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Abstract: To overcome the shortcomings of the harmony search algorithm, such as its slow con-
vergence rate and poor global search ability, a reward population-based differential genetic har-
mony search algorithm is proposed. In this algorithm, a population is divided into four ordinary
sub-populations and one reward sub-population, for each of which the evolution strategy of the
differential genetic harmony search is used. After the evolution, the population with the optimal
average fitness is combined with the reward population to produce a new reward population. During
an experiment, tests were conducted first on determining the value of the harmony memory size
(HMS) and the harmony memory consideration rate (HMCR), followed by an analysis of the effect
of their values on the performance of the proposed algorithm. Then, six benchmark functions were
selected for the experiment, and a comparison was made on the calculation results of the standard har-
mony memory search algorithm, reward population harmony search algorithm, differential genetic
harmony algorithm, and reward population-based differential genetic harmony search algorithm.
The result suggests that the reward population-based differential genetic harmony search algorithm
has the merits of a strong global search ability, high solving accuracy, and satisfactory stability.

Keywords: harmony search algorithm; reward population; differential evolution algorithm; mutation
strategy; genetic algorithm

1. Introduction

With the development of big data, cloud computing, artificial intelligence, and other
technologies, the data size of networks has witnessed fast growth, and as a result, it has
been more common to solve optimization problems that are similar to traffic networks,
such as vehicle route planning, spacecraft design, and wireless sensor layouts [1]. Usually,
these optimization problems can be expressed with mathematical programming forms. For
general simple optimization problems, mathematical programming and iterative algorithms
may be used for complex large optimization problems, however, it is quite difficult to seek
a global or approximate optimal solution within a reasonable time with these traditional
methods. Therefore, to smoothly solve complex large optimization problems, the heuristic
algorithm was proposed and has received increasing attention in recent decades [2].

In computer science and mathematical optimization, a metaheuristic is a higher-level
procedure or heuristic designed to find, generate, or select a heuristic that may provide
a sufficiently good solution to an optimization problem, especially with incomplete or
imperfect information or limited computation capacity [3,4]. The common meta-heuristic
algorithms include a genetic algorithm, simulated annealing algorithm, and particle swarm
optimization algorithm [5,6]. Unlike meta heuristics, which are independent of the problem,
heuristic algorithms depend on a specific problem. Heuristic algorithms are essentially
methods by trial and error [7]. In the process of seeking the optimal solution, it can
change its search path according to individual or global experience. When it becomes
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impossible or difficult to find the optimal solution of the problem, a heuristic algorithm
is an efficient method to obtain the feasible solution [8]. Harmony search is a heuristic
global search algorithm introduced in 2001 by Zong Woo Geem, Joong Hoon Kim, and
G. V. Loganathan [9]. Inspired by the improvisation of musicians, it simulates musicians’
improvisation process to achieve subtle harmonies. The HS algorithm is characterized by
merits such as a simple structure, less demand for parameters, a high convergence rate,
and strong robustness, which facilitates its application in optimizing a system’s continuous
and discrete variables [10]. We hope that the HS algorithm can effectively solve some
optimization problems. In recent years, scholars have constantly improved the algorithm
and made some progress [11–14].

Mahdavi et al. used a new method for generating new solution vectors and set the
pitch adjustment rate and distance bandwidth as dynamic changes, improving the accuracy
and convergence rate of the HS algorithm [15]. Khalili et al. changed all key parameters
of the HS algorithm into a dynamic mode without predefining any parameters. This
algorithm is referred to as the global dynamic harmony search, and such modification
imbued the algorithm with outstanding performance on unimodal functions and multi-
modal functions [16]. In view of the drawbacks of HS such as a low convergence rate and
solving accuracy in solving complex problems, Ouyang et al. proposed an adaptive global
modified harmony search (MHS) that fuses local searches [17]. Pan et al. proposed the
concepts of the maximum harmony memory consideration rate, the minimum harmony
memory consideration rate, the maximum regulation bandwidth, the minimum regulation
bandwidth, etc. on the basis of the standard HS algorithm, and they achieved an automatic
regulation mechanism for the relevant parameters of the harmony search algorithm by
improving the current harmony memory consideration rate for each iteration and changing
the bandwidth with the number of iterations [18]. To improve the efficiency of the HS algo-
rithm and make up for its drawback of easily getting into local search, Zhang Kangli et al.
improved the generation of the initial solution vector’s harmony memory and proposed
an improved harmony algorithm, ALHS [19]. Given the low evolution efficiency of single
populations and fewer studies on multi-population improvement, S. Z. Zhao combined
dynamic multi-swarm particle swarm optimization (DMS-PSO) with the HS algorithm and
simplified it into the dynamic multi-swarm particle swarm optimization harmony search
(DMS-PSO-HS). These sub-populations are frequently re-combined, and there is informa-
tion exchange among particles in the entire population. Compared with DMS-PSD and HS,
DMS-PSO-HS is improved from the aspect of multi-mode and combinatorial testing [20].
As to the problems with the HS algorithm in solving high-dimensional multi-objective
optimization problems, Zhang proposed an improved differential evolved harmony search
algorithm. In this algorithm, mutation and crossover are adopted to substitute the original
pitch adjustment in the HS optimization algorithm, thus improving the global search ability
of the algorithm [21]. To effectively solve integrated process planning and scheduling (IPPS)
problems, Wu et al. proposed a nested method for single-objective IPPS problems. On the
external layer of the method, the HS algorithm was used to determine the manufacturing
feature processing sub-path, and static and dynamic scoring methods were proposed for
the sub-path to guide the search on the external layer. Meanwhile, a genetic algorithm was
adopted on the internal layer to determine machine allocation and operation series. Upon
combining the two algorithms, the validity of the proposed method was proved through a
test of benchmark instances [22].

