evaluation index is reached. In this way, the best
community partition of a network is found. Apart from modularity, some methods de-
fine and use other community evaluation index to detect communities more accurately,
e.g., the IE [4] model, which aims to reveal the characteristics of the complex networks
in an information theoretic view, by defining and calculating the information entropy of
communities. Another information-theoretic index for evaluating partitions is the mutual
information between network and communities(or MINC for short), proposed by L.C.
Reidy et al. By defining structural information and community information between node
pairs, the MINC approach specializes the general mutual information formula to calculating
the mutual information between network structures and partitions in unweighted and
undirected networks.
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In recent years, with the development of representation learning algorithm in natural
language processing (NLP) and other fields, researchers have begun to work on the rela-
tionship between network representation learning and community detection, such as using
community annotations to improve network representation algorithms [5,6] and using
network representation algorithms to improve the accuracy of community detection [6].

After induction and summary of these studies, we found that a typical community
detection method often consists of two parts: The first is the community evaluation index,
which measures the strength and weakness of a community structure; the second is the
community transformer, which constantly change the community structure and tries to
find a partition that reach some peak values of the evaluation index, that is, the solutions of
community detection.

In the ideal case, the community evaluation index is able to evaluate the goodness of
the community structure precisely, and the community transformer can efficiently search
to give a set of partitions which cover the optimal partition. Unfortunately, for the former,
since there is no accurate definition of the merits of community structure, researchers can
only design community evaluation indices by means of edge density (e.g., modularity) or
information-theoretic representation of node clusters (e.g., information entropy), so as to fit
the real-world cases as well as possible. For the latter, community transformers have to
make a trade-off between efficiency and the accuracy. Most of the methods have no way to
use the global information of the network while transforming the community structure.
For instance, while propagating labels in label propagation algorithm, to which a node
propagates a label depends only on its local structural environment.

Aiming at the problems above, a new approach called MINC-NRL is proposed.
The main idea is by using network representation learning (NRL) algorithms such as
the Deepwalk method [7], the network is represented as vectors, which reflects the global
information of the network. A community evolution process is then generated based on
these vectors using hierarchically clustering to reduce the search space. Finally, by the
usage of mutual information between network and communities (MINC), the best state in
this community evolution process is found, as the final result of community detection.

The main contributions of this paper can be summarized as follows:

• Extend the original MINC evaluation index to make it possible to evaluate overlapping
communities in unweighted and undirected networks;

• A community detection approach MINC-NRL is proposed based on network repre-
sentation learning and MINC;

• Experiments are conducted on real-world data sets and synthetic data sets to verify
the effect of the MINC-NRL approach.

The rest of this paper is organized as follows: Section 2 gives a short review of the
community detection algorithms. Section 3 discusses how to detect communities using the
MINC evaluation index and expand its definition to fit overlapping community detection
tasks. In Section 4, the MINC-NRL method is introduced and explained in detail. Section 5
implements the method and verifies its accuracy by experiments. Section 6 is the summary
and prospect of our research.

2. Related Work

Detecting community structure on different varieties of networks proves to be a
hard task [8]. Various types of approaches for community detection have been proposed
including modularity optimization, label propagation, spectral clustering, dynamic analysis,
clique percolation, etc. [9].

Since Girvan and Newman pioneered the community evaluation index called modular-
ity [1], modularity optimization is widely applied and studied for its general applicability
to network topology which consist only of nodes and edges. GN, FN, and Louvain are
typical modularity optimization algorithms. The main motivation of these algorithms is to
find a maximum value of modularity on a given network through constantly transforming
the community partition. For instance, GN initializes the network as whole community
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and breaks it into smaller ones by deleting the edge with the greatest edge-betweenness
step by step and tracking the maximum modularity value in the process; FN uses a greedy
technique to merge small communities to large ones, following the direction that raises the
value of modularity. Modularity provides a link-based criterion to evaluate the goodness
of partitions of a network, but it is showed that the modularity values of ground-truth
partition on a large number of data sets are usually not the maximum. In addition, mod-
ularity has a problem called resolution limit, which means, in some cases, modularity
optimization algorithms unreasonably divide a community to smaller ones or combine
communities into a large one [10]. Aiming at such problems, researchers have proposed
other community evaluation indices as objective functions. By labeling the communities
and nodes using two-level encoding, Rosvall et al. have proposed a metric which uses
the average length of the description codes generated by random walkers to measure a
partition [11]. The accuracy of this evaluation index is time-dependent. In order to obtain a
more accurate evaluation, more iterations and more time are needed. R. Lambiotte et al.
have proposed a stability index to find and judge which partition has a high degree of
stability during the random walking through a network and use stability as the basis for
community detection [12]. Stability is defined as a time-dependent function, and when the
time parameter t changes, the stability index also changes, hence it is hard to determine the
value of t to obtain the best result. L. C. Reidy proposed an information-theoretic index to
evaluate the mutual information between network and communities (hereafter referred
as MINC) [13]. The MINC approach specializes the general mutual information formula
to calculating the mutual information between network structures and partitions, which
offers a new thought on detecting community structure within an information-theoretic
framework. In our approach, the idea of MINC as a community evaluation index is adopted
and extended to figure out the best partition at different resolutions.