Inspired by the above, the improvement of the HS algorithm mainly focuses on the
improvement of parameters and infusion with other algorithms. In this paper, to solve
the main problems with the algorithm, such as its poor global search ability and poor
solution accuracy, a reward population-based differential harmony search algorithm is
proposed. The highlight of the proposed algorithm is as follows. (a) We hope that by using
the multiple population reward mechanisms, the population diversity can be increased
and the algorithm can avoid falling into local optimization as much as possible. (b) In
the step of generating a new harmony, excellent individuals in existing populations are
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utilized for optimization, thus improving the convergence rate of the algorithm; at the same
time, on the basis of differential evolution and genetic operations, the difference among
individuals is utilized flexibly for search guidance, thus improving the search ability of
the algorithm. Finally, in a numerical experiment, the validity of the algorithm is verified
through comparison.

2. Harmony Search Algorithm

The harmony search algorithm is a novel intelligent optimization algorithm. Like
the genetic algorithm, which simulates biological evolution, the simulated annealing algo-
rithm, which simulates physical annealing, and the particle swarm optimization algorithm,
which simulates flocks of birds, the harmony algorithm simulates the principle of concert
performances [23].

Let us assume that a band consists of n people, and everyone plays a specific musical
instrument. Then, all sounds being played correspond to a group of harmonies after combi-
nation, which is: X = x1, x2, . . . , xn. As the tone of the initial harmony is not necessarily the
best, they need to get the best harmony through continuous cooperation and rehearsal. For
convenience of comparison, a mathematical function f (x) can be used to measure whether
a harmony sounds good in the whole process. The f (x) serves as a general director, as
well as a general judgment criteria. If the requirements are not met, the performance
should be constantly adjusted until a set of satisfactory harmonies is achieved. This is the
optimization process of the harmony search algorithm.

2.1. Parameters Involved in Harmony Search Algorithm

In short, for the harmony search algorithm (HS), all solution vectors (decision variable
sets) are stored in harmony memory (HM). The main parameters of the HS algorithm are
the harmony memory size (HMS), harmony memory consideration rate (HMCR), pitch
adjusting rate (PAR), distance bandwidth (BW), and number of improvisations or stopping
criterion (NI).

Harmony memory size (HMS): As the music of each musical instrument has a specific
range, a solution space may be constructed on the basis of such a performance range. Then,
the solution space is used to generate a harmony memory randomly. Therefore, the size of
the harmony memory should be designated first.

Harmony memory consideration rate (HMCR): In each iteration, a set of harmonies
should be extracted from the harmony memory at a specific rate. Upon micro tuning the
set, a set of new harmonies is obtained. Then, a judgment is made on whether the new
harmonies are better than the worst harmony in the harmony memory. The process of this
judgment involves a comparison done on the basis of the function f (x) mentioned above.
Therefore, a random harmony memory consideration rate should be generated.

Pitch adjusting rate (PAR): A set of harmonies should be selected from the harmony
memory at a specific consideration rate for pitch adjustment.

Tone pitch adjusting bandwidth (BW): As mentioned above, a set of harmonies will be
selected from the memory for pitch adjustment at a specific consideration rate. Bandwidth
(BW) refers to the adjustment amplitude.

Maximum times of creation (Tmax): This refers to the times of creation by concert
performers, or namely, the number of times the whole harmony adjustment process needs
to be repeated.

2.2. Flow of Harmony Search Algorithm

(1) Initialize the problem and algorithm parameters
In general, the global optimization problem can be summarized as follows. Minimize

f (x) subject to

xi ∈ Xi i = 1, 2, · · · , N. (1)
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where, f (x) is the objective function, x is the set of the decision variables xi, N is the number
of decision variables, Xi is the set of possible ranges of values for each decision variable,
the upper bound for each decision variable is UB(i), and the lower bound is LB(i); then
LB(i) ≤ Xi ≤ UB(i).

In Section 2.1, it was introduced that five parameters are involved in harmony research.
At the very beginning of the algorithm, these values should be set properly.

(2) Initialize harmony memory
A harmony memory with a size of HMS is generated on the basis of the solution space,

as follows.

HM =



x1
1 x1

2 · · · x1
N−1 x1

N
x2

1 x2
2 · · · x2

N−1 x2
N

· · · · · · ·
· · · · · · ·
· · · · · · ·

xHMS−1
1 xHMS−1

2 · · · xHMS−1
n−1 xHMS−1

N
xHMS

1 xHMS
2 · · · xHMS

N−1 xHMS
N


(2)

Each decision variable is generated as follows: xj
i = LB(i) + (UB(i)− LB(i)) ∗ r for

i = 1, 2, · · · , N and j = 1, 2, · · ·HMS, where r is a random number between 0 and 1.
(3) Generation of new harmony
A new harmony vector is generated by three rules: (a) memory consideration, (b) pitch

adjustment, and (c) random selection [24]. First, randomly generate a random number r1 in
the range [0, 1] and compare r1 with the initialized HMCR. If r1 < HMCR, take a variable
randomly from the initialized HM, which is called memory consideration. Otherwise, it can
be obtained by random selection (i.e., randomly generated between the search boundaries).
In the last step, take a new harmony variable. If it is updated by the memory consideration,
it needs to be adjusted, and a variable r2 between [0,1] is randomly generated. If r2 < PAR,
adjust the variable on the basis of the initialized BW and get a new variable, which is called
pitch adjustment. The pitch adjustment rule is given as:

x′new
i = xnew

i ± r ∗ BW (3)

where r is a random number between 0 and 1.
(4) Update of harmony memory
The newly obtained harmony is calculated with f (x). If the new harmony has a better

objective function solution than the poorest solution in the above initialized harmony mem-
ory (HM), the new harmony will substitute the poorest harmony in the harmony memory.

(5) Judgment on termination
Check whether current times of creation have reached the above initialized maximum

times Tmax of creation. If no, Steps 3–4 should be repeated until the maximum times of
creation are reached.