Community evaluation indices provide a quantitative manner to evaluate a given
partition on a specific network. However, due to the huge number of ways to partition a
network, it is impossible to find the maximum value of the evaluation indices by exhausting
all possible partitions. Thus, most of community detection algorithms uses community
transformers to search local optimal solutions of the evaluation indices by gradually chang-
ing the ownership of the nodes. These community transform techniques mainly include
greedy techniques, simulated annealing, extremal optimization, spectral optimization,
etc. [8]. For instance, local expansion methods such as LFM [3] and GCE [14] are typical
greedy techniques for local optimization. The algorithms follow the idea that starting from
core nodes as the initial communities, and then greedy include neighbor nodes that are
likely to be in the same community until a local maximum of the evaluation index called
fitness is reached, and then continue to search other communities one by one in the rest of
the network. Such type of methods is often used for the detection of overlapping communi-
ties, but the local optimums as the final solutions usually have significant difference with
the ground-truths.

Aiming at improving the accuracy of the results and reducing the convergence time
while searching optimal partitions, recent research is trying to add some pre-processing
steps before community transforming to collect more structural information from the
network. For example, the community detection method based on positive/negative
connections [15] runs a random walking process in the network and performs statisti-
cal analysis on the random-walking sequence. Then, the relationships of the nodes are
evaluated as positive/negative for further detection. With a similar idea, the EdMot al-
gorithm [16] uses a motif-based hypergraph of the target network to enhance the edge,
and applies other state-of-the-art algorithms to partition the network. The DEMON [17]
methods builds an EgoMinusEgo network from the original network, by combining the
ego network extraction and the graph-vertex difference operation. In addition, based on
an ego network, SONIC-MAN [18] use moderator nodes to integrate the local structural
information in distributed online social networks. Such pre-processing steps are verified to
be effective in improving the community detection performance of existing approaches.
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In recent years, with the development of representation learning algorithms in areas
such as natural language processing, researchers have adopted the technique on deep
learning to community detection. The idea of these approaches, in general, is to compress
the high-dimensional structural information of the network (e.g., an adjacency matrix) into
a set of low-dimensional vectors. Such vectors are defined as a low-dimensional representa-
tion of the network, which brings two main advantages: (1) Distance and density of nodes
can be easily defined based on their representations; (2) The compression of structural in-
formation greatly reduces the time and space costs on detecting communities. For example,
the ComE algorithm constructs the “Community Detection–Community Representation–
Node Representation” closed-loop framework [6] to optimize both the node embedding
and community embedding. The model improves the accuracy of community detection
on multiple real-world datasets, together with better results in node classification and
graph visualization. Based on a two-level representation learning strategies, MemeRep [19]
adopts a genetic framework to optimize the representation which preserves the topology
structure of the network. It is shown that the algorithm is effective on community detection
for that it can make full use of the modularity density to preserve communities. Different
from improving the quality of representation learning, our research pays more attention on
getting community partitions with high scalability and accuracy, and preserve the structural
information of the network at the same time.

3. Mutual Information between Network and Communities
3.1. Original Definition

It is well known that the key part of community detection approach is to design an
effective community evaluation index. A well-defined community evaluation index should
satisfy the following: The better the given partition is, the higher its value is. Thus, when an
optimal partition is given, the index reaches its maximum value. The mutual information
between network and communities (or MINC for short) is a community evaluation index
defined in a view of informatic theory. Mutual information is a measure of the mutual
dependencies of two random variables, i.e., the amount of information that one random
variable contains about the other. If the two variables refer to networks and communities,
respectively, we can obtain a definition of the mutual information between network X and
community partition C as follows:

MINC(X, C) = H(X)− H(X|C) (1)

Note that X and C are variables related to the structure of the network and community
ownership of nodes, which will be specifically defined in the following section. H(X)
denotes the entropy of network X, which can be defined as the number of bits on average to
describe the network. H(X|C) denotes the conditional entropy of X and C, which quantifies
the amount of information needed to describe X given that the value of the known variable
C. Based on the perspective of information, the following assertions are made:

(1) H(X) is determined only by the connectivity of nodes of network.
(2) For a certain network, the better a given partition of it is, the less the amount of

information is needed to describe the network. This results in a smaller value of
H(X|C) and a larger value of MINC(X, C).

Therefore, MINC can be used as a community evaluation index to quantify the merits
of a partition.

The value of H(X) and H(X|C) can be calculated by:

H(X) = − ∑
x∈X

p(x) log p(x)

= −[p(X = 1) log p(X = 1)]− [p(X = 0) log p(X = 0)]
(2)
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H(X|C) =− [p(C = 1) · p(X = 1|C = 1) log p(X = 1|C = 1)]

− [p(C = 1) · p(X = 0|C = 1) log p(X = 0|C = 1)]

− [p(C = 0) · p(X = 1|C = 0) log p(X = 1|C = 0)]

− [p(C = 0) · p(X = 0|C = 0) log p(X = 0|C = 0)]

(3)

The above equations are derived from the general definition of the mutual information.
As for how to calculate the probability distributions (e.g., p(C = 1)), further definition is
needed, and here comes the core idea of the MINC approach.

First, we consider the random variables X and C. X is a variable related to the structure
of the network, which can be defined at the micro level of each pair of nodes in the network:

X =

{
1 if the nodes are adjacent
0 if the nodes are not adjacent

In the same way, the variable for community partition C of the network can be
defined as:

C =

{
1 if the nodes are in the same community
0 if the nodes are not in the same community

Then by considering the connectivity and community ownership of nodes, the proba-
bility distributions can be defined as:

p(X = 1) =
m
t

(4)

p(X = 0) = 1− m
t

(5)

p(C = 1) =
π

t
(6)

p(C = 0) = 1− π

t
(7)

p(X = 1|C = 1.) =
θ

π
(8)

p(X = 0|C = 1.) = 1− θ

π
(9)

p(X = 1|C = 0.) =
m− θ

t− π
(10)

p(X = 0|C = 0.) = 1− m− θ

t− π
(11)

In the above equations, t denotes the number of possible node pairs, which is con-
stantly (n

2) for a particular network with n nodes. m is the number of adjacent node pairs,
which is equal to the number of edges. π is the number of node pairs in same community.
θ is the number of adjacent node pairs in the same community.

By using the above definitions, the mutual information between a particular network
and one of its partitions can be calculated. Based on the assertions that a better partition of
a network will have a higher MINC value, MINC can be used as an index to evaluate the
community structure and guide the community detection progress.

3.2. Extending the Definition of MINC for Overlapping Communities

The original definition of MINC is not compatible with overlapping communities.
This is due to the fact that it divides the edges of a network into two types: intra-community
edges and inter-community edge to calculate the probability distributions by counting the
number of them. For instance, p(X = 1|C = 1) = θ

π denotes the probability that a pair of
randomly selected nodes in the same community have an edge between them in network
X. The value of this probability is equal to the number of intra-community edges divided
by the combinatorial number of selecting a pair of nodes in the same community.
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However, in the case of overlapping communities, an edge can be ambiguous, which
can hardly be defined as being inside or outside the community. As shown in Figure 1,
edge a is an internal edge in community A, and edge b is an inter-community edge between
communities A and B. However, edge c can be considered either as an internal edge of
community A or as an edge between communities A and B because the nodes at both ends
of such an edge can either belong to the same community A or to two different communities
A and B. This makes it difficult to count the number of edges and calculate the probability
distributions in Equations (4)–(11).

a

b

c

Figure 1. Ambiguous edges between two communities.

This problem can be solved by appending definitions for the ambiguous edges in
overlapping communities. A possible solution is that for such an ambiguous edge, it is
counted as 0.5 intra-community edges and 0.5 inter-community edges. However, such a
solution is not reasonable in some more complicated cases. Consider edges m and n in
Figure 2:

m

n
�

�

�

Figure 2. Ambiguous edges among three communities.

For edge m:

• In one case, it can be regarded as an internal edge (in community C);
• In two cases, it can be regarded as an inter-community edge (between communities A

and C and between communities B and C).

For edge n:

• In two cases, it can be regarded as an internal edge (in community B and in commu-
nity C);

• In three cases, it can be regarded as an inter-community edge (between communities
A and B, between communities B and C, and between communities A and C).
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The two edges m and n are in obviously different conditions, but if using the solution
above, they will both be counted as 0.5 intra-community edges and 0.5 inter-community
edges. Therefore, a more rigorous method is proposed to count the number of edges within
and between communities, when there is overlap between communities. The number of
edges in the same community is defined as:

θ = ∑
l∈M

p(la, lb) (12)

where la and lb denote the ends of edge l, and M denotes the set of all the edges of the
network. p(r, s) is defined as:

p(r, s) =
∑Ri∈R ∑Sj∈S δRiSj

|R| · |S| (13)

where R and S denote the community sets to which node r and s belong, respectively. Ri
and Sj are the i-th and j-th communities in R and S, respectively. δRiSj is the Kronecker delta,
which equals to 1 if Ri = Sj and 0 otherwise. |R| and |S| are the numbers of communities
in R and S, respectively.