The complete steps of the harmony search algorithm are shown in Algorithm 1 .
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Algorithm 1: HS Algorithm

1: Initialize the algorithm parameters HMS, HMCR, PAR, BW, Tmax
2: Initialize the harmony memory.
3: Repeat
4: Improvise a new harmony as:
5: for all i, do

6: xnew
i →

{
memory consideration with probability HMCR

random selection with probability 1-HMCR
7: i f xnew

i ∈HM, then

8: x′new
i =

{
xnew

i ± r ∗ BW with probability PAR

xnew
i with probability 1-PAR

9: end if
10: end for
11: if the new harmony vector is better than the worst
12: one in the original HM, then
13: update harmony memory
14: end if
15: Until Tmax is fulfilled
16: Return best harmony

3. Improved Harmony Search Algorithm

Although the harmony search algorithm has the merits of satisfactory realizability,
there are still some drawbacks to be overcome, such as a poor global search ability, inade-
quate accuracy in dealing with high dimensional optimization problems, and difficulties
in pitch adjustment [25]. In this paper, a reward population-based differential genetic
harmony search algorithm (RDEGA-HS) is proposed. Furthermore, the reward popula-
tion harmony search algorithm (RHS) and differential genetic harmony search algorithm
(DEGA-HS) are designed to facilitate comparison of the results in the experiment.

3.1. Reward Population Harmony Search Algorithm (RHS)

In this paper, we propose a multi-population model based on reward population. First,
the initialized harmony memory is divided into multiple sub-memories, including several
common sub-memories and one reward memory. The size of each memory is subject to the
parameter λ. Namely,

Popsizei = Popsize ∗ λi i = 1, 2, · · · , N. (4)

Pop = ∪Popi (5)

∑ λi = 1 (6)

where, Pop and Popi refer to the total harmony memories and sub-harmony memories,
respectively, Popsize and Popsizei refer to the number of the total harmony memories and
sub-harmony memories, respectively, λi refers to the proportion of each sub-harmony
memory, and i refers to the number of sub-harmony memories.

Each harmony memory evolves separately. Furthermore, after each evolution, the sub-
harmony memory with the optimal average fitness is combined with the reward harmony
memory to form a new reward harmony memory. At the same time, poor harmony factors
are eliminated to guarantee stability in the number of newly generated harmony memories.
In this paper, four sub-harmony memories and one reward memory are set.

3.2. Differential Genetic Harmony Search Algorithm (DEGA-HS)
3.2.1. Mutation of Differential Evolution

The differential evolution algorithm (DE) is a population-based heuristic search al-
gorithm [26]. The flows of evolution are quite similar to those of the genetic algorithm.
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The operators of both are selection, crossover, and mutation. For the genetic algorithm,
crossover goes before mutation. For the DE algorithm, however, mutation goes before
crossover. Furthermore, with regard to the specific definition of these operations, there is a
difference between the two algorithms.

Let us assume that a population consists of NP N-dimensional vector individuals.
Then, each population can be expressed as: Pop = (x1, x2, · · · , xNP). Generally, after the
initialization of a population, the differential mutation operation will generate mutation
vectors. The mutation strategy of the DE algorithm is advantageous in overcoming pre-
mature convergence. Therefore, it was considered that the mutation operation of the DE
algorithm be introduced into the harmony search algorithm to overcome the premature
convergence of the harmony search algorithm, thus improving the convergence rate.

There are many forms of mutation operations, where the common forms are DE/rand/
1/bin, DE/best/1/bin, DE/rand to best/1/bin, DE/best/2/bin and so on. As to the
representative methods, they are “selection of DE algorithm”, “basic vector selection
method”, “number of differential vectors”, and “crossover methods”. Generally, they are
expressed in the form of DE/base/num/cross. If “best” is selected for the base part, it
means the optimal individual from the population is selected as the basic vector; if “rand”
is selected, it means random selection. If “bin” is selected for the cross part, it means
binomial crossover is adopted. The results show that if “rand” is selected in the base part,
it is favorable for maintaining diversity in populations; if “best” is selected, it stresses the
convergence rate [27].

For each individual xi in a population, a mutation vector of the differential evolution
algorithm is generated as per the following formula.

vi = xr1 + F(xr2 − xr3) (7)

r1, r2, and r3 are selected randomly and differ from each other. xr1 is referred to as
a basic vector, (xr2 − xr3) is referred to as a differential vector, and F is a scaling factor,
F ∈ (0, 1). F is used to control the size of the differential vector. It is worth noting that an
excessively great value of F will cause difficulties in the convergence of populations, and
an excessively small value will reduce the convergence speed.

In this paper, two mutation strategies of DE are fused to improve the proposed
algorithm. “DE/rand/bin” is selected randomly during iteration, without using the current
optimal solution. Therefore, the convergence rate is relatively low, but the global search
ability is strong. During iteration, as “DE/best/1/bin” utilizes the current optimal solution,
the algorithm is able to better improve the convergence rate. On this basis, “DE/best/1/bin”
is flexibly used in the memory consideration of the HS algorithm, while “DE/rand/1/bin”
is used for substituting pitch adjustment in the HS algorithm. The two mutation generation
strategies are as follows.

DE/best/1/bin vi = xbest + F(xr1 − xr2) (8)

DE/rand/1/bin vi = xrand + F(xr1 − xr2) (9)

3.2.2. Partheno-Genetic Algorithm

To increase the diversity of harmony factors, the Partheno-genetic algorithm (PGA)
was considered to increase the means of generating new harmonies. For individuals with
high randomness, they are subject to a shift operation, inversion operation, and permutation
operation, and thus, three new harmonies are obtained. Then, the harmony with the optimal
fitness is selected as the new individual introduced by the genetic operation.

The PGA is an improved GA that was put forward by Li and Tong in 1999 [28]. PGA
is a genetic method for reproduction through gene shift, gene permutation, and gene inver-
sion. Next, we will introduce genetic operators, namely, the permutation operator, shift
operator, and inversion operator, which are characterized by a simple genetic operation,
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decreasing the requirement for diversity in the initial population and avoiding “premature
convergence” [29].