For the number of node pairs π in same community, it can be calculated in the same
way by replacing l ∈ M with l ∈ L , where L denotes the edge set formed by selecting any
pair of two nodes in the network:

π = ∑
l∈L

p(la, lb) (14)

After appending the above definitions for counting the ambiguous edges in overlapping
communities, the MINC index is able to be applied to overlapping community partitions.

4. Community Detection Based on MINC
4.1. Community Evolution Process

Apart from MINC as a community evaluation index, a community transformer is still
needed to constantly transform the community structure, find the peak value of the evalua-
tion index and finally carry out a solution of community detection. Here, we introduce the
community evolution process, which will play a role as a community transformer in the
MINC-NRL approach.

Definition 1. Community evolution process
A community evolution process P is an ordered set consist of a series of state, defined as:

P = {P0, P1, P2, · · · , PN}
where each state Pn is essentially a community partition of the same network.

Definition 2. Community evolution process of bottom-up cohesion
If adjacent states Pn and Pn+1 in community evolution process P satisfy the following:

∀Yj ∈ Pn+1, ∃Xi(Xi ∈ Pn → Xi ⊆ Yj)

such process can be named as a community evolution process of bottom-up cohesion.

As a special kind of community evolution process, the community evolution process
of bottom-up cohesion is used to represent the evolution process of constant merging of
communities over time, as shown in Figure 3.

For a given network, the main idea of the approach is to generate a community
evolution process as a community transformer, which simulates a real-world community
evolution. That means in any state of such a process, nodes with closer distance or more
similar structural environment will have a greater probability to be in the same community,
and it brings three advantages comparing with other typical community transformer:
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(1) Each state of the generated process is itself a high-quality partition of the network,
and there would be no unreasonable case where a node tries to pull adjacent nodes
into its community without discrimination.

(2) The number of states of the generated process is less, which reduces the calculation
time to evaluate the merits of each state.

(3) For such community evolution process, a stable and unique result can be obtained by
finding the maximum of community evaluation index, or by filtering out the states
with larger evaluation index, result partitions with different resolution can be output
as well.

To generated a community evolution process for given network, network represen-
tation learning (NRL) and hierarchical clustering are used in the approach, which will be
illustrated in detail in the next subsection.

Figure 3. Community evolution process of bottom-up cohesion.

4.2. The Generation of the Community Evolution Process
4.2.1. Network Representation Learning

The generation of the community evolution process in the approach follows the
idea that it simulates a real-world community evolution. To achieve this, the first step is
sampling the network to vectorize the nodes, which preserves and reveals the structural
information of the network. Such process is also known as network representation learning.

Multiple methods can be used to learn representations of nodes in network, e.g., neural-
network method including Deepwalk [7], Node2Vec [20], BoostNE [21], Graph-Wave [22],
and spectral method such as GLEE [23]. By comparing the results of these methods on our
experimental datasets, Deepwalk is finally select in our approach for its balanced and stable
result on undirected real-world networks. The details of the comparative experiments are
illustrated in Section 5.3.

4.2.2. Non-Overlapping Hierarchical Clustering

After obtaining the vector representation of the nodes, these vectors are then clustered
using hierarchical clustering to form a community evolution process. For non-overlapping
community detection, an agglomerative hierarchical clustering (AHC) is used to construct
a bottom-up cohesion community evolution process.

The distance between two vectors is measured using the Euclidean distance, while
that between two clusters is measured using Ward’s method [24]. By clustering the vectors,
the distance between each pair of vectors will be smaller when they represent a pair of nodes
with closer distances or more similar environments in the network. When we alter the
cluster distance threshold from small to large, the nodes will be first completely separated,
and then the clusters merge in pairs based on the similarity between them, and eventually,
the entire network is merged into one large cluster. Since these vector clusters are the
representation of communities in the network, we have obtained a bottom-up cohesion
community evolution process P in this way.
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4.2.3. Overlapping Hierarchical Clustering

For overlapping community detection, the vectors are clustered using the overlapping
hierarchical clustering algorithm (OHC) proposed by I. Jeantet et al. [25]. Different from
classical hierarchy clustering, the OHC algorithm produces a directed acyclic graph called
a quasi-dendrogram while clustering, which avoids early cluster merging and creates
overlapping clusters on each level of the clustering process. Figure 4 shows a quasi-
dendrogram produced by OHC.