(1) Permutation Operator.
The permutation operator is a process where genes at specific locations of a chro-

mosome are exchanged at a certain probability and the locations of the exchanged genes
are random. Permutation operators may be divided into single-point permutation and
multi-point permutation. As to single-point permutation, two genes on a chromosome
are exchanged, and in multi-point permutation, multiple genes on a chromosome are ex-
changed. The process of the two permutation operators is shown in Figure 1, where B and
B′ are the single-point permutation and multi-point permutation result for Chromosome A,
respectively.
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li(i ∈ 1, 2, · · ·N). On the basis of the operations of single-point and multi-point inversions
for chromosome O, we can obtain the chromosomes R and R′.
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decreasing the requirement for diversity in the initial population and avoiding “premature
convergence” [29].

(1) Permutation Operator.
The permutation operator is a process where genes at specific locations of a chro-

mosome are exchanged at a certain probability and the locations of the exchanged genes
are random. Permutation operators may be divided into single-point permutation and
multi-point permutation. As to single-point permutation, two genes on a chromosome
are exchanged, and in multi-point permutation, multiple genes on a chromosome are ex-
changed. The process of the two permutation operators is shown in Figure 1, where B and
B′ are the single-point permutation and multi-point permutation result for Chromosome A,
respectively.

A = (c1, c2, c3, · · · , ci−1, ci, ci+1, · · · , cj−1cj, cj+1, · · · , cN)
⇓

B = (c1, c2, c3, · · · , ci−1, cj, ci+1, · · · , cj−1, ci, cj+1, · · · , cN)
B′ = (c1, c2, c3, · · · , ci−1, cj, ci+1, · · · , cN , ci, cj+1, . . . , cj−1)

Figure 1. Permutation operator operation.

(2) Shift Operator.
The shift operator is a process in which genes in some substrings of a chromosome are

shifted backward successively, while the last gene in the substring is shifted to the foremost
location. The substrings whose genes are shifted in a chromosome and their length are
selected randomly. The gene shift can be divided into single-point shift and multi-point
shift. As to single-point shift, only one substring of a chromosome is selected for gene
shift, and in multi-point shift, multiple substrings of a chromosome are selected for gene
shift. The process of the shift operation is shown in Figure 2. H is a chromosome including
multiple genes ki(i ∈ 1, 2, · · ·N). I and I′ are chromosomes obtained by implementing
single-point shift and multi-point shift operations for H, respectively.

H = (k1, k2, k3, k4, k5, · · · , ki−2, ki−1ki, ki+1, ki+2, · · · , kN)
⇓

I = (k4, k1, k2, k3, k5, · · · , ki−2, ki−1, ki, ki+1, ki+2, · · · , kN)
I′ = (k4, k1, k2, k3, k5, · · · , ki−2, ki+2, ki−1, ki, ki+1, · · · , kN)

Figure 2. Shift operator operation

(3) Inversion Operator.
The inversion operation is a process where the genes in some substrings of a chromo-

some are inversed successively at a specific probability. The substrings for gene inversion
in a chromosome and their length are selected randomly. The gene inversion can also be
divided into single-point inversion and multi-point inversion. As to single-point inversion,
only one substring of a chromosome is selected for gene inversion, and for multi-point
inversion, multiple substrings of a chromosome are selected for gene inversion. The op-
eration is shown in Figure 3. We assume O is a chromosome including multiple genes
li(i ∈ 1, 2, · · ·N). On the basis of the operations of single-point and multi-point inversions
for chromosome O, we can obtain the chromosomes R and R′.

O = (l1, l2, l3, l4, l5, · · · , li−1, li, li+1, · · · , lj−1, lj, lj+1, · · · , lN)
⇓

R = (l4, l3, l2, l1, l5, · · · , li−1, li, li+1, · · · , lj−1, lj, lj+1, · · · , lN)
R′ = (l4, l3, l2, l1, l5, · · · , li−1, lj, lj−1, · · · , li+1, li, lj+1, · · · , cN)

Figure 3. Inversion operator operationFigure 3. Inversion operator operation



Algorithms 2022, 15, 23 8 of 19

The multi-point genetic operator is usually used when the chromosome length is
large, while the single-point genetic operator is used when the chromosome length is
small. Therefore, the genetic algorithms of single-point permutation, single-point shift,
and single-point inversion for reproduction are used for genetic operator operations and
applied to random selection in the general harmony search algorithm.

3.2.3. Flow of DEGA-HS Algorithm

As stated above, the mutation strategy of the differential mutation algorithm has
the advantage of overcoming premature convergence and degeneration. Therefore, we
considered introducing the mutation strategy of DE into the HS algorithm to overcome
the premature convergence of HS, thus improving the convergence rate. At the same time,
there is excessively high randomness in the generation of a new harmony in the general
harmony search algorithm. High randomness brings both advantages and disadvantages.
To balance this contradiction, the Partheno-genetic algorithm is also introduced.

The flow of the improved DEGA algorithm is as follows.
Step 1. Initialization of parameters.
In the new algorithm, the original tone pitch adjusting bandwidth (BW) will be can-

celed. Therefore, only the harmony memory size (HMS), harmony memory consideration
rate (HMCR), pitch adjusting rate (PAR), and maximum times of creation (Tmax) will
be initialized.

Step 2. Random initialization of harmony memory.
Step 3. Generation of a new harmony.
For the general harmony search algorithm, there are mainly three operations to gen-

erate a new harmony at this step: memory consideration, pitch adjustment, and random
selection. However, the operations of the proposed algorithm differ from them. The flow is
as follows.

First, a random number rand(1) is generated between (0,1). If rand(1) is smaller than
or equal to HMCR, the mutation strategy of “DE/best/1/bin” is used to generate a new
harmony. Namely, xnew

j = xbest
j + F(xk

j − xl
j). Then, a second random number rand(2) is

generated between (0,1). If rand(2) is smaller than or equal to PAR, the mutation strategy of
“DE/rand/1/bin” is used. Namely, xnew

j = xrand
j + F(xk

j − xl
j). Otherwise, no adjustment

is made.
If rand(1) is greater than HMCR, a new harmony is generated within the search

boundary. Next, a third random number rand(3) is generated between (0,1). If rand(3) is
smaller than or equal to PAR, a new harmony is generated according to the operation of
the Partheno-genetic operation. Otherwise, no adjustment is made.

Step 4. Update of harmony memory.
The newly generated harmony is assessed. If it is better than the poorest harmony in

the harmony memory, substitution is made.
Step 5. Judgment on termination.
Check whether current times of creation have reached the set maximum times of cre-

ation. If no, Steps 3–4 should be repeated until the maximum times of creation are reached.

3.3. Reward Population-Based Differential Genetic Harmony Search Algorithm (RDEGA-HS)

We hope the combination of the multi-population reward mechanism with a differ-
ential genetic harmony algorithm will increase the diversity of harmony and improve the
convergence rate.

The specific flow of the algorithm is as follows.
Step 1. Initialization of algorithm parameters.
Step 2. Random initialization of harmony memory.
Step 3. The total harmony memory is divided into Q + 1 (Q is an integer greater than

0) sub-harmony memories, including Q common sub-harmony memories and one reward
sub-memory.
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Step 4. As to all sub-harmony memories including the reward sub-memory, new
harmonies are generated on the basis of differential genetic operations.

Step 5. Update of each sub-harmony memory.
Step 6. Judge whether the maximum number T1

max of iterations has been reached. If
no, Steps 4 and 5 are repeated. Otherwise, move on to Step 7.

Step 7. Find the common sub-harmony memory with the best evolution effect at
present, and combine it with the original reward harmony memory. Then, sort them from
good to bad according to the fitness. On the premise of keeping the number of harmonies
in the newly generated harmony memory unchanged, eliminate bad harmonies, and form
a new reward harmony memory to replace the original reward harmony memory.

Step 8. Judge whether the upper limit T2
max of iteration has been reached. If yes, then

exit the loop and output the optimal solution. Otherwise, return to Step 4.
The pseudo-codes of the algorithm are shown in Algorithm 2.

Algorithm 2: RDEGA-HS Algorithm

1: Initialize the algorithm parameters
2: Initialize the total harmony memory
3: For Pop = ∪Popi
4: Repeat
5: While time(2) < T2

max, do
6: Improvise each new harmony as follows:
7: While time(1)< T1

max
8: For all j, do

9: xnew
j =

{
xbest

j + F(xk
j − xl

j) with probability HMCR

random selection with probability 1-HMCR
10: If with probability HMCR, then

11: x′new
j =

{
xrand

j + F(xk
j − xl

j) with probability PAR

xnew
j with probability 1-PAR

12: Else, do

13: x′new
j =

{
operation o f parthenogenetic with probability PAR

xnew
j with probability 1-PAR

14: End If
15: End For
16: If the new harmony vector is better than the worst one in the
17: original HM, then
18: update the harmony memory
19: End If
20: End while
21: Update the reward harmony memory
22: End While
23: End For
24: Return best harmony

4. Experiments

To carry out an in-depth study on the performance of RDEGA-HS, two experiments
were carried out to determine the influence of the values of HMS and HMCR on the per-
formance of the algorithm and to perform a comparative study between the HS algorithm
and the three proposed HS algorithm variants. The function name, formulation, and search
range are listed in Table 1. In this paper, we used six benchmark functions to verify the
ability of the RDEGA-HS algorithm in finding the optimal solution, so as to judge the
advantages and disadvantages of the improved algorithm. Then, a comparison was made
among the results of HS, RHS, and DEGA-HS.
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Table 1. Standard test functions and parameter settings.

Function Name Formulation Search Range

Ackley
f (x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20

xi ∈ [−32, 32]

Griewank f (x) = 1 + 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
xi ∈ [−600, 600]

Rastrigin f (x) =
n
∑

i=1
[x2

i − 10 cos(2πxi) + 10] xi ∈ [−5.12, 5.12]

Rosenbrock f (x) = ∑n
i=1

[
100
(

xi+1 − x2
i
)2

+ (1− xi)
2
]

xi ∈ [−30, 30]

Sphere f (x) =
n
∑

i=1
x2

i xi ∈ [−100, 100]

Schwefel f (x) =
n
∑

i=1
|x|+

n
∏
i=1
|x| xi ∈ [−10, 10]

The Ackley function is a widely used multi-mode test function. The Griewank function
has many widely distributed local minimum values and is considered to be a convex
function. The Rastrigin function is a high-dimensional multi-mode function; in this function,
a frequent local minimum value is generated by increasing cosine modulation, and the
locations of minimum values are generally scattered. In addition, benchmark functions
such as Rosenbrock, Sphere, and Schwefel function are also used in the experimental steps.

4.1. Effects of HMS and HMCR on Performance of RDEGA-HS

In this section, the six benchmark functions in Table 1 are used for studying the
influence of HMS and HMCR on the performance of the algorithm. The dimensions of the
six functions were set to 40. Each case was independently run 50 times. Tables 2 and 3
report the average value and standard deviation obtained with different values of HMS
and HMCR, respectively. In this experiment, we set the termination based on the maximum
number of iterations. T1

max is set to 10 and T2
max is set to 100, so the maximum number of

iterations is 1000.
It can be seen from Table 2 that HMS influenced the result of the algorithm. When

HMS was 80, the algorithm achieved the best optimization accuracy and stability. Therefore,
HMS was set to 80 in all test experiments herein.

Table 2. Effects of HMS on performance of RDEGA-HS (HMCR = 0.9).