C

D

E

A

B
B, F

B, F
A, B

E, F

F

C
C

C
C

F
B, C

B, C

D

E
A, D

E

A, D

E

A, B, D

E, F

A

A, B, D

E, F

A, B, D

A, B, CAA,, BB,, CC

D, E, F

E, F

Figure 4. Quasi-dendrogram generated by OHC.

As shown in the figure, each node of the quasi-dendrogram denotes a cluster, and each
level in vertical represents a cover (either non-overlapping or overlapping) of the input
vectors. A node (except the root) can have one or more parent nodes. Note that a cover
here in the clustering process of the representation vectors is essentially a corresponding
partition of the network.

Same as AHC for non-overlapping clustering, the OHC algorithm generated a state
sequence from individual nodes to one large cluster, which can be directly convert to a
community evolution process as an outcome.

4.3. Find the Peak Value of MINC through the Process

The community evolution process is a topological miniature which covers the in-
tegration and fragmentation of the communities in real-world networks. The final step
of the approach, is to find the state with the largest MINC value, as the final result of
community detection.

Figure 5 shows the MINC values of the first 20 states in the community evolution pro-
cess constructed on Polbooks [26] network, with the abscissa indicating the corresponded
CN values of the states. As shown in the figure, with the largest MINC value, the state with
3 communities will be output as the result partition.

As a summary, the basic process of MINC-NRL is listed below:

(1) Perform random walks in the network, and obtain random-walking sequences by
tracking the passing nodes;

(2) Input the random-walking sequences into the Word2vec [27] model, which outputs
the vector representation of each node;

(3) Perform a hierarchical clustering to the vectors. For non-overlapping community
detection tasks, AHC is used; for overlapping community detection tasks, OHC is
used. Each level of the dendrogram generated by the clustering algorithm will be
convert to each state Pi of the community evolution process P = P0, P1, P2, · · · , PN ;

(4) Calculate the MINC value of each states in P;
(5) Output the state with the largest MINC value as the result of community detection.
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0.063

Figure 5. MINC value of community evolution process generated from Polbooks.

The pseudo-codes in Algorithm 1 gives a brief description of MINC-NRL.

Algorithm 1: MINC-NRL
Input: Network G(E, V)
Output: Communities detected in network G(E, V)

1 sequences← List(R*N);
2 for r ← 0 to R do
3 for n← 0 to N do
4 seq← List();
5 currentNode← n;
6 seq.append(currentNode);
7 for l ← 0 to L do
8 currentNode← randomSelect(currentNode.neighbors);
9 seq.append(currentNode);

10 end
11 sequences.append(seq);
12 end
13 end
14 model←Word2Vec(sequences, size← neu_size, window← window_size);
15 vectors← model.get_embeddings();
16 if overlapping = True then
17 dendrogram← OHC(vectors);
18 else
19 dendrogram← AHC(vectors);
20 end
21 list_partition← dendrogram.levels ;
22 list_MINC← List(N) ;
23 for i← 2 to N do
24 list_MINC[i]← list_partition[i] ;
25 end
26 opt_i← index_of(max(list_MINC));
27 return list_partition[opt_i];

4.4. Time Complexity Analysis

The time complexity of this algorithm can be calculated in three parts:
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(1) Network Representation Learning Firstly, random walks are perform in the network.
Starting from each node, the random walker need to go L steps in the network, and such
process will iterate R times. Hence the time complexity for random-walk is O(nLR),
where n is the number of nodes of the network. Then the sequences will be input into
the Word2vec model. The model first uses a window of size W sliding through these
sequences to count the co-occurrence frequency between nodes, which need a time
complexity of O(nLRW). Meanwhile, the representation vectors for the nodes will be
updated using a stochastic gradient descent process of E epochs in O(E log(n)) time,
with the acceleration of the hierarchical softmax. To sum up, the overall time complexity
of the network representation learning part is O(nLR) + O(nLRWE log(n)).

(2) Hierarchical Clustering With the acceleration by a nearest neighbor chain, the ag-
glomerative hierarchical clustering (AHC) needs a time complexity of O(n2). For the
overlapping hierarchical clustering (OHC), in each iteration, or each level of the den-
drogram, each cluster should traverse all nodes to decide which one is the closest, this
leads to O(Cn) time, where C is the number of clusters for each level. The number of
levels of the dendrogram created by OHC is proportional to the number of nodes n.
Thus, the total time complexity for OHC is O(Cn2).

(3) Find the Peak Value of MINC For a partition, the main time cost for MINC cal-
culation comes form obtaining θ and π, which need a traverse of all edges for their
belonging community. To achieve this, a map is first built to store which community
each node belongs to, with a time complexity of O(n). Hence, O(n + m) is needed,
where m is the number of edges of the network. Since the dendrogram created by
hierarchical clustering has O(n) levels, and each level will be regraded as a partition
for MINC calculation, the overall time complexity for this part is O(n(n + m)).

In conclusion, the time complexity for the approach is O(nLR) + O(nLRWE log(n)) +
O(n2)+O(n(n+m)) for non-overlapping community detection and O(nLR)+O(nLRWE log
(n)) + O(Cn2) + O(n(n + m)) for overlapping community detection. During the actual run-
ning of the approach, random-walk length L, iteration R, window size W, and update epochs E
are much smaller than the number of nodes n and the number of edges m, the main time cost
comes from the clustering part and MINC calculation part. For non-overlapping community
detection, the total time complexity is O(n2) + O(n(n + m)) = O(n(n + m)); for overlapping
community detection, it is O(Cn2) + O(n(n + m)). It should be noted that the number of
clusters C for each level in OHC depends on the merging criterion λ in OHC algorithm. When
the λ increases, clusters are more likely to merge, which decrease C. When setting λ = 0.1,
the OHC algorithm tends to have a time cost of about O(n2.45) [25]. Hence, the O(Cn2) time for
OHC becomes the major bottleneck in computational efficiency of the approach in overlapping
community detection tasks.

5. Experiments

In this section, experiments are conducted to confirm the effectiveness of MINC-NRL.

5.1. Preparation of the Experiment

To verify the accuracy of MINC-NRL, experiments are conducted on both non-overlapping
and overlapping community detection tasks. For non-overlapping community detection, we
include 4 non-overlapping community detection algorithms as baselines and use the number of
communities (CN) and normalized mutual information (NMI) to verify the accuracy of MINC-
NRL. For overlapping community detection, 3 overlapping community detection algorithms are
included, and 4 accuracy evaluation indices are used, including CN, Overlapping Modularity
(Qov), Extended Modularity (EQ), and Average Conductance (AC).

The data sets used in the experiment are all undirected and unweighted networks
with ground-truth partition labels. Among them, the Karate Club [28], Dolphins [29], Foot-
ball [30], and Polbooks [26] are real-world networks, and LFR500, LFR2000 , LFR10000_a,
and LFR10000_b are synthetic networks generated with scale-free features according to
parameters [31]. Tables 1 and 2 list the main properties of data sets and the hardware and
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system information of the experiments, respectively, where k is the average degree and µ is
the mixed parameter of LFR networks.

Table 1. Main properties of data sets.

Data Set Node# CN k µ

Karate Club 34 2 4.6 -
Dolphins 62 2 5.1 -
Football 115 12 10.7 -
Polbooks 105 3 8.4 -
LFR500 500 3 15 0.3
LFR2000 2000 4 30 0.3
LFR10000_a 10,000 4 15 0.3
LFR10000_b 10,000 87 30 0.3

Table 2. Hardware and system information.

CPU Intel(R) Core(TM) i5-9600K
Cores 8
Frequency 2.4 GHz
Memory 16 GB
Operating system CentOS 7

5.2. Benchmarks

For non-overlapping community detection, since the data sets are partition-labeled,
the number of communities (CN) and normalized mutual information (NMI) [32] are used
to measure the accuracy of community detection. As a general rule, it is better that the
CN of community detection result is exactly the same as labeled, or at least similar with
labeled. NMI can be used to evaluate the difference between the result partition and labeled
partition based on an information theory framework. The NMI value between partition A
and B can be formulated as:

NMI(A, B) =
−2 ∑CA

i=1 ∑CB
j=1 Cij · log

( Cij ·N
Ci· ·C·j

)
∑CA

i=1 Ci· · log
(

Ci·
N

)
+ ∑CB

j=1 C·j · log
(C·j

N

) (15)

where N is the total number of nodes, C is a confusion matrix, whose element Cij denotes
the number of nodes belonging to Community i in Partition A and also belonging to
Community j in Partition B. CA and CB denote the number of communities of Partition A
and B, respectively. Ci· and C·j denote the sum of all elements of a row or column in Matrix
C. The value of NMI is between 0 and 1, and it becomes larger when the two partitions are
more similar. If the two partitions are exactly the same, the NMI value reaches 1. The NMI
index is used in our experiments to compare the result partitions with the labeled partitions.
A higher NMI value stands for a better result.

For overlapping community detection, we use overlapping modularity (Qov) [33],
extended modularity (EQ) [34], and average conductance (AC) to evaluate the structural
merits of the result partitions, instead of comparing the result partition with the labeled
networks. Although we did not use the partition labels directly, we still compared the
result CN with the labeled CN because the number of communities still has reference value
on overlapping community networks.