Funtion
HMS

100 80 50 20 10 5

Ackley 9.26 × 10−3 5.44 × 10−3 1.24 × 10−2 5.24 × 10−1 1.02 × 10−1 8.84
1.20 × 10−2 5.57 × 10−3 8.45 × 10−2 1.12 × 10−1 9.54 2.84 × 101

Griewank 5.16 × 10−10 1.35 × 10−11 2.46 × 10−8 9.54 × 10−6 8.89 × 10−5 5.12 × 10−2

9.25 1.68 × 10−1 5.12 1.26 × 101 5.84 × 101 6.25 × 101

Rastrigin 1.91 × 10−7 1.91 × 10−8 1.91 × 10−6 1.91 × 10−4 1.91 × 10−2 1.91
3.21 × 10−3 5.57 × 10−3 1.05 × 10−3 5.41 × 10−2 4.89 × 10−1 6.27

Rosenbrock 9.99 × 10−2 8.68 × 10−2 1.38 × 10−1 7.54 × 10−1 3.63 8.74
7.45 × 10−1 1.12 × 10−1 4.21 2.84 × 101 9.79 × 101 1.84 × 102

Sphere 3.25 × 10−37 1.03 × 10−40 5.84 × 10−35 6.84 × 10−34 7.54 × 10−32 8.47 × 10−30

6.45 × 10−29 5.14 × 10−30 7.48 × 10−29 6.42 × 10−26 3.41 × 10−24 5.49 × 10−20

Schwefel 5.84 × 10−34 2.51 × 10−35 4.98 × 10−32 7.69 × 10−31 3.98 × 10−30 4.16 × 10−28

5.68 × 10−30 4.87 × 10−31 7.98 × 10−28 1.36 × 10−27 8.54 × 10−26 2.65 × 10−24

It can be seen from Table 3 that the value of HMCR obviously influenced the optimiza-
tion result of the proposed algorithm. A greater HMCR will obviously improve the local
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search ability, thus improving the performance of the algorithm. A smaller HMCR will
influence the performance of the algorithm. When HMCR was 0.9, the proposed algorithm
demonstrated a higher convergence rate. Therefore, in this paper, the HMCR value was
chosen to be 0.9.

Table 3. Effects of HMCR on performance of RDEGA-HS (HMS = 80).

Function
HMCR

0.9 0.8 0.6 0.5 0.3 0.1

Ackley 4.26 × 10−3 8.54 × 10−3 9.98 × 10−3 3.41 × 10−2 9.88 × 10−2 6.54
9.25 × 10−4 4.51 × 10−3 5.89 × 10−2 5.68 × 10−1 1.25 6.66 × 101

Griewank 2.54 × 10−10 7.84 × 10−8 1.54 × 10−6 5.65 × 10−5 6.58 × 10−4 2.58 × 10−3

7.33 × 10−2 9.98 × 10−2 1.54 × 10−1 6.85 8.98 4.65 × 101

Rastrigin 9.91 × 10−9 7.54 × 10−8 8.54 × 10−7 3.69 × 10−5 9.58 × 10−4 7.54 × 10−1

2.54 × 10−4 8.96 × 10−4 2.56 × 10−3 6.66 × 10−3 2.58 × 10−2 8.95 × 10−2

Rosenbrock 7.56 × 10−2 8.75 × 10−2 2.45 × 10−1 9.87 × 10−1 2.6 8.74 × 101

1.58 × 10−1 6.87 × 10−1 8.95 6.54 × 101 1.26 × 102 9.68 × 102

Sphere 2.54 × 10−39 8.54 × 10−38 5.64 × 10−35 9.87 × 10−34 6.84 × 10−31 5.36 × 10−29

7.84 × 10−30 5.42 × 10−28 6.46 × 10−28 3.38 × 10−25 5.10 × 10−23 3.86 × 10−21

Schwefel 5.98 × 10−36 6.04 × 10−33 9.40 × 10−31 3.20 × 10−30 1.65 × 10−28 9.69 × 10−27

2.31 × 10−30 3.94 × 10−29 4.48 × 10−27 9.45 × 10−25 4.31 × 10−23 1.41 × 10−22

4.2. Comparative Study on RDEGA-HS and HS Variants

To study the expandability of the algorithm, six different variable dimensions were
used in each function test: 30, 40, 50, 60, 70, and 80. In a simulation experiment, the common
parameters were set as follows: HMS = 80, HMCR = 0.9, PAR = 0.6, and BW = 0.05. As in the
previous experiment, we set the maximum number of iterations as the termination. Since
the algorithm we proposed has two loops, in order to show fairness when compared with
other algorithms, we set T1

max to 10 and T2
max to 100, so the maximum number of iterations is

1000. As a correspondence, the maximum number of iterations of the other three algorithms
is also set to 1000. All optimization algorithms were achieved in Matlab R2021a.

To measure the convergence accuracy, robustness, convergence rate, and other perfor-
mances of the different optimization algorithms, each function was run independently for
100 times. Then, the average optimal value and standard deviation were taken to serve as
the final evaluation indexes. The curve of the average optimal fitness was given.

(1) Ackley Function
For the case where n = 40, the change in the average optimal fitness of the Ackley

function with the number of iterations is shown in Figure 4.
(2) Griewank Function
For the case where n = 40, the change in the average optimal fitness value of the

Griewank function with the number of iterations in shown in Figure 5.
(3) Rastrigin Function
For the case where n = 40, the change in the average optimal fitness value of the

Rastrigin function with the number of iterations in shown in Figure 6.
(4) Rosenbrock Function
For the case where n = 40, the change in the average optimal fitness value of the

Rosenbrock function with the number of iterations in shown in Figure 7.
(5) Sphere Function
For the case where n = 40, the change in the average optimal fitness value of the Sphere

function with the number of iterations in shown in Figure 8.
(6) Schwefel Function
For the case where n = 40, the change in the average optimal fitness value of the

Schwefel function with the number of iterations in shown in Figure 9.
It can be seen from the comparison of the optimization results of the test functions in

Tables 4–9 and the changes in average fitness in Figures 4–9 that the proposed algorithm
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has a strong optimization ability. Upon a general review of each algorithm’s optimization
process for the above six functions, the dimensions of the functions had a significant
influence on the optimal value. As the dimensions increased, the optimal value of each
algorithm also changed. For example, for the Ackley function, the variable dimensions had
a significant influence on each algorithm. In terms of a low-dimensional function, RDEGA-
HS and the other algorithms were all able to achieve the global optimum; however, in terms
of a high-dimensional function, the RDEGA-HS algorithm still achieved a satisfactory result.