Algorithms 2022, 15, 20 13 of 18

The extended modularity (EQ) is a community quality index which extends the
definition of Newman’ s modularity to overlapping community structures. The definition
of EQ is shown as follows:

EQ =
1

2m ∑
c∈C

∑
i,j∈c

1
OiOj

[
Aij −

kik j

2m

]
(16)

where m is the total number of edges in the network, and c is one of the communities. i
and j are nodes belonging to Community c; ki and k j are their respective degrees. Aij is
the element of the adjacency matrix which follows the condition that when node i and j
are linked, the value of Aij is 1, otherwise 0. Oi and Oj are the numbers of communities to
which node i and j belong, respectively, and give EQ the ability to deal with the case that
a node belongs to more than one community. A high value of EQ indicates a significant
overlapping community structure for a particular network.

The overlapping modularity index Qov is another quality function proposed by
V. Nicosia et al. [33] to extend modularity to the more general case of overlapping commu-
nities, defined as:

Qov =
1
m ∑

c∈C
∑

i,j∈V

[
βl(i,j),c Aij −

βout
l(i,j)k

out
i βin

l(i,j)k
in
j

m

]
(17)

Same as that in EQ, m is the total number of edges in the network. Aij are the elements
of the adjacency matrix. i,j are nodes of the network. kout

i is the out-degree of Node i, while
kin

j is the in-degree of Node j. Instead of the number of communities to which a node

belongs to, Qov uses the belonging coefficients βin
l(i,j) and βout

l(i,j) to calculate the weight for
each link l(i, j) existing between node i and j. Similar to EQ, a higher value of Qov indicates
a stronger community structure.

Another index used in our experiment to evaluate the quality of overlapping com-
munity detection result is the average conductance (AC). Conductance is a local measure
for the goodness of a node cluster in the network [35]. For a cluster c, conductance is
defined as:

f (c) =
mout

c
2mout

c + min
c

(18)

where min
c is the number of internal edges of Cluster c, mout

c is the number of edges that
links the cluster to other parts of the network. To evaluate a partition of the network,
average conductance (AC) is used, which is defined as:

Φ(C) = avg
c∈C

f (c) (19)

where C is a community partition of a network. The equation averages the conductance of
all communities of the partition.

5.3. Preliminary Experiments: Comparison on Different Network Representation Methods

As a pre-step to hierarchical clustering, the network representation method can sig-
nificantly affect the community evolution process generated. As mentioned in Section 4.2,
comparative experiments are conducted to evaluate the impact of the network representa-
tion methods on the final results and find which of the network representation method is
the most appropriate for our framework. The first comparison is made by replacing the
network representation process of MINC-NRL (Step (1) and (2) in Section 4.3) by different
network representation methods, including Deepwalk [7], Node2Vec [20], Walklets [36],
RandNE [37], BoostNE [21], GLEE [23], NetMF [38], GraRep [22], NMFADMM [39], and ver-
ified with non-overlapping community detection tasks on real-world datasets.
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The following table shows the NMI of using different network representation methods in
MINC-NRL. The bold numbers emphasize the best experimental results within each data set.

As illustrated in Table 3, random-walk-based methods perform better than the other al-
gorithms, including Deepwalk, Node2vec, and Walklets, and Deepwalk reaches the highest
NMI on most of the datasets. Figure 6 shows the representation of Football network using
Deepwalk, which is reduced to 2D by a principal component analysis (PCA). The results
indicate that Deepwalk is more appropriate for MINC-NRL.

Table 3. NMI of using different network representation methods in MINC-NRL

Karate Dolphins Football Polbooks Avg.

MINC-Deepwalk 1.000 1.000 0.924 0.589 0.878
MINC-Node2Vec 1.000 0.657 0.681 0.521 0.715
MINC-Walklets 0.557 0.659 0.702 0.574 0.623
MINC-Role2Vec 0.447 0.268 0.402 0.306 0.356
MINC-RandNE 0.523 0.333 0.764 0.576 0.549
MINC-BoostNE 0.448 0.676 0.781 0.598 0.626
MINC-GLEE 0.523 0.333 0.764 0.576 0.549
MINC-NetMF 0.350 0.297 0.728 0.593 0.492
MINC-GraRep 0.334 0.889 0.673 0.568 0.616
MINC-NMFADMM 0.390 0.271 0.418 0.220 0.325

Figure 6. Network representation of Football using Deepwalk.

5.4. Comparison Results with the Other Algorithms
5.4.1. Non-Overlapping Community Detection

The following Tables 4 and 5 show the CN and NMI of running the MINC-NRL algo-
rithm on the data sets, compared with non-overlapping community detection algorithms
GN [2], FN [40], Louvain [41], and EdMot [16]. Note that the NMI values quantify the
differences between the result partitions with the ground-truth partitions of the data sets.

Table 4. CN of MINC-NRL compared with other algorithms.

Karate Dolphins Football Polbooks LFR500 LFR2000 LFR10000_a

MINC-NRL 2 2 12 3 3 4 4
GN 5 5 10 5 - - -
FN 2 3 7 3 3 8 -
Louvain 2 2 10 3 3 5 4
EdMot 4 5 12 5 3 5 5
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Table 5. NMI of MINC-NRL compared with other algorithms.

Karate Dolphins Football Polbooks LFR500 LFR2000 LFR10000_a Avg.

MINC-NRL 1.000 1.000 0.924 0.589 0.978 1.000 0.850 0.906
GN 0.580 0.554 0.879 0.558 - - - 0.643
FN 0.914 0.606 0.762 0.534 0.969 0.635 - 0.706
Louvain 0.837 0.753 0.885 0.554 0.972 0.755 0.741 0.785
EdMot 0.587 0.511 0.851 0.504 0.980 0.823 0.799 0.722

The results show that MINC-NRL performs well on both real-world networks and LFR
synthetic networks. The numbers of communities of the networks are correctly figured out
by MINC-NRL. It also obtains the highest average NMIs on most of the data sets compared
with the other algorithms.

5.4.2. Overlapping Community Detection

The following Tables 6–9 show the CN, Qov, AC, and EQ values, respectively, of the
results of MINC-NRL algorithm on the data sets, compared with overlapping community
detection algorithms ASLPAw [42], DEMON [17], and Ego-splitting [43]. Note that smaller
values are better when evaluated by AC.

Table 6. CN of MINC-NRL compared with other algorithms.

Karate Dolphins Football Polbooks LFR500 LFR2000 LFR10000_b

MINC-NRL 2 2 11 3 3 4 87
ASLPAw 2 3 6 5 1 2 87
DEMON 2 4 8 5 48 344 492
Ego-splitting 3 4 5 3 7 228 43,193

Table 7. Qov of MINC-NRL compared with other algorithms.

Karate Dolphins Football Polbooks LFR500 LFR2000 LFR10000_b Avg.

MINC-NRL 0.753 0.751 0.835 0.697 0.659 0.668 0.700 0.723
ASLPAw 0.739 0.780 0.818 0.741 - 0.460 0.699 0.605
DEMON 0.441 0.417 0.219 0.304 0.003 0.001 0.038 0.203
Ego-splitting 0.641 0.669 0.782 0.550 0.287 0.109 - 0.506

Table 8. EQ of MINC-NRL compared with other algorithms.

Karate Dolphins Football Polbooks LFR500 LFR2000 LFR10000_b Avg.

MINC-NRL 0.162 0.170 0.176 0.164 0.133 0.140 0.173 0.160
ASLPAw 0.158 0.165 0.173 0.162 - 0.135 0.173 0.138
DEMON 0.139 0.084 0.073 0.086 0.008 0.004 0.037 0.062
Ego-splitting 0.137 0.145 0.166 0.121 0.0641 0.041 - 0.112

Table 9. AC of MINC-NRL compared with other algorithms.

Karate Dolphins Football Polbooks LFR500 LFR2000 LFR10000_b Avg.

MINC-NRL 0.132 0.071 0.168 0.313 0.303 0.300 0.300 0.227
ASLPAw 0.152 0.175 0.305 0.255 - 0.299 0.307 0.249
DEMON 0.314 0.142 0.123 0.312 0.676 0.845 0.358 0.396
Ego-splitting 0.289 0.271 0.208 0.371 0.706 0.906 - 0.459

As illustrated in the above tables, the algorithm correctly figured out the number of
communities on almost all networks. Although it does not get the best result on every data
sets, but the average accuracy is the best compared with the other algorithms.
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6. Conclusions

In this paper, an information-based approach for community detection MINC-NRL
is proposed. The approach adopts network representation learning techniques to obtain
the vectorial representation of each node of a network. Then, a community evolution
process is generated with these vectors, through an agglomerative hierarchical clustering
or overlapping hierarchical clustering, according to a non-overlapping/overlapping com-
munity detection task. Finally, the MINC index is used to figure out the optimum partition
in the community evolution process. The experimental results show the effectiveness of
MINC-NRL on both real-world and synthetic networks.

Due to the definition of MINC, a limitation of the current approach is that it can only
be applied in unweighted and undirected networks. In the future, we will try to further
extend the definition of MINC to address this limitation. The approach achieves a high
degree of accuracy on 10,000 nodes LFR synthetic networks, but it is still difficult to be
applied to larger-scale networks. This is mainly due to the time complexity bottleneck of
the clustering algorithms. We will continue our research on improving the accuracy and
time efficiency of the clustering part and try to extend the algorithm to detect communities
on larger-scale networks.
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