Figure 4. Change in average optimal fitness value of Ackley function with number of iterations.

Table 4. Result of the Ackley function under different optimization algorithms.

Algorithm Dimensions Theoretical Optimum Mean Optimum Standard Deviation

HS

30 0 3.66 × 10−2 2.35
40 0 3.55 × 10−1 3.51
50 0 1.25 4.21
60 0 3.35 3.23 × 101

70 0 8.70 × 101 5.64 × 102

80 0 9.49 × 102 6.43 × 102

RHS

30 0 2.41 × 10−2 5.33 × 10−2

40 0 1.02 × 10−1 6.25 × 10−1

50 0 1.01 4.22
60 0 8.25 1.10 × 101

70 0 6.59 × 101 4.56 × 102

80 0 1.88 × 102 3.12 × 103

DEGA-HS

30 0 8.20 × 10−5 2.03 × 10−2

40 0 1.22 × 10−2 6.01 × 10−2

50 0 1.25 × 10−1 8.85 × 10−1

60 0 7.22 6.43
70 0 6.96 × 101 7.80 × 101

80 0 1.69 × 102 9.72 × 103

RDEGA-HS

30 0 2.67 × 10−5 1.22 × 10−3

40 0 5.44 × 10−3 3.25 × 10−3

50 0 9.56 × 10−2 5.26 × 10−1

60 0 2.29 × 10−1 4.14
70 0 9.61 × 10−1 2.34 × 101

80 0 5.77 1.22 × 102
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Figure 5. Change in average optimal fitness value of Griewank function with number of iterations.

Table 5. Results of the Griewank function under different optimization algorithms.

Algorithm Dimensions Theoretical Optimum Average Optimum Standard Deviation

HS

30 0 4.00 × 10−11 1.00
40 0 6.02 × 10−9 1.50
50 0 1.38 × 10−8 2.64
60 0 4.86 × 10−7 7.16
70 0 5.99 × 10−7 5.99 × 101

80 0 6.98 × 10−6 7.94 × 101

RHS

30 0 3.13 × 10−10 5.19 × 10−1

40 0 1.66 × 10−9 7.73 × 10−1

50 0 7.84 × 10−9 1.15
60 0 2.06 × 10−8 7.52
70 0 6.34 × 10−8 7.93
80 0 4.54 × 10−7 1.87 × 101

DEGA-HS

30 0 8.82 × 10−11 2.15 × 10−1

40 0 2.08 × 10−10 5.25 × 10−1

50 0 1.08 × 10−9 7.96 × 10−1

60 0 8.90 × 10−8 8.11 × 10−1

70 0 8.22 × 10−7 4.48
80 0 7.91 × 10−6 5.21

RDEGA-HS

30 0 1.13 × 10−12 1.24 × 10−2

40 0 1.35 × 10−11 1.68 × 10−1

50 0 1.35 × 10−10 2.29 × 10−1

60 0 7.44 × 10−9 7.67 × 10−1

70 0 4.93 × 10−8 9.45 × 10−1

80 0 8.01 × 10−7 1.36
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Figure 6. Change in average optimal fitness value of Rastrigin function with number of iterations.

Table 6. Results of the Rastrigin function under different optimization algorithms.

Algorithm Dimensions Theoretical Optimum Average Optimum Standard Deviation

HS

30 0 1.39 × 10−7 3.32 × 10−2

40 0 8.52 × 10−7 4.98
50 0 2.86 × 10−5 8.75
60 0 5.20 × 10−5 6.11 × 101

70 0 5.38 × 10−4 4.85 × 102

80 0 3.59 × 10−3 8.09 × 102

RHS

30 0 4.02 × 10−7 1.72 × 10−1

40 0 8.30 × 10−7 2.56
50 0 3.12 × 10−5 3.80
60 0 4.32 × 10−5 8.60
70 0 2.73 × 10−4 4.56 × 101

80 0 5.91 × 10−3 5.87 × 102

DEGA-HS

30 0 9.46 × 10−8 7.12 × 10−2

40 0 2.09 × 10−7 1.74 × 10−1

50 0 1.03 × 10−5 2.64
60 0 4.81 × 10−4 7.34
70 0 9.85 × 10−3 1.67 × 101

80 0 6.95 × 10−2 5.74 × 101

RDEGA-HS

30 0 1.46 × 10−8 4.12 × 10−3

40 0 1.91 × 10−8 5.57 × 10−3

50 0 1.06 × 10−7 7.60 × 10−1

60 0 8.34 × 10−7 4.21
70 0 4.63 × 10−6 7.84
80 0 9.85 × 10−6 8.73
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Figure 7. Change in average optimal fitness value of Rosenbrock function with number of iterations.

Table 7. Results of the Rosenbrock function under different optimization algorithms.

Algorithm Dimensions Theoretical Optimum Average Optimum Standard Deviation

HS

30 0 8.43 × 10−2 6.36 × 10−2

40 0 4.82 × 10−1 4.65 × 10−1

50 0 2.86 6.80
60 0 7.14 × 102 9.45 × 102

70 0 7.14 × 102 9.45 × 102

80 0 5.23 × 103 7.35 × 103

RHS

30 0 4.08 × 10−2 2.77 × 10−2

40 0 4.68 × 10−1 8.47 × 10−1

50 0 6.93 3.72
60 0 9.63 5.71 × 101

70 0 3.72 × 101 6.62 × 102

80 0 7.52 × 102 5.04 × 103

DEGA-HS

30 0 7.77 × 10−3 7.98 × 10−1

40 0 2.67 × 10−1 2.91
50 0 6.12 × 10−1 6.84
60 0 1.55 8.15 × 101

70 0 7.15 × 101 3.43 × 102

80 0 7.02 × 102 1.48 × 103

RDEGA-HS

30 0 2.21 × 10−3 9.98 × 10−2

40 0 9.04 × 10−2 4.56 × 10−2

50 0 2.53 × 10−1 9.10 × 10−1

60 0 5.90 5.78
70 0 1.31 × 101 1.74 × 101

80 0 8.33 × 101 4.77 × 102
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Figure 8. Change in average optimal fitness value of Sphere function with number of iterations.

Table 8. Results of the Sphere function under different optimization algorithms.

Algorithm Dimensions Theoretical Optimum Average Optimum Standard Deviation

HS

30 0 8.72 × 10−38 3.26 × 10−28

40 0 9.21 × 10−36 1.25 × 10−28

50 0 4.11 × 10−36 3.67 × 10−28

60 0 8.42 × 10−34 1.63 × 10−27

70 0 8.16 × 10−34 1.09 × 10−26

80 0 2.91 × 10−33 1.28 × 10−26

RHS

30 0 2.45 × 10−38 2.56 × 10−28

40 0 6.49 × 10−37 2.06 × 10−28

50 0 1.14 × 10−35 1.63 × 10−28

60 0 4.80 × 10−36 3.32 × 10−27

70 0 7.41 × 10−35 2.46 × 10−27

80 0 3.56 × 10−34 2.33 × 10−27

DEGA-HS

30 0 9.17 × 10−38 3.63 × 10−29

40 0 3.90 × 10−38 1.40 × 10−28

50 0 6.56 × 10−37 3.06 × 10−28

60 0 8.62 × 10−35 3.05 × 10−28

70 0 1.07 × 10−33 1.73 × 10−27

80 0 1.14 × 10−32 2.39 × 10−27

RDEGA-HS

30 0 7.00 × 10−40 6.58 × 10−31

40 0 2.66 × 10−39 5.84 × 10−30

50 0 2.77 × 10−38 2.27 × 10−29

60 0 3.92 × 10−36 3.14 × 10−28

70 0 1.01 × 10−34 3.69 × 10−28

80 0 3.89 × 10−34 8.51 × 10−29
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Figure 9. Change in average optimal fitness value of the Schwefel function with the number
of iterations.

Table 9. Results of the Schwefel function under different optimization algorithms.

Algorithm Dimensions Theoretical Optimum Average Optimum Standard Deviation

HS

30 0 3.93 × 10−35 7.20 × 10−27

40 0 3.36 × 10−34 3.55 × 10−25

50 0 7.14 × 10−35 3.82 × 10−26

60 0 2.59 × 10−33 2.93 × 10−24

70 0 1.58 × 10−32 3.07 × 10−23

80 0 5.24 × 10−31 3.24 × 10−23

RHS

30 0 2.44 × 10−36 6.47 × 10−28

40 0 3.70 × 10−35 1.69 × 10−26

50 0 1.60 × 10−34 1.23 × 10−25

60 0 4.13 × 10−33 3.01 × 10−25

70 0 2.17 × 10−32 1.79 × 10−23

80 0 4.43 × 10−32 3.38 × 10−23

DEGA-HS

30 0 4.63 × 10−38 9.70 × 10−29

40 0 9.97 × 10−36 1.24 × 10−27

50 0 3.25 × 10−35 8.49 × 10−27

60 0 1.13 × 10−33 8.16 × 10−26

70 0 1.97 × 10−32 3.24 × 10−24

80 0 5.93 × 10−32 2.29 × 10−22

RDEGA-HS

30 0 1.52 × 10−39 2.19 × 10−29

40 0 5.42 × 10−36 8.45 × 10−29

50 0 3.76 × 10−35 3.19 × 10−26

60 0 6.41 × 10−35 2.42 × 10−25

70 0 1.09 × 10−34 1.53 × 10−25

80 0 3.20 × 10−33 2.06 × 10−24

As to a comparison of the algorithms’ stability, the experiments were repeated 100 times.
In addition to the optimization ability, which has received a lot of attention, the algorithms’
stability is also an index worth paying attention to when evaluating the performance of
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algorithms. After 100 repetitions, the variance in the experimental results was solved to
check the fluctuation in the algorithms’ optimal value. For the six functions, the RDEGA-
HS algorithm still maintained satisfactory stability, while the rest of the algorithms were
quite unstable.

Since five sub-harmony memories have been designed and calculated for RDEGA-HS,
the running duration is longer than an algorithm where a single-harmony memory is set.
However, as the diversity of harmony memories is increased, the local optimal solutions
are avoided, thus improving the solving accuracy.

5. Conclusions

In this paper, on the basis of the standard harmony search (HS) algorithm, a reward
population mechanism, differential mutation, and Partheno-genetic operation were used to
improve the basic harmony search algorithm, whereby the harmony vector diversity and
accuracy were improved. With the introduction of the reward population mechanism, the
harmony memory was divided into four common sub-harmony memories and one reward
harmony memory, each of which adopts the evolution strategy of the differential genetic
harmony search. After each iteration, the sub-harmony memory with the best optimal
average fitness was combined with the reward harmony memory. The mutation strategy of
the differential evolution (DE) algorithm is able to overcome premature convergence. By
introducing the mutation strategy of DE into the HS algorithm, it was able to overcome
premature convergence and improve the convergence rate. Meanwhile, the Partheno-
genetic algorithm was introduced the generation of new harmony vectors. Finally, the six
frequently used test functions of Ackley, Griewank, Rastrigin, Rosenbrock, Sphere, and
Schwefel were introduced to verify the validity and convergence of the algorithms. Then, a
comparison was made on the calculation results of the standard harmony search algorithm,
reward population-based harmony search algorithm, differential genetic harmony search
algorithm, and reward population-based differential genetic harmony search algorithm.
The result suggests that the reward population-based differential genetic harmony search
algorithm has advantages such as a strong global search ability, high solving accuracy, and
satisfactory stability.
